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We study a two-state quantum system with a non linearity intended to describe interactions with a complex environment, arising through a non local coupling term. We study the stability of particular solutions, obtained as constrained extrema of the energy functional of the system. The simplicity of the model allows us to justify a complete stability analysis. This is the opportunity to review in details the techniques to investigate the stability issue. We also bring out the limitations of perturbative approaches based on simpler asymptotic models.

Introduction

In this work, we consider a simple quantum system characterized by a single degree of freedom which can take only two values, hereafter referred to as 0 and 1. The quantum system interacts with its environment, the description of which is embodied into a vibrational field, oscillating in some abstract direction z P R n . Therefore the evolution of the system is governed by the ODE system (2)

These equations are completed by initial data pu 0 , u 1 , ψ 0 , B t ψ 0 , ψ 1 , B t ψ 1 q ˇˇt"0 " pu 0,init , u 1,init , ψ 0,init , ̟ 0,init , ψ 1,init , ̟ 1,init q.

(3)

The coupling is embodied into the form function z P R n Þ Ñ σpzq, which, throughout the paper is assumed to be non-negative, smooth, with fast enough decay (say compactly supported to fix ideas). The free problem (σ " 0) reduces to

d dt ˆu0 u 1 ˙" 1 i ˆ1 ´1 ´1 1 ˙ˆu 0 u 1 ˙. ( 4 
)
We infer that the system oscillates with frequency 2 around a constant state: the solutions of (4) read ˆu0 ptq

u 1 ptq ˙" 1 2 ˆ1 1 1 ´1˙ˆp
u 0,init `u1,init q pu 0,init ´u1,init qe ´2it ˙.

Hence, we are wondering how the coupling (σ 0) impacts this simple dynamics. It is also worth considering the large speed regime c Ñ 8 which leads to the following non-linear ODE system d dt ˆu0

u 1 ˙" 1 i ˆ1 ´κ|u 0 | 2 ´1 ´1 1 ´κ|u 1 | 2 ˙ˆu 0 u 1 ˙ (5) 
where κ " ˆRn σpzqp´∆q ´1σpzq dz "

ˆRn |p σpξq| 2 |ξ| 2 dξ p2πq n ą 0. ( 6 
)
It will be interesting to compare the behavior of the asymptotic model ( 5) with ( 1)- [START_REF] De Bièvre | Spectral analysis of a model for quantum friction[END_REF]; in particular we are going to point out the limitations of a perturbative approach that would try to deduce properties of (1)-( 2) from the analysis of [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF].

According to the ideas of quantum mechanics, the |u j |'s represent the probability of being in the state labelled by j; in turn, the total probability should be one: we always have |u 0 ptq| 2 `|u 1 ptq| 2 " 1. [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF] If this property holds initially, we check that it holds forever. Moreover, the equations describe the energy exchanges between the quantum system and the environment which traduces into an additional conservation property, namely, we have (detailed computations can be found in Appendix A, but the result also directly follows from the symplectic form of the problem, exhibited below, combined to Noether's theorem)

for ( 1)-( 2):

d dt ˆ|u 0 ´u1 | 2 2 `1 4 ˆRn ´1 c 2 p|B t ψ 0 | 2 `|B t ψ 1 | 2 q `|∇ψ 0 | 2 `|∇ψ 1 | 2 ¯dz `1 2 ˆRn σpψ 0 |u 0 | 2 `ψ1 |u 1 | 2 q dz ˙" 0 (8) 
which becomes for [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF]:

d dt ˆ|u 0 ´u1 | 2 2 ´κ 4 p|u 0 | 4 `|u 1 | 4 q ˙" 0 (9) 
for the asymptotic model [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF]. These conservation properties play a central role in the analysis of the equations.

The question we address comes from the modeling of quantum open systems. The motivation, inspired from the seminal work of Caldeira and Leggett [START_REF] Caldeira | Quantum tunnelling in a dissipative system[END_REF], is to understand how the interactions with the environment induce some kind of dissipative effects. The intuition is that the quantum system exchanges energy with the vibrational field, and the energy is eventually evacuated "at infinity" in the z-direction; this mechanism can be interpreted as a sort of friction acting on the quantum system. For the sake of concreteness, the energy transfer mechanisms at work between the quantum system and the environment with the model ( 1)-( 2) are illustrated in Figure 1 which show typical evolutions of the different contributions, wave and particle, to the total energy: albeit these curves are suggestive, in fact, they correspond to very different behaviors of the system, as we shall discuss below. Such an issue has been studied in details for the case of a single classical particle in [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF], where the dissipation mechanisms are explicitly exhibited. This situation has been further investigated in [START_REF] Aguer | Classical motion in force fields with short range correlations[END_REF][START_REF] De Bièvre | Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases[END_REF][START_REF] De Bièvre | Chaotic dynamics of a free particle interacting linearly with a harmonic oscillator[END_REF][START_REF] Soret | Stochastic acceleration in a random time-dependent potential[END_REF][START_REF] Lafitte | Normal transport properties in a metastable stationary state for a classical particle coupled to a non-ohmic bath[END_REF]; we also refer the reader to [START_REF] Jaksic | Ergodic properties of classical dissipative systems[END_REF] or [START_REF] Komech | Effective dynamics for a mechanical particle coupled to a wave field[END_REF] for different, but related, viewpoints on the dynamic of a classical particle coupled to a complex environment. Dealing with many classical particles leads to consider Vlasov-like equations [START_REF] De Bièvre | Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov-Poisson system[END_REF][START_REF] Goudon | Mean field limit for particles interacting with a vibrating medium[END_REF][START_REF] Goudon | Landau damping in dynamical Lorentz gases[END_REF], and the dissipation effects can be interpreted as a sort of Landau damping. The friction mechanisms are intimately related to the dispersion properties of the wave equation that need to be strong enough, an effect driven by the condition n ě 3 on the z-direction, that will be assumed throughout the paper. In particular, it can be noticed that it guarantees the quantity defined by [START_REF] Caldeira | Quantum tunnelling in a dissipative system[END_REF] to be finite. We refer the reader to [START_REF] Goudon | Landau damping in dynamical Lorentz gases[END_REF] for detailed comments about this assumption. Coming back to quantum particles, one is led to systems coupling the Schrödinger equation with a wave equation: the model iB t u `∆x 2 u " Φu, Φpt, xq " ˆσ1 px ´yqσpzqψpt, y, zq dz dy, ´1 c 2 B 2 tt ψ ´∆z ψ ¯pt, x, zq " ´σpzq ˆσ1 px ´yq|u| 2 pt, yq dy, [START_REF] De Bièvre | Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases[END_REF] is the quantum analog of the equation introduced in [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF] (other quantum frameworks are discussed for instance in [START_REF] De Bièvre | Spectral analysis of a model for quantum friction[END_REF][START_REF] Duerinckx | Cherenkov radiation with massive bosons and quantum friction[END_REF][START_REF] Jaksic | On a model for quantum friction. I. Fermi's golden rule and dynamics at zero temperature[END_REF]). The equation is analysed when the variable x lies in R d in [START_REF] Goudon | On quantum dissipative systems: ground states and orbital stability[END_REF] and ground states can be identified by variational approaches. However, the stability analysis of the ground states is delicate because of the non local definition of the self-consistent potential, and the arguments developped for NLS (Φ " ´|u| 2 in the first equation of ( 10)) or Schrödinger-Newton (Φ " 1 |¨| ‹ |u| 2 with d " 3) do not adapt directly (note at least that here the coupling has a more dynamical nature). The attempt in this direction presented in [START_REF] Goudon | On quantum dissipative systems: ground states and orbital stability[END_REF], completed by the numerical investigation in [START_REF] Goudon | Numerical investigation of landau damping in dynamical Lorentz gases[END_REF], relies on a perturbative approach, inspired from [START_REF] Lenzmann | Uniqueness of ground states for pseudo-relativistic Hartree equations[END_REF]. However, it induces some restrictions which are not completely satisfying. In order to understand this difficulty, we have studied the simpler framework of plane waves (x lies in the torus T d ) in [START_REF] Goudon | Plane wave stability analysis of Hartree and quantum dissipative systems[END_REF], where the Hamiltonian structure is further exploited, in the spirit of the pioneering work [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF], see also the recent overview [START_REF] De Bièvre | Orbital stability: analysis meets geometry[END_REF]. It allows us to identify fundamental differences between [START_REF] De Bièvre | Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases[END_REF] and its asymptotic counterpart as c Ñ 8; in particular, the coupling with the wave equation induces spectral difficulties which `1 2 ř 1 j"0 ´Rn σψ j |u j | 2 dz to the Total Energy (8) associated to (1)- [START_REF] De Bièvre | Spectral analysis of a model for quantum friction[END_REF]. The simulations correspond to various cases that will be discussed in details below: (a) τ " `1 and large κ, (b) τ " ´1, (c): τ " `1 and small κ In what follows, we pay attention to solutions of ( 1)-( 2) or [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF], where the quantum particles distribution has the specific form e iωt pU ˚0, U ˚1q, with U ˚0, U ˚1, fixed complex numbers. These solutions can be classified in terms of extrema of the energy. The question we address is about the stability of these specific solutions. At first sight, the problem under consideration can be seen as a discrete version of the non linear Schrödinger equation: we roughly interpret u 0 ´u1 and u 1 ´u0 as the discrete laplacian p∆ d uq 0 " ´u´1 `2u 0 ´u1 2 , p∆ d uq 1 " ´u0 `2u 1 ´u2 2 endowed with periodic conditions u ´1 " u 1 , u 0 " u 2 ! Stability analysis relies on the properties of the energy functional which can be used as a Lyapounov functional, and establishing coercivity properties is key for proving the orbital stability of the ground state, see [START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF][START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF] and the recent review [START_REF] Tao | Why are solitons stable ? Bull[END_REF]. A quite general framework has been set up in [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF], see also [START_REF] De Bièvre | Orbital stability: analysis meets geometry[END_REF][START_REF] De Bièvre | Orbital stability via the energy-momentum method: the case of higher dimensional symmetry groups[END_REF], intended to cover the analysis of a wide class of Hamiltonian systems. However, the coupling with a vibrational environment lead to difficulties of a different nature, which are not covered by the abstract framework of [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] since the nonlinearity has the form Φu, where the potential Φ is non local both "in space" (here it means that it mixes the two states 0 and 1) and in time, with some kind of memory effects, so that the arguments of [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] do not apply.

The interest of the two-level model is to be both simple enough to allow us to perform many explicit computations, and rich enough to exhibit interesting phenomena; in turn

• we are able to provide a complete stability analysis for the models (1)-( 2) and ( 5);

• we review in full details the techniques for investigating such systems, and explain how they can be adapted to handle the non local coupling;

• it allows us to clarify where are the main difficulties and it provides valuable hints to study more complex models. We expect this work to provide useful ideas to go back to the more challenging problem [START_REF] De Bièvre | Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases[END_REF].

The paper is organized as follows. In Section 2, we discuss the Hamiltonian structure of the problem and make the connection appear between extrema of the energy functional and specific solutions with the form uptq " e iωt pU ˚0, U ˚1q. Section 3 is devoted to the analysis of the asymptotic system [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF], which is a mere ODE system. In Section 4, we discuss the system (1)- [START_REF] De Bièvre | Spectral analysis of a model for quantum friction[END_REF]. Throughout the paper, numerical simulations illustrate the obtained statements.

Hamiltonian formulation, extrema of the energy and traveling-wave-like solutions

Throughout the paper, we split a complex number u " q `ip, where q, p are real valued. Coming back to the unknown describing the quantum state, it makes the following correspondance appear

U " ˆu0 u 1 ˙P C 2 ÐÑ X " ¨q0 p 0 q 1 p 1 ‹ ‹ ' P R 4 . ( 11 
)

Analysis of the asymptotic model

We start with the simpler system [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF]. Let us introduce the function

H : pu 0 , u 1 q P C 2 Þ ÝÑ |u 0 ´u1 | 2 2 ´κ 4 p|u 0 | 4 `|u 1 | 4 q.
We have observed that t Þ Ñ H pu 0 ptq, u 1 ptqq is conserved by the differential system [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF]. This property can be interpreted as a consequence of the following reformulation of the problem, in terms of the real valued quantities defined by [START_REF] De Bièvre | Chaotic dynamics of a free particle interacting linearly with a harmonic oscillator[END_REF]. The conserved quantity becomes

H pXq " |q 0 ´q1 | 2 2 `|p 0 ´p1 | 2 2 ´κ 4 p|q 0 | 2 `|p 0 | 2 q 2 ´κ 4 p|q 1 | 2 `|p 1 | 2 q 2 , ( 12 
)
and ( 5) can be cast in the symplectic form

B t X " J ∇ X H pXq, (13) 
with J the skew-symmetric matrix

J " ¨0 1 0 0 ´1 0 0 0 0 0 0 1 0 0 ´1 0 ‹ ‹ ' .
We are interested in specific solutions of (5), having the special form pe iωt U ˚0, e iωt U ˚1q where U ˚0 " Q ˚0 `iP ˚0, and U ˚1 " Q ˚1 `iP ˚1 are fixed complex numbers. We are led to the relation

´ωX ˚" ∇ X H pX ˚q " ¨Q˚0 ´Q˚1 ´κpQ 2 ˚0 `P 2 ˚0qQ ˚0 P ˚0 ´P˚1 ´κpQ 2 ˚0 `P 2 ˚0qP ˚0 Q ˚1 ´Q˚0 ´κpQ 2 ˚1 `P 2 ˚1qQ ˚1 P ˚1 ´P˚0 ´κpQ 2 ˚1 `P 2 ˚1qP ˚1 ‹ ‹ ' , ( 14 
)
which similarly arises when searching for the extrema of H under the constraint of fixed L 2 norm |U ˚0| 2 `|U ˚1| 2 " 1, ω being interpreted as the associated Lagrange multiplier. We thus focus on this optimization viewpoint. We write u j " r j e iθ j " q j `ip j , with r j ě 0 and θ j P r0, 2πq and we realize that all terms in H pu 0 , u 1 q do not depend on the angles θ j , but

|u 0 ´u1 | 2 " r 2 0 `r2 1 ´2r 0 r 1 cospθ 1 ´θ0 q so that pr 0 ´r1 q 2 ď |u 0 ´u1 | 2 ď pr 0 `r1 q 2
holds. The inequalities are saturated when θ 1 " θ 0 modp2πq (left) or θ 1 " θ 0 modpπq (right).

If pu 0 , u 1 q minimizes H over the unit sphere of C 2 , we deduce from H pr 0 , r 1 q ď H pu 0 , u 1 q and r 2 0 `r2 1 " 1, that pr 0 , r 1 q P r0, 1s ˆr0, 1s equally reaches the minimum. Conversely, if pq 0 , q 1 q minimizes H over the unit sphere of R 2 , then, for any u j " r j e iθ j , with r 2 0 `r2

1 " 1, we get H pq 0 , q 1 q ď H pr 0 , r 1 q ď H pu 0 , u 1 q so that pq 0 , q 1 q minimizes H over the unit sphere of C 2 . A similar equivalence holds for maximizing H .

Therefore, all extrema can be described by restricting first to the case p 0 " p 1 " 0, and then, from the obtained (real valued) optima pq 0 , q 1 q, by setting u 0 " e iθ 0 q 0 , u 1 " e iθ 0 q 1 , θ 0 P r0, 2πq. Moreover, we should also bear in mind the conservation of the L 2 norm, so that we are actually interested in extrema over the sphere tpq 0 , q 1 q P R 2 , |q 0 | 2 `|q 1 | 2 " 1u. Accordingly, we can reinterpret the problem as to optimize a function of a mere scalar variable

θ P r0, 2πq Þ ÝÑ H 1 pθq " pcospθq ´sinpθqq 2 2 ´κ 4 pcos 4 pθq `sin 4 pθqq.
For reader's convenience, graphs of θ Þ Ñ H 1 pθq are plotted for several values of κ in Fig. 2. We have H 1 1 pθq " ´pcos 2 pθq ´sin 2 pθqq `κ cospθq sinpθqpcos 2 pθq ´sin 2 pθqq "

κ 2 cosp2θq ˆsinp2θq ´2 κ ˙.
It vanishes when θ " π 4 which yields the solution q 0 " 1{ ? 2, q 1 " 1{ ? 2, or θ " 3π 4 , which yields the solution q 0 " 1{ ? 2, q 1 " ´1{ ? 2. If the smallness condition 0 ă κ ă 2 holds, this completely describes the extrema of the function H 1 . When κ ą 2, we can find other solutions by setting θ " arcsinp2{κq 2 P p0, π{4q and θ " π 2 ´arcsinp2{κq 2 P pπ{4{, π{2q. We have

H 2 1 pθq " κ ˆcos 2 p2θq ´sinp2θq ˆsinp2θq ´2 κ ˙˙.
Therefore, we distinguish the following cases:

• if 0 ă κ ă 2, θ " π{4 minimizes the energy (H 2 1 pπ{4q " κ 2 p 2 κ ´1q ą 0) and θ " 3π{4 maximizes the energy (H 2 1 p3π{4q " ´κ 2 p 2 κ `1q ă 0): we have

H 1 pπ{4q " ´κ 8 ď H 1 pθq ď H 1 p3π{4q " 1 ´κ 8 ; • if κ ą 2, θ κ " arcsinp2{κq 2 , θ κ " π 2 ´arcsinp2{κq
2 minimize the energy (H 2 1 pθ κ q " κ cos 2 p2θκ ˘q ą 0), θ " π{4 is a local maximum of the energy (H 2 1 pπ{4q " κ 2 p 2 κ ´1q ă 0) and θ " 3π{4 maximizes the energy (H 2 1 p3π{4q " ´κ 2 p 2 κ `1q ă 0); we have H 1 pθ κ q " 1 2 p1 ´κ{2 ´1{κqq ď H 1 pθq ď H 1 p3π{4q " 1 ´κ 8 and H 1 pπ{4q " ´κ 8 P pH 1 pθ κ q, H 1 p3π{4qq. 

) 15 
we thus denote

e iωt U ˚" e iωt ? 2 ˆ1 τ ˙, τ " ˘1 (16) 
the obtained solution of (5), with τ " 1 corresponding to the state of minimal energy, and τ " ´1 corresponding to the state of maximal energy. Equivalently, we can consider

X ˚" 1 ? 2 ¨1 0 τ 0 ‹ ‹ ' (17) 
so that, given the extended rotation matrix

Rpθq "

¨cospθq ´sinpθq 0 0 sinpθq cospθq 0 0 0 0 cospθq ´sinpθq 0 0 sinpθq cospθq ‹ ‹ ' ,
RpωtqX ˚defines a solution to [START_REF] Gallay | Stability of small periodic waves for the nonlinear Schrödinger equation[END_REF].

When κ ą 2, ( 16) still both define a solution of ( 5), but for τ " 1 the solution does not reach the minimal energy. Moreover, in this situation we find two extra solutions

e iωt U ˚κ,˘w ith U ˚κ,˘" ˆsinpθ κ q cospθ κ q ˙and θ κ " 1 2 arcsin ´2 κ ¯, θ κ " π 2 ´1 2 arcsin ´2 κ ¯. (18) 
Since 2 κ ą 0, both sinpθ κ q and cospθ κ q are positive. Using the elementary relation sin 2 pθq " 1´cosp2θq 2

, we can write

sinpθ κ q " c 1 ´cosparcsinp2{κqq 2 " d 1 ´a1 ´p2{κq 2 2 " 1 2 ´a1 `2{κ ´a1 ´2{κ ¯,
and cospθ κ q " b 1 ´sin 2 pθ κ q " 1 2 ´a1 `2{κ `a1 ´2{κ ¯,
so that, with sinpπ{2 ´θq " cospθq, cospπ{2 ´θq " sinpθq, we can rewrite the solution U ˚κ,˘a s follows

U ˚κ,`" 1 2 ? κ ˆ?κ `2 ´?κ ´2 ? κ `2 `?κ ´2q ˙, U ˚κ,´" 1 2 ? κ ˆ?κ `2 `?κ ´2 ? κ `2 ´?κ ´2q ˙.
The corresponding solution for [START_REF] Gallay | Stability of small periodic waves for the nonlinear Schrödinger equation[END_REF] reads

RpωtqX ˚, X ˚" ¨sinpθ κ q 0 cospθ κ q 0 ‹ ‹ ' " 1 2 ? κ ¨?κ `2 ´τ ? κ ´2 0 ? κ `2 `τ ? κ ´2 0 ‹ ‹ ' , τ " ˘1. (19) 
Going back to [START_REF] Georgiev | Nonlinear instability of linearly unstable standing waves for nonlinear Schrödinger equations[END_REF], we find the Lagrange multiplier ω to be associated to all these solutions. Namely we get

´ωU ˚0 " U ˚0 ´U˚1 ´κ|U ˚0| 2 U ˚0, ´ωU ˚1 " U ˚1 ´U˚0 ´κ|U ˚1| 2 U ˚1.
Adding these relations and using |U ˚0| 2 `|U ˚1| 2 " 1, we are led to 2pω `1q ´κ "

U ˚1 U ˚0 `U˚0 U ˚1 " 1 U ˚1U ˚0 . Hence, we conclude that for (16) ω " κ 2 `τ ´1 " " κ{2, if τ " `1, ´2 `κ{2, if τ " ´1, (20) 
for [START_REF] Goudon | Numerical investigation of landau damping in dynamical Lorentz gases[END_REF] ω " κ ´1.

Analysis of the coupled model

Denoting u j " q j `ip j and ̟ j "

Btψ j 2c 2 , the energy functional (8) casts as

H pXq " |q 0 ´q1 | 2 `|p 0 ´p1 | 2 2 `ˆR n ˆc2 `|̟ 0 | 2 `|̟ 1 | 2 ˘`1 4 `|∇ψ 0 | 2 `|∇ψ 1 | 2 ˘˙dz `1 2 ˆRn σpψ 0 p|q 0 | 2 `|p 0 | 2 q `ψ1 p|q 1 | 2 `|p 1 | 2 qq dz, ( 22 
)
where X is the shorthand notation for pq 0 , p 0 , q 1 , p 1 , ψ 0 , ̟ 0 , ψ 1 , ̟ 1 q. Repeating the arguments used for the asymptotic model, we realize that extrema of H can be found by considering only the case p 0 " p 1 " 0 and, taking into account the constraint of normalized norm, |u 0 | 2 `|u 1 | 2 " 1, we are led to investigate the extrema of

H 1 pθ, ψ 0 , ̟ 0 , ψ 1 , ̟ 1 q " | cospθq ´sinpθq| 2 2 `ˆR n ˆc2 `|̟ 0 | 2 `|̟ 1 | 2 ˘`1 4 `|∇ψ 0 | 2 `|∇ψ 1 | 2 ˘˙dz
`1 2 ˆRn σpψ 0 cos 2 pθq `ψ1 sin 2 pθqq dz, where θ lies in r0, 2πq. At the extrema, we infer that ̟ 0 " ̟ 1 " 0 together with ´∆ψ 0 " ´σ cos 2 pθq, ´∆ψ 1 " ´σ sin 2 pθq.

The latter relation leads to ´Rn σψ 0 dz " ´´R n σp´∆q ´1σ dz cos 2 pθq " ´κ cos 2 pθq, and similarly ´Rn σψ 1 dz " ´κ sin 2 pθq. Eventually, computing B θ H 1 yields ´pcos 2 pθq ´sin 2 pθqq ´1 2 ˆRn σpψ 0 ´ψ1 q sinp2θq dz.

Therefore, at the extrema we obtain

κ 2 cosp2θq ˆ2 κ ´sinp2θq ˙" 0.
Hence, we find the same extrema as for the asymptotic model. In particular, we set Q ˚0 " 1 ? 2 , P ˚0 " 0, Q ˚1 " τ ? 2 , P ˚1 " 0, Ψ ˚0 " Ψ ˚1 " ´p´∆q ´1σ 2 , ̟ ˚0 " ̟ ˚1 " 0, and the energy is made minimal (resp. maximal) when τ " `1 with 0 ă κ ă 2 (resp. τ " ´1 without condition on κ). This analysis provides specific solutions of (1)-(2), having the special form pe iωt U ˚0, e iωt U ˚1, Ψ ˚0, Ψ ˚1q where U ˚0, U ˚1 are fixed complex numbers and Ψ ˚0, Ψ ˚1 are fixed functions in L 2 pR n q. This leads to the relations

´ωU ˚0 " U ˚0 ´U˚1 `U˚0 ˆRn σΨ ˚0 dz, ´ωU ˚1 " U ˚1 ´U˚0 `U˚1 ˆRn σΨ ˚1 dz, ´∆Ψ ˚0 " ´σ|U ˚0| 2 , ´∆Ψ ˚1 " ´σ|U ˚1| 2 .
Let Γ denote the solution of ´∆Γ " σ, which can be alternatively defined by means of Fourier transform

Γ " F ´1 ξÑz ˆp σpξq |ξ| 2 ˙.
Hence 

Q ˚0 " sinpθ κ q, Q ˚1 " cospθ κ q, P ˚0 " P ˚1 " 0, U ˚" ˆQ˚0 Q ˚1˙, Ψ ˚0 " ´|Q ˚0| 2 Γ, Ψ ˚1 " ´|Q ˚1| 2 Γ. ( 24 
)
With ω still given by ( 21), we conclude that

u 0 ptq " e iωt Q ˚0, u 1 ptq " e iωt Q ˚1, ψ 0 pt, zq " Ψ ˚0, ψ 1 pt, zq " Ψ ˚1 (25) 
satisfies (1)- [START_REF] De Bièvre | Spectral analysis of a model for quantum friction[END_REF]. Finally, we observe that the system can be expressed in the Hamiltonian formulation

B t X " ˆJ 0 0 J ˙∇X H pXq, J " ¨0 1 0 0 ´1 0 0 0 0 0 0 1 0 0 ´1 0 ‹ ‹ ' .
We shall see later on a more adapted formulation, more convenient for the stability analysis. For the time being, this formulation makes the same connections between different viewpoints appear, as we did for the asymptotic equation.

Statement of the results

Let us collect here the main statements that will be obtained (definitions of the notions of stability will be made precise later on).

Theorem 2.1 (Stability analysis for [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF]) Let us assume one of the following cases:

i) τ " ´1, ii) τ " `1 with 0 ă κ ă 2, iii) κ ą 2.
We consider the reference solution of [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF] given by [START_REF] Goudon | Plane wave stability analysis of Hartree and quantum dissipative systems[END_REF] for i) and ii) or by [START_REF] Goudon | Numerical investigation of landau damping in dynamical Lorentz gases[END_REF] for iii). Then, the reference solution is spectrally and orbitally stable.

Theorem 2.2 (Instability result for (5)) Let κ ą 2. Then, the state e iωt p1{ ? 2, 1{ ? 2q is a spectrally and orbitally unstable solution of (5).

Theorem 2.3 (Stability analysis for (1)-( 2)) Let τ " `1 with 0 ă κ ă 2. Then, the reference solution [START_REF] Jaksic | On a model for quantum friction. I. Fermi's golden rule and dynamics at zero temperature[END_REF] of (1)-( 2) is spectrally and orbitally stable. Let κ ą 2. Then, the reference solution (24)-( 25) is spectrally and orbitally stable.

Theorem 2.4 (Instability result for (1)-( 2)) Let τ " 1 with κ ą 2 or τ " ´1. Then the reference solution [START_REF] Jaksic | On a model for quantum friction. I. Fermi's golden rule and dynamics at zero temperature[END_REF] is spectrally and orbitally unstable.

These results are in line with the analysis performed in [START_REF] Goudon | Plane wave stability analysis of Hartree and quantum dissipative systems[END_REF] for plane waves solutions for the PDE system [START_REF] De Bièvre | Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases[END_REF] and its asymptotic Hartree-like counterpart. It confirms that the asymptotic model has more stable solutions than the original model, and that the dynamic coupling (2) induces intricate and rich selection mechanisms. We expect this study will provide fruitful ideas to come back to (10) set for x P R d , and will allow us to fill a gap in the understanding of open quantum systems.

3 Stability analysis of the asymptotic model (5)

Spectral and linearized stability

We start by linearizing (5) about the solutions [START_REF] Goudon | Plane wave stability analysis of Hartree and quantum dissipative systems[END_REF]. We search for solutions of (5) on the form u j " e iωt pU ˚j `vj q.

Using |u `h| 2 " |u| 2 `2Repuhq `|h| 2 , the dispersion relation [START_REF] Goudon | On quantum dissipative systems: ground states and orbital stability[END_REF], and neglecting the non linear terms, one is led to the following linearized system

i d dt v 0 " τ v 0 ´v1 ´κRepv 0 q, i d dt v 1 " τ v 1 ´v0 ´κRepv 1 q. ( 26 
)
We write v j " q j `ip j , with q j , p j real-valued. The unknown is now represented by the vector X " pq 0 , p 0 , q 1 , p 1 q; we get

d dt X " LX, L " ¨0 τ 0 ´1 κ ´τ 0 1 0 0 ´1 0 τ 1 0 κ ´τ 0 ‹ ‹ ' .
The stability of this ODE system is related to the spectral analysis of the matrix L: spectral stability means that the real part of the eigenvalues of L are all non positive; linearized stability means that any solution of this linear system remains uniformly bounded for any t ě 0.

Proposition 3.1 If τ " ´1, the system (26) is spectrally stable; if τ " `1, the system (26) is spectrally stable under the condition [START_REF] Gesztesy | A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations[END_REF]. In these situations, if, moreover, Repv 0 `τ v 1 q ˇˇt"0 " 0, then, the solution of (26) remains uniformly bounded for any t ě 0. If τ " `1 with κ ą 2, the system is spectrally unstable.

Proof. We observe that 0 is an eigenvalue of L. Indeed, LX " 0 leads to the independent relations " τ p 0 " p 1 , τ p 1 " p 0 and " pκ ´τ qq 0 " ´q1 , pκ ´τ qq 1 " ´q0 .

Since τ 2 " 1, the former yields a non trivial solution, while the latter in general (pκ´τ q 2 ´1 " κpκ2 τ q 0) has only the solution q 0 " q 1 " 0. Hence we find the eigenspace KerpLq " Spantp0, 1, 0, τ qu. Note however that L has a Jordan block associated to the eigenvalue 0, since the kernel of

L 2 " ¨κτ ´2 0 2τ ´κ 0 0 κτ ´2 0 2τ ´κ 2τ ´κ 0 τ κ ´2 0 0 2τ ´κ 0 τ κ ´2‹ ‹ '
is spanned by tp0, 1, 0, τ q, p1, 0, τ, 0qu. This leads to solutions of ( 26) the norm of which can grow linearly. Next, let λ 0, X 0 satisfy LX " λX. Since τ 2 " 1, we observe that τ q 0 " ´q1 . Therefore, we obtain λp 0 " q 1 ´τ q 0 `κq 0 " p´2τ `κqq 0 , together with λp 1 " q 0 `p´τ `κqq 1 " p2 ´τ κqq 0 . It yields λq 0 " τ p 0 ´p1 " ´`τ 2τ ´κ λ `2´τκ λ ˘q0 . A non trivial solution q 0 exists provided λ satisfies λ 2 " ´4 `2τ κ.

If τ " ´1, we find λ " ˘2i a 1 `κ{2. If τ " 1, we find λ " ˘2i a 1 ´κ{2, assuming the smallness condition [START_REF] Gesztesy | A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations[END_REF]; otherwise, λ " ˘2 a κ{2 ´1 and the system admits a positive eigenvalue. In fact, the problem (26) can be easily solved by hand. On the one hand, we have d dt pq 0 `τ q 1 q " 0, d dt pp 0 `τ p 1 q " κpq 0 `τ q 1 q so that pq 0 `τ q 1 qptq " C 1 , pp 0 `τ p 1 qptq " C 2 `C1 κt.

On the other hand, the pair pq 0 ´τ q 1 q and pp 0 ´τ p 1 q solves a linear system associated to the matrix ˆ0 2τ κ ´2τ 0 ẇhich is diagonalizable with eigenvalues satisfying λ 2 " ´4p1 ´τ κ{2q ă 0. The analysis of the linearized system is therefore complete.

Similar computations can be performed with the solutions (18). The linearized system now reads

i d dt v 0 " p1 `ω ´κα 2 qv 0 ´v1 ´2κα 2 Repv 0 q, i d dt v 1 " p1 `ω ´κβ 2 qv 1 ´v0 ´2κβ 2 Repv 1 q, ( 27 
)
with

U ˚κ,˘" ˆα β ˙, α " ? κ `2 ´τ ? κ ´2 2 ? κ " sinpθ τ κ q, β " ? κ `2 `τ ? κ ´2 2 ? κ " cospθ τ κ q. Let us set A " 1 `ω ´κα 2 , B " 1 `ω ´κβ 2 .
Elementary manipulations lead to

A " κ 2 `τ ? κ 2 ´4 2 , B " κ 2 ´τ ? κ 2 ´4 2 , AB " 1, κα 2 " B, κβ 2 " A. ( 28 
)
The matrix associated to the linearized system thus reads

L " ¨0 A 0 ´1 ´A `2B 0 1 0 0 ´1 0 B 1 0 ´B `2A 0 ‹ ‹ ' .
In turn, it can be checked that KerpLq " Spantp0, 1, 0, Aqu.

Next, let pλ, Xq be an eigenpair of L, with λ 0. We observe that λAq 1 " ApBp 1 ´p0 q " ´λq 0 , which implies Aq 1 `q0 " 0. It follows that λp 0 " p´A `2Bqq 0 `q1 " p´A `2Bqp´Aq 1 q `q1 " ApA ´Bqq 1 and λp 1 " p´B `2Aqq 1 `q0 " p´B `2Aqq 1 ´Aq 1 " pA ´Bqq 1 , which lead to

λq 1 " Bp 1 ´p0 " B A ´B λ q 1 ´ApA ´Bq λ q 1 " ´q1 λ pA ´Bq 2 .
Therefore, we obtain λ 2 " ´pA ´Bq 2 " ´pκ 2 ´4q " ´κ2 `4 ă 0.

We deduce that λ P iR.

Proposition 3. [START_REF] De Bièvre | Spectral analysis of a model for quantum friction[END_REF] The system (27) is spectrally stable. If, moreover, Repv 0 `Av 1 q ˇˇt"0 " 0, then, the solution of (27) remains uniformly bounded for any t ě 0.

Proof. The spectral stability has just been established above, all eigenvalues of L being with a non positive real part. Next, we introduce the vectors

Ψ " p1, 0, A, 0q, Ψ 1 " ´0, ´τ 2 ? κ 2 ´4 , 0, κτ `?κ 2 ´4 4 ? κ 2 ´4 ¯.
They satisfy

L ⊺ Ψ " 0, L ⊺ Ψ 1 " Ψ.
Let X satisfy d dt X " LX. We observe that d dt X ¨Ψ " d dt pq 0 `Aq 1 q " X ¨L⊺ Ψ " 0, and

d dt X¨Ψ 1 " X¨L ⊺ Ψ 1 " X¨Ψ.
Hence Xptq¨Ψ " X init ¨Ψ is conserved and Xptq¨Ψ 1 " X init ¨Ψ1 `tX init ¨Ψ grows at most linearly. Assuming X init ¨Ψ " 0 prevents the linear growth. Finally, the pair pAp 0 ´p1 , Aq 0 `q1 q satisfies the 2 ˆ2 system governed by the matrix ˆ0 pB ´Aq pA ´Bq 0 ṫhe eigenvalues of which are clearly purely imaginary. These observations completely characterize the solution of the linear system [START_REF] Lenzmann | Uniqueness of ground states for pseudo-relativistic Hartree equations[END_REF]. Propositions 3.1 and 3.2 are illustrated in Fig. 3 where we perform simulations of the different scenario: the stable case ((a)-(b)) requires a condition on both the coefficients (τ , κ) and the data; when the orthogonality condition of Proposition 3.1 is violated, one observes a linear growth of the L 2 norm ((c)-(d)); when the condition on the data is not fulfilled, one observes an exponential blow up ((e)-(f)). System ( 5) is a mere finite dimensional differential system. As far as one is concerned with the stability of equilibrium solution of differential systems in finite dimension, spectral stability implies non linear stability, see e. g. [START_REF] Tao | Nonlinear dispersive equations: local and global analysis[END_REF]Prop. 1.41], [START_REF] Strauss | Tutorial: Notes on nonlinear stability[END_REF]Th. 1.1 & 1.2]. Here, we are dealing with the notion of orbital stability, and the reference solutions remains time-dependent which induces some subtleties. We shall detail approaches which do not use properties specific to the finite dimensional framework, having in mind more complicated couplings.

Orbital stability

Let us set F pXq " |X| 2 2 " Q 2 0 `Q2 1 `P 2 0 `P 2 1 2
and introduce the functional E pXq " H pXq `ωF pXq with H defined by [START_REF] Duerinckx | Cherenkov radiation with massive bosons and quantum friction[END_REF]. This quantity is thus conserved by the dynamical system [START_REF] Gallay | Stability of small periodic waves for the nonlinear Schrödinger equation[END_REF]. We observe that ( 14) can be reformulated as ∇E pX ˚q " 0 [START_REF] Maeda | Instability of bound states of nonlinear Schrödinger equations with Morse index equal to two[END_REF] and L corresponds to the Hessian of E evaluated at X ˚. Inspired by the strategy described in [START_REF] De Bièvre | Orbital stability: analysis meets geometry[END_REF], we introduce the level set of solution if (13) associated to X ˚, S " tX P R 4 , F pXq " F pX ˚q " 1{2u.

We wish to establish a coercivity estimate, on a certain subspace, for the quadratic form X Þ Ñ L X ¨X. This is a crucial property for establishing the orbital stability, an idea that dates back to [START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF][START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF] for Schrödinger equations, see [START_REF] De Bièvre | Orbital stability: analysis meets geometry[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF][START_REF] Tao | Why are solitons stable ? Bull[END_REF].

With X ˚given by [START_REF] Goudon | Mean field limit for particles interacting with a vibrating medium[END_REF], the tangent set to the level set is given by T S " tX P R 4 , ∇F pX ˚q ¨X " 0u " tpq 0 , p 0 , q 1 , p 1 q P R 4 , q 0 `τ q 1 " 0u.

The orbit associated to X ˚is given by

O " ! 1 ? 2 pcospθq, sinpθq, τ cospθq, τ sinpθqq, θ P R
) . and we get pT Oq K " tpq 0 , p 0 , q 1 , p 1 q P R 4 , p 0 `τ p 1 " 0u.

The reference solution associated to X ˚is said orbitally stable if, for any ǫ ą 0, there exists δ ą 0, such that, for any solution t Þ Ñ Y ptq of ( 13), |Y p0q ´X˚| ď δ implies that distpY ptq ´Oq ď ǫ holds for any t ě 0.

Remark 3.3

Bearing in mind the transformation [START_REF] De Bièvre | Chaotic dynamics of a free particle interacting linearly with a harmonic oscillator[END_REF], multiplying the components of U P C 2 by e iθ is equivalent to apply the (extended) rotation Rpθq to X P R 4 , with leaves the energy H pXq, as well as E pXq, invariant. The identity H pRpθqXq " H pXq yields Rpθq ⊺ ∇H pRpθqXq " ∇H pXq and we observe that Rpθq ´1R 1 pθq " ´J . These observations allow us to derive directly the linearized system: with B t X " J ∇H pXq and Xptq " RpωtqpX ˚`X ptqq, we get

B t X " ωJ pX ˚`X q `J ∇H pX ˚`X q.
Assuming the perturbation to be small, at leading order the right hand side reads

J pωX ˚`∇H pX ˚qq `J pω X `D2 H pX ˚q Xq " 0 `J L X " L X.
In order to investigate the orbital stability of the system, we recast the linearized system by using the symplectic form

L " ¨0 1 0 0 ´1 0 0 0 0 0 0 1 0 0 ´1 0 ‹ ‹ ' loooooooooomoooooooooon "J ¨τ ´κ 0 ´1 0 0 τ 0 ´1 ´1 0 τ ´κ 0 0 ´1 0 τ ‹ ‹ ' loooooooooooooooomoooooooooooooooon L ,
with L " D 2 E pX ˚q symmetric.

Lemma 3.4

The spectrum of the matrix L is σpL q " t0, ´κ, 2τ, 2τ ´κu with eigenspaces spanned respectively by X 0 " p0, 1, 0, τ q, X ´κ " p1, 0, τ, 0q, X 2τ ´κ " p1, 0, ´τ, 0q, X 2τ " p0, 1, 0, ´τ q.

. Hence, we get

L X ¨X " pτ ´κqpQ 2 0 `Q2 1 q ´2Q 1 Q 0 `τ pP 2 0 `P 2 1 q ´2P 1 P 0 .
As a matter of fact, when τ " 1, it recasts as

L X ¨X " |P 0 ´P1 | 2 `|Q 0 ´Q1 | 2 ´κpQ 2 0 `Q2 1 q.
Restricting to the subspace T S X pT Oq K , we have Q 0 " ´τ Q 1 and P 0 " ´τ P 1 , so that, still for τ " 1, we get

L X ¨X " 4|P 0 | 2 `2p2 ´κq|Q 0 | 2 ě p2 ´κq|X| 2 .
This coercivity estimate is key in establishing the orbital stability. Surprisingly, the case τ " ´1 is simpler. We now work with E pXq " ´H pXq ´ωF pXq.

We still have ∇E pX ˚q " 0 and D 2 E pX ˚q " ´L . The spectral decomposition of L implies that ´L is coercive on pKerpL qq K " pT Oq K . This allows us to justify the orbital stability.

We turn to the case where κ ą 2 and X ˚" pα, 0, β, 0q is given by [START_REF] Goudon | Landau damping in dynamical Lorentz gases[END_REF]. Now, we look at

L " ¨0 ´1 0 0 1 0 0 0 0 0 0 ´1 0 0 1 0 ‹ ‹ ' L " ¨A ´2B 0 ´1 0 0 A 0 ´1 ´1 0 B ´2A 0 0 ´1 0 B ‹ ‹ ' .
The equations for the eigenpairs uncouple since we get

pA ´λqp 0 " p 1 , pB ´λqp 1 " p 0 , pA ´2B ´λqq 0 " q 1 , pB ´2A ´λqq 1 " q 0 .
The former leads to λpλ ´pA `Bqq " λpλ ´κq " 0, and the latter gives pB ´2A ´λqpA ´2B ´λq ´1 " λ 2 `λpA `Bq `pA ´2BqpB ´2Aq ´1 " λ 2 `λκ ´2pκ 2 ´4q " 0.

This gives the eigenelements of L .

Lemma 3. [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF] We have

σpL q " ! 0, κ, ´κ `?9κ 2 ´32 2 , ´κ ´?9κ 2 ´32 2 ) ,
where only the last value is negative, with eigenspaces spanned respectively by

X 0 " ´0, 1, 0, κ 2 `τ ? κ 2 ´4 2 ¯, X κ " ´0, 1, 0, ´κ 2 `τ ? κ 2 ´4 2 ¯, X `" ´1, 0, τ 3 2 a κ 2 ´4 ´1 2 a 9κ 2 ´32, 0 ¯, X
´"

´1, 0, τ 3 2

a κ 2 ´4 `1 2 a 9κ 2 ´32, 0 ¯.
Establishing the orbital stability amounts to check the coercivity of L on T S X pT Oq K , where, now, T S " X " pq 0 , p 0 , q 1 , p 1 q P R 4 , X ¨X˚" αq 0 `βq 1 " 0 ( , and pT Oq K " X " pq 0 , p 0 , q 1 , p 1 q P R 4 , αp 0 `βp 1 " 0 ( .

We have

L X ¨X " pA ´2Bqq 2 0 ´2q 0 q 1 `pB ´2Aqq 2 1 `Ap 2 0 ´2p 0 p 1 `Bp 2 1 . Since AB " 1 and α β " B, on T S X pT Oq K , it reduces to L X ¨XˇˇT S XpT Oq K " `A `pB ´2AqB 2 ˘q2 0 ``A `B3 `2B ˘p2 0 .
A tedious, but elementary, computation yields

L X ¨XˇˇT S XpT Oq K " κ ´τ ? κ 2 ´4 2 ppκ 2 ´4qq 2 0 `κ2 p 2 0 q,
hence the desired coercivity estimate holds.

Symplectic formulation and further comments about spectral stability

Let us keep focused on the spectral stability issue. For the problem (5), the spectrum of L " J L is completely determined, as seen above, and we have directly a full understanding of the linearized problem. However, for more intricate system, like (1)-( 2), we do not have a direct access to the spectrum of L. The strategy is to deduce information about stable/instable modes from the study of L which could be easier (in particular because L is symmetric). To this end, let us introduce the auxilliary operators M " ´J L J , A " PM P,

where P is the orthogonal projection on pKerpL qq K . We also introduce

K " PL ´1P .
The counting of the eigenvalues of L is based on the following considerations. We are interested in the coupled system M X " ´λ X, L X " λX. [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF] It turns out that this problem (30) admits non trivial solutions iff ˘λ are eigenvalues of L. Next, (30) admits non trivial solution with λ 0, iff the generalized eigenvalue problem

AX " µKX (31) 
(which recasts as M X " µ X, L X " X, with X P pKerpL qq K ) admits non trivial solutions with µ " ´λ2 . The spectral stability means that the spectrum of L is contained in iR. This can be reformulated as saying that all the eigenvalues of the generalized eigenproblem [START_REF] Renardy | An Introduction to Partial Differential Equations[END_REF] are real and positive. In order to count the eigenvalues µ of the generalized eigenvalue problem, we define the following quantities:

• N ń , the number of negative eigenvalues,

• N 0 n , the number of eigenvalues zero,

• N ǹ , the number of positive eigenvalues, counted with their algebraic multiplicity, the eigenvectors of which are associated to non-positive values of the the quadratic form X Þ Ñ pKX|Xq " pL ´1P X|PXq. Moreover, let N C `be the number of generalized eigenvalues µ P C of (31) with Impµq ą 0. As said above, the eigenvalues counted by N ń and N C `correspond to cases of instabilities for the linearized problem. We now use the counting argument of [7, Theorem 1] (see also the review [START_REF] Lin | Instability, index theorem, and exponential trichotomy for Linear Hamiltonian PDEs[END_REF]) which asserts that

N ń `N 0 n `N ǹ `NC `" npL q,
the number of negative eigenvalues of L . Let us check how this counting machinery works for [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF].

Let us begin with the case where X ˚is given by [START_REF] Goudon | Mean field limit for particles interacting with a vibrating medium[END_REF]. We use the notation of Lemma 3.4. For further purposes, we remark that In particular, for τ " ´1, L has three negative eigenvalues; for τ " `1 and assuming [START_REF] Gesztesy | A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations[END_REF], there are two positive eigenvalues and one negative eigenvalue but if τ " `1 and ( 15) is violated, there are one positive eigenvalue and two negative eigenvalues. Note that e1) the eigenvectors X 0 , X ´κ, X 2τ ´κ, X 2τ form a orthogonal basis of R 4 ; e2) with X ˚" 1 ? 2 p1, 0, τ, 0q " X ´κ ? 2 the reference solution, we have

X ˚¨X 0 " X ˚¨X 2τ ´κ " X ˚¨X 2τ " 0; e3) and X ˚¨X ´κ " ? 2 ą 0.
We start by computing N 0 n " 1. We have seen that KerpL q is spanned by X 0 " p0, 1, 0, τ q. Hence, we have to solve L X0 " Y 0 with Y 0 " ´J X 0 " p´1, 0, ´τ, 0q and X0 P pKerpL qq K . This leads to X0 " 1 κ p1, 0, τ, 0q which yields KY 0 ¨Y0 " L ´1Y 0 ¨Y0 " X0 ¨Y0 " ´2 κ ă 0 and thus N 0 n " 1. Next, solving the generalized eigenvalue problem amounts to solve ´q 1 `τ q0 ´κq 0 " q 0 , τ q 0 ´q1 " µq 0 , ´q 0 `τ q1 ´κq 1 " q 1 , τ q 1 ´q0 " µq 1 , τ p 0 ´κp 0 ´p1 " µp 0 , τ p0 ´p

1 " p 0 , ´p0 `τ p 1 ´κp 1 " µp 1 , τ p1 ´p 0 " p 1 ,
with X " pq 0 , p 0 , q 1 , p 1 q, X " pq 0 , p0 , q1 , p1 q P pKerpL qq K . We set

M κ " ˆτ ´κ ´1 ´1 τ ´κ˙. (32) 
The q and p equations decouple and we have, on the one hand

M κ ˆq 0 q1 ˙" ˆq0 q 1 ˙, M 0 ˆq0 q 1 ˙" µ ˆq 0 q1 ˙,
and, on the other hand

M κ ˆp0 p 1 ˙" µ ˆp 0 p1 ˙, M 0 ˆp 0 p1 ˙" ˆp0 p 1 ˙.
It amounts to say that pq 0 , q1 q and pp 0 , p1 q are eigenvectors for µ of M 0 M κ and M κ M 0 , respectively. Here, we get

M κ M 0 " ˆ2 ´τ κ κ ´2τ κ ´2τ 2 ´τ κ ˙" M 0 M κ ,
the eigenvalues of which being 0 and 4p1 ´τ κ{2q. We thus obtain the solutions X1 " p1, 0, ´τ, 0q and X2 " p0, 1, 0, ´τ q, associated to X 1 " L X1 " p2τ ´κ, 0, κτ ´2, 0q, X 2 " L X2 " p0, 2τ, 0, ´2q which both belong to pKerpL qq K . We compute L ´1X 1 ¨X1 " X1 ¨X1 " 2p2τ ´κq, which is negative when τ " ´1 and has the sign of 2 ´κ when τ " `1, and L ´1X 2 ¨X2 " X2 ¨X2 " 4τ . Therefore, we can verify the counting formula in the following three cases

• τ " ´1: npL q " 3 and N 0 n " 1, N ǹ " 2, N ń " 0, which yields N C `" 0 and indeed we found that L has two purely imaginary eigenvalues, there is no exponentially unstable solution to the linearized system;

• τ " 1 and κ ą 2: npL q " 2 and N 0 n " 1, N ǹ " 0, N ń " 1, which yields N C `" 0 and indeed we found that L has two real eigenvalues, we can find exponentially unstable solutions to the linearized system;

• τ " 1 and 0 ă κ ă 2: npL q " 1 and N 0 n " 1, N ǹ " 0, N ń " 0, which yields N C `" 0 and indeed we found that L has two purely imaginary eigenvalues, there is no exponentially unstable solution to the linearized system.

We can perform similar computations for the solution [START_REF] Goudon | Landau damping in dynamical Lorentz gases[END_REF]. We now use the notation of Lemma 3.5. We have seen that KerpL q is spanned by X 0 " p0, 1, 0, Aq. We start by solving L X0 " Y 0 with Y 0 " ´J X 0 " p´1, 0, ´A, 0q so that X0 " 1 2pA´Bq p´1, 0, A, 0q which yields X0 ¨Y0 " KY 0 ¨Y0 " ´A 2 ă 0, and thus N 0 n " 1. Solving the generalized eigenvalue problem amounts to solve

M ˆq 0 q1 ˙" µ ˆq 0 q1 ˙, M ⊺ ˆp 0 p1 ˙" µ ˆp 0 p1 ˙, M " ˆA ´1 ´1 B ˙ˆA ´2B ´1 ´1 B ´2A ˙" ˆA2 ´1 A ´B B ´A B 2 ´1˙,
the eigenvalues of M being 0 and κ 2 ´4 ą 0 (thus N ń " 0). We thus obtain the solutions X1 " p1, 0, ´B, 0q and X2 " p0, 1, 0, Bq. Accordingly, we get X 1 " L X1 " pA ´B, 0, 1 ´B2 , 0q, and X 2 " L X2 " p0, A ´B, 0, B 2 ´1q, so that X1 ¨X1 " X2 ¨X2 " A ´2B `B3 " pB 2 ´1q 2 B ą 0 and N ǹ " 0. Since we found npL q " 1, we conclude that N C `" 0: and there is no exponentially unstable solution to the linearized system (which is indeed consistent with the fact that L has two purely imaginary eigenvalues). 

Instability

For τ " `1, the status of the solution X ˚given by ( 17) changes as κ overtakes the threshold 2: being a minimizer of the energy when 0 ă κ ă 2, it becomes a local maximum when κ ą 2. We have also seen that the Morse index of L switches from 1 to 2. In this case, we can adapt the arguments presented in [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF][START_REF] Maeda | Instability of bound states of nonlinear Schrödinger equations with Morse index equal to two[END_REF] to justify the instability of the reference solution when κ ą 2. To prove this statement, we need a series of preparation lemma, which exploit the algebraic properties of L and its spectral decomposition.

Lemma 3.6

We can find a constant c ą 0 such that for any X P R 4 verifying X ¨X˚" X ¨X2´κ " X ¨X0 " 0, we have L X ¨X ě c|X| 2 .

Proof. Since pX 0 , X ´κ, X 2´κ , X 2 q forms an orthogonal basis of R 4 and X ˚" X ´κ{ ? 2, the vector we are considering is in fact proportional to X 2 : from X " aX 2 , we deduce that

L X ¨X " a 2 L X 2 ¨X2 " 2a 2 |X 2 | 2 " 2|X| 2 .
It is convenient to split X ˚" pX ˚0, X ˚1q, with X ˚0 " X ˚1 " 1 ? 2 p1, 0q and to consider the rotation matrix in the plane

Rpθq "

ˆcospθq ´sinpθq sinpθq cospθq ˙.

We shall use the same notation for V " pV 0 , V 1 q P R 2 ˆR2 , RpθqV " pRpθqV 0 , RpθqV 1 q.

Lemma 3.7 Let ǫ ą 0 and set

U ǫ " ! V " pV 0 , V 1 q P R 4 , inf θ |RpθqV ´X˚| 2 ď ǫ ) .
For any V P U ǫ , there exists θ ˚pV q P r0, 2πq such that

inf θ |RpθqV ´X˚| 2 " |Rpθ ˚pV qqV ´X˚| 2 .
Moreover, the following relations hold piq θ ˚pRpθ 1 qV q " θ ˚pV q ´θ1 , piiq ∇ V j θ ˚pV q " R 1 pθ ˚pV qq ⊺ X ˚j Rpθ ˚pV qq ⊺ X ˚j ¨Vj .

Proof. The standard argument [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF][START_REF] Maeda | Instability of bound states of nonlinear Schrödinger equations with Morse index equal to two[END_REF] relies on an application of the implicit function theorem.

Here the construction can be made fully explicit. Indeed, given V P R 4 , the 2π-periodic function

θ Þ ÝÑ F pθq " |RpθqV ´X˚| 2 " |RpθqV 0 ´X˚0 | 2 `|RpθqV 1 ´X˚1 | 2
admits a minimizor on r0, 2πs, characterized by

F 1 pθq " 2pRpθqV 0 ´X˚0 q ¨R1 pθqV 0 `2pRpθqV 1 ´X˚1 q ¨R1 pθqV 1 " 0,
where

R 1 pθq " ˆ´sinpθq ´cospθq cospθq ´sinpθq ˙.
Since

pR 1 pθqq ⊺ Rpθq " ˆ0 1 
´1 0 the relation becomes

F 1 pθq " ´2X ˚0 ¨R1 pθqV 0 ´2X ˚1 ¨R1 pθqV 1 " 0. ( 33 
)
Let V j " pQ j , P j q. Using the specific expression of X ˚j , we obtain sinpθqpQ 0 `Q1 q `cospθqpP 0 `P1 q " 0, which eventually determines the minimizer by tanpθ ˚pV qq " ´P0 `P1 Q 0 `Q1 .

Differentiating [START_REF] Soret | Stochastic acceleration in a random time-dependent potential[END_REF] with respect to V j and using R 2 pθq " ´Rpθq yield pR 1 pθ ˚pV qqq ⊺ X ˚j ´pRpθ ˚pV qqq ⊺ X ˚j ¨Vj ∇ V j θ ˚pV q " 0 and thus

∇ V j θ ˚pV q " pR 1 pθ ˚pV qqq ⊺ X ˚j pRpθ ˚pV qqq ⊺ X ˚j ¨Vj .
Finally, from Rpθ `θ1 q " RpθqRpθ 1 q, we infer, for any θ, θ 1 ,

|Rpθ ˚pV q ´θ1 qRpθ 1 qV j ´X˚j | " |Rpθ ˚pV qqV j ´X˚j | ď |Rpθ `θ1 qV j ´X˚j | " |RpθqRpθ 1 qV j ´X˚j |
which means θ ˚pV q ´θ1 " θ ˚pRpθ 1 qV q.

We observe that we can move from X ˚in a specific direction so that the energy decreases. Proof. We compute

|V s | 2 " p1 ´2s 2 q|X ˚|2 `s2 |X 2´κ | 2 `s a 1 ´2s 2 X ˚¨X 2´κ " 1 ´2s 2 `2s 2 `0 " 1.
Next, owing to (29), we get the following Taylor expansion

E pV s q " E `X˚`s X 2´κ `p a 1 ´2s 2 ´1qX ˚˘" E pX ˚q `s2 2 L X 2´κ ¨X2´κ `s2 ǫpsq,
where lim sÑ0 ǫpsq " 0. The conclusion follows from the fact that

L X 2´κ ¨X2´κ " p2 ´κq|X 2´κ | 2 ă 0.
We are going to use the specific directions identified in Lemma 3.8 to construct unstable solutions. The instability will be characterized by working on a suitable functional framework which is adapted to the structure of the dynamical system. Let us now consider the functional

A : V P U ǫ Þ ÝÑ ´X2 ¨Rpθ ˚pV qqV " pV 1 ´V0 q ¨ˆsinpθ ˚pV qq cospθ ˚pV qq ˙,
bearing in mind X 2 " ´J X 2´κ . By using Lemma 3.7-(ii), we get Rpθ ˚pRpθqV qqRpθqV " Rpθ ˚pV q ´θqRpθqV " Rpθ ˚pV qqV so that ApRpθqV q " ApV q. Next, we get

∇ V ApV q " ´Rpθ ˚pV qq ⊺ X 2 ´pX 2 ¨R1 pθ ˚pV qqV q∇ V θ ˚pV q.
For V " X ˚, we have θ ˚pX ˚q " 0 and thus X 2 ¨R1 pθ ˚pX ˚qqX ˚" X 2 ¨X0 ?

2 " 0 and

∇ V ApX ˚q " ´X2 , J ∇ V ApX ˚q " ´J X 2 " ´X2´κ . ( 34 
)
Eventually, since

ˆRpθq 0 0 Rpθq ˙J " ´ˆR 1 pθq 0 0 R 1 pθq ˙and J 2 " ´I, we observe that ∇ V ApV q ¨J V " ´Rpθ ˚pV qq ⊺ X 2 ¨J V ´pX 2 ¨R1 pθ ˚pV qqV qp∇ V θ ˚pV q ¨J V q " ´Rpθ ˚pV qq ⊺ X 2 ¨J V `pX 2 ¨R1 pθ ˚pV qqV q ´R1 pθ ˚pV qq ⊺ X ˚¨J V Rpθ ˚pV qq ⊺ X ˚¨V " X 2
¨R1 pθ ˚pV qqV `pX 2 ¨R1 pθ ˚pV qqV q ´X˚¨R pθ ˚pV qqV X ˚¨Rpθ ˚pV qqV " 0.

This estimate of Lemma 3.8 can be strengthened as follows.

Lemma 3.9 Let κ ą 2, set PpV q " ∇ V ApV q ¨J ∇ V E pV q and let V s be defined as in Lemma 3.8. Then, there exists 0 ă s ˚ă 1{ ? 2 such that for any s P r´s ˚, s ˚s, we have 0 ă E pX ˚q ´E pV s q ă ´sPpV s q.

Proof. The proof is again based on Taylor expansions. In what follows we denote by ̺psq a reminder, the expression of which might change from a line to another, but such that lim sÑ0 ̺psq " 0. Since V s looks like X ˚`sX 2´κ , we get, by virtue of ( 29) and [START_REF] Strauss | Tutorial: Notes on nonlinear stability[END_REF],

PpV s q " sp∇ V ApX ˚q `sD 2 V ApX ˚qX 2´κ q ¨J D 2 V E pX ˚qX 2´κ q `s̺psq " ´sX 2 ¨J L X 2´κ `s̺psq " sL X 2´κ ¨X2´κ `s̺psq " sp2 ´κq|X 2´κ | 2 `s̺psq.
Accordingly, we obtain E pX ˚q ´E pV s q `sPpsq " s 2 2 `p2 ´κq `̺psq which thus remains negative for s small enough.

Note that PpV q " ∇ V ApV q ¨J ∇ V H pV q since ∇ V F pV q " V and ∇ V ApV q ¨J V " 0 for all V P R 4 . The motivation for introducing the functional A and P comes from the fact that, for X solution of (13), we have

d dt ApXptqq " ∇ U ApXptqq ¨d dt Xptq " ∇ U ApXptqq ¨J ∇H pXptqq " PpXptqq. ( 35 
)
Lemma 3.10 Let κ ą 2 and ǫ ą 0 be sufficiently small. Let V P U ǫ be such that |V | " |X ˚| and E pX ˚q ´E pV q ą 0. Then, we actually have E pX ˚q ´E pV q ă ´ΛpV qPpV q where ΛpV q "

Rpθ ˚pV qqV ¨X2´κ |X 2´κ | 2 . ( 36 
)
Proof. For V P R 4 , set M pV q " Rpθ ˚pV qqV ´X˚´Λ pV qX 2´κ , [START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF] so that M pV q ¨X2´κ " 0. Moreover, we have M pV q ¨X0 " Rpθ ˚pV qqV ¨X0 " ? 2p´J R 1 pθ ˚pV qV q ¨p´J X ˚qq " ? 2R 1 pθ ˚pV qqV ¨X˚" 0, by definition of θ ˚pV q, see [START_REF] Soret | Stochastic acceleration in a random time-dependent potential[END_REF]. As a consequence, M pV q lies in the orthogonal space of SpanpX 0 , X 2´κ q and it can be written M pV q " apV qX ˚`M pV q, where M pV q P SpanpX 2 q.

Lemma 3.6 tells us that L M pV q ¨M pV q ě c| M pV q| 2 . We start by proving PpV q " PpRpθ ˚pV qqV q.

Derivating H pRpθqV q " H pV q and using Lemma 3.7-(i), we get

Rpθq ⊺ ∇H pRpθqV q " ∇H pV q, Rpθq ⊺ ∇θ ˚pRpθqV q " ∇θ ˚pV q, while Rpθq ⊺ " Rp´θq " Rpθq ´1, ˆR1 pθq 0 0 R 1 pθq ˙" ´J ˆRpθq 0 0 Rpθq ˙.

Therefore, we obtain

PpRpθqV q " ∇ U ApRpθqV q ¨J ∇H pRpθqV q " ∇ U ApRpθqV q ¨J Rpθq∇H pV q.

where ∇ApRpθqV q " ´Rpθ ˚pRpθqV qq ⊺ X 2 ´pX 2 ¨R1 pθ ˚pRpθqV qqRpθqV q ∇θ ˚pRpθqV q " ´Rpθ ˚pV q ´θq ⊺ X 2 ´pX 2 ¨R1 pθ ˚pV q ´θqRpθqV q Rpθq∇θ ˚pV q " ´RpθqRpθ ˚pV qq ⊺ X 2 `pX 2 ¨J Rpθ ˚pV qqRp´θqRpθqV q Rpθq∇θ ˚pV q " Rpθq " ´Rpθ ˚pV qq ⊺ X 2 ´pX 2 ¨R1 pθ ˚pV qqV q ∇θ ˚pV q ‰ " Rpθq∇ApV q.

Hence, (39) holds. Let V P U ǫ . The definition of ΛpV q in (36), M pV q in (37) and apV q, M pV q in (38) leads to the estimates 

|ΛpV q| 2 " |Rpθ ˚pV qqV ¨X2´κ | 2 |X 2´κ | 4 " |pRpθ ˚pV qqV ´X˚q ¨X2´κ | 2 |X 2´κ | 4 ď |Rpθ ˚pV qqV ´X˚| 2 |X 2´κ | 2 ď ǫ 2 4 

Now, we perform a Taylor expansion on

PpV q " PpRpθ ˚pV qqV q " PpX ˚`ΛpV qX 2´κ `apV qX ˚`M pV qq, based on the fact that ̺pV q " ΛpV qX 2´κ `apV qX ˚`M pV q is of the order of ǫ. Hence, we get

PpV q " ∇ApX ˚`̺pV qq ¨J ∇H pX ˚`̺pV qq " p∇ApX ˚q `D2 ApX ˚q̺pV qq ¨J D 2 H pX ˚q̺pV q `Opǫ 2 q " ∇ApX ˚q ¨J L ̺pV q `Opǫ 2 q " ´L J ∇ApX ˚q ¨̺pV q `Opǫ 2 q " L X 2´κ ¨pΛpV qX 2´κ `apV qX ˚`M pV qq `Opǫ 2 q " p2 ´κqΛpV q|X 2´κ | 2 `Opǫ 2 q.

Accordingly, we have

´ΛpV qPpV q " ´p2 ´κqΛpV q 2 |X 2´κ | 2 `Opǫ 3 q. ( 40 
)
Similarly, we go back to the difference of energies 0 ă E pX ˚q ´E pV q " E pX ˚q ´E pX ˚`̺pV qq " ´1 2 L ̺pV q ¨̺pV q `Opǫ 3 q " ´1 2 L pΛpV qX 2´κ `apV qX ˚`M pV qq ¨pΛpV qX 2´κ `apV qX ˚`M pV qq `Opǫ 3 q " ´1 2 `p2 ´κqΛpV qX 2´κ ´κapV qX ˚`L M pV q ˘¨pΛpV qX 2´κ `apV qX ˚`M pV qq `Opǫ 3 q " ´2 ´κ 2 ΛpV q 2 |X 2´κ | 2 `κ 2 |apV q| 2 ´1 2 L M pV q ¨M pV q `Opǫ 3 q.

We now need to refine the estimate on apV q " M pV q ¨X˚" pRpθ ˚pV qqV ´X˚q ¨X˚. which yields |apV q| ď ǫ 2 2 . We are thus led to

0 ă E pX ˚q ´E pV q " ´1 2 p2 ´κqΛpV q 2 |X 2´κ | 2 ´1 2 L M pV q ¨M pV q `Opǫ 3 q ď ´p2 ´κq 2 ΛpV q 2 |X 2´κ | 2 `Opǫ 3 q
since L M pV q ¨M pV q ě 0. In particular, this implies that ΛpV q does not vanish. We conclude by going back to (40).

We argue by contradiction for establishing Theorem 2.2 We assume that X ˚given by ( 17) is an orbitally stable of (13), meaning that for any ǫ ą 0, we can find δ such that X init P U ǫ implies Xptq P U ǫ for any t ě 0. Then, as an initial data we pick X init " V s as defined in Lemma 3.8 with s ă 0 small enough (see Lemma 3.9) so that |V s | " |X ˚|, E pX ˚q ´E pV s q " ǫ ˚ą 0 and PpV s q ą 0. Let t Þ Ñ Xptq be the associated solution. By using the conservation properties of the equation, we obtain 0 ă ǫ ˚" E pX ˚q ´E pXptqq ă ´ΛpXptqqPpXptqq.

Since PpV s q ą 0 and |ΛpXptqq| ď ǫ 2 , we get PpXptqq ě Cǫ ˚for a certain C ą 0. We now use [START_REF] Tao | Nonlinear dispersive equations: local and global analysis[END_REF] We search for solutions of ( 1)-( 2) on the form of a perturbation of ( 23):

u j " e iωt pU ˚j `vj q, ψ j " Ψ ˚j `φj , Ψ ˚j " ´|U ˚j | 2 p´∆q ´1σ.
Using |u `h| 2 " |u| 2 `2Repuhq `|h| 2 and the dispersion relation [START_REF] Goudon | On quantum dissipative systems: ground states and orbital stability[END_REF], we arrive at the following linearized system

i d dt v 0 " τ v 0 ´v1 `1 ? 2 ˆRn σφ 0 dz, i d dt v 1 " τ v 1 ´v0 `τ ? 2 ˆRn σφ 1 dz, ´1 c 2 B 2 tt ´∆¯φ 0 " ´?2σRepv 0 q, ´1 c 2 B 2 tt ´∆¯φ 1 " ´τ ? 2σRepv 1 q.
It is convenient to introduce new unknowns. On the one hand, we expand the complex unknown and consider its real and imaginary parts u j " q j `ip j ; on the other hand, for the wave equation, we set

ϕ j " p´∆q 1{2 φ j , ̟ j " B t φ j c .
We use a block decomposition of the unknown:

X " ˆS W ˙, W " ˆW0 W 1 ˙, S " ˆS0 S 1 ˙, W " ˆW0 W 1 ˙, S j " ˆqj p j ˙, W j " ˆϕj ̟ j ˙. (41)
Therefore, X has 8 components pq 0 , p 0 , q 1 , p 1 , φ 0 , ̟ 0 , φ 1 , ̟ 1 q and is valued in R 4 ˆpL 2 pR n qq 4 . With these notations, the problem casts as

B t X " LX,
where LX " ¨τ p 0 ´p1 ´τ q 0 `q1 ´1 ? 2 ˆRn σp´∆q ´1{2 ϕ 0 dz ´p0 `τ p 1 q 0 ´τ q 1 ´τ ?

2 ˆRn σp´∆q ´1{2 ϕ 1 dz cp´∆q 1{2 ̟ 0 ´cp´∆q 1{2 ϕ 0 ´c ? 2σq 0 cp´∆q 1{2 ̟ 1 ´cp´∆q 1{2 ϕ 1 ´c ? 2τ σq 1 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' .
The following statements bring out the basic spectral properties of L and makes the symplectic structure appear. In terms of stability analysis, it implies that the linearized system is stable provided σpLq Ă iR. However, the identification of the eigenvalues of L is now not so direct than for the asymptotic problem. The symplectic structure will be crucial to decide whether or not the equation is spectrally stable. Proposition 4.1 Let us denote by X the vector constructed from X by changing the components p j and ̟ j into ´pj and ´̟j . Let pλ, Xq be an eigenpair of L. Then, p´λ, Xq, pλ, Xq and p´λ, Xq are equally eigenpairs of L. Moreover, we can write L " J L with J a skew-symmetric operator and L a selfadjoint operator.

Proof. The first part of the claim follows by direct inspection and using the fact that L has real coefficients. Next, we introduce the following block-wise operator J and its formal inverse J J "

¨JS 0 0 0 0 J S 0 0 0 0 J W 0 0 0 0 J W ‹ ‹ ' , J " ¨J S 0 0 0 0 JS 0 0 0 0 JW 0 0 0 0 JW ‹ ‹ ' (42) 
where

J S " ˆ0 1 ´1 0 ˙, JS " ˆ0 ´1 1 0 ˙, J W " 2c ˆ0 p´∆q 1{2 ´p´∆q 1{2 0 ˙, JW " 1 2c ˆ0 ´p´∆q ´1{2 p´∆q ´1{2 0 ˙.
We obtain L X " J LX " ¨´q 1 `τ q 0 `1 ?

2 ˆRn σp´∆q ´1{2 ϕ 0 dz τ p 0 ´p1 ´q0 `τ q 1 `τ ? 2 ˆRn σp´∆q ´1{2 ϕ 1 dz ´p0 `τ p 1 1 2 ϕ 0 `1 ? 2 p´∆q ´1{2 σq 0 1 2 ̟ 0 1 2 ϕ 1 `τ ? 2 p´∆q ´1{2 σq 1 1 2 ̟ 1 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' . ( 43 
)
We readily check that pL X|X 1 q " pX|L X 1 q holds for the inner product pX|X 1 q " ř 1 j"0 q j q 1 j pj p 1 j `´R n pϕ j ϕ 1 j `̟j ̟ 1 j q dz. The change of unknowns is boiled down to ensure that L is self-adjoint and, moreover, that the product pLX|Xq does not involve derivatives of ϕ j or ̟ j , a property that will be useful later on (see Section 4.4).

A natural attempt to localize the eigenvalues of L would rely on a asymptotic argument from the simplified problem [START_REF] Lafitte | Normal transport properties in a metastable stationary state for a classical particle coupled to a non-ohmic bath[END_REF]. However this program faces severe difficulties. We have seen that the eigenvalues of the asymptotic problem lie in iR; we would like to decide whether they get stuck on the imaginary axis or they split into branches with non zero real parts as the wave speed c becomes finite. The coupling with the wave equation induces obstructions to develop the asymptotic arguments (as for instance in [START_REF] Gallay | Stability of small periodic waves for the nonlinear Schrödinger equation[END_REF]) that can be described as follows. Let us introduce the function

ǫ ě 0 Þ ÝÑ κ ǫ " ˆRn |p σpξq| 2 ǫ `|ξ| 2 dξ p2πq n .
We have 0 ă κ ǫ ď κ, and by applying the Lebesgue theorem, we can check the continuity of ǫ Þ Ñ κ ǫ . However it fails to be derivable in general since d dǫ |p σpξq| 2 ǫ`|ξ| 2 " ´|p σpξq| 2 pǫ`|ξ| 2 q 2 is not integrable for ǫ " 0 without introducing further restriction on the dimension n (as ξ Ñ 0 it behaves like

p ´σpxq dxq 2 |ξ| 4
). This explains that developments of the eigenvalues as power series of 1{c are misleading. Let us go back to the function

λ " a `ib P C Þ ÝÑ κ λ " ˆRn |p σpξq| 2 λ 2 `|ξ| 2 dξ p2πq n " ˆRn |p σpξq| 2 2iab `a2 ´b2 `|ξ| 2 dξ p2πq n .
that we now define on the complex plane. The definition makes sense, but on the imaginary axis a " 0. Let us set A " a 2 ´b2 and B " 2ab. Since σ is radially symmetric, we are led to consider the function P pA, Bq " ˆ8 0 Σprq iB `A `r2 dr, with Σprq " |p σprq| 2 r n´1 . It is well defined for B " 0, and A ě 0, and for any B 0, A P R; the difficulty is to deal with B " 0 and A " ´µ ă 0. The lack of continuity near the imaginary axis is illustrated by the following Plemelj like formula: for A ă 0 fixed, the limits B Ñ 0 ˘do not coincide. It reflects the jump discontinuity in the resolvent function of ´∆ at the spectrum. For the sake of completeness, the detailed proof is provided in Appendix B. The statement can be expressed by means of the limited absorption principle for the wave equation. This difficulty we are facing can indeed be explained by coming back to the the wave equation, which has an essential spectrum lying all along the imaginary axis. As we shall detail below, we need to discuss Helmholtz type equation pλ ´∆qu " f . The equation perfectly makes sense provided λ P Czp´8, 0s. For negative λ, in dimension d " 3, this leads to consider u ˘pxq " ´e˘i ? ´λ|x´y| |x´y| f pyq dy which both define solutions of the Helmholtz equation, with a different behavior at infinity. These solutions can be obtained as the limits of pλ ˘iǫ´∆q ´1f as ǫ Ñ 0. Hence the resolvent operator is not well defined, and the functional integrals that one would like to apply as in [START_REF] Gallay | Stability of small periodic waves for the nonlinear Schrödinger equation[END_REF] are misleading.

Let us further illustrate how the difficulty shows up. Searching for eigenvalues of L, we are led to the following non linear equation for λ P C (see the detailed computations in (56) below)

λ 2 `4 ´2τ κ λ 2 {c 2 " 0. ( 44 
)
We wonder whether or not there exists a solution λ " a `ib with positive real and imaginary parts. Hence we set A " a 2 ´b2 and B " 2ab. The latter is supposed to be 0 and we are thus led to investigate the zeros of the function

F : pA, Bq P R 2 Þ ÝÑ ¨A `4 ´2τ c 2 ˆRn pA `c2 ξ 2 q|p σpξq| 2 pA `c2 ξ 2 q 2 `B2 dξ p2πq n 1 `2τ ˆRn |p σpξq| 2 pA `c2 ξ 2 q 2 `B2 dξ p2πq n ‹ ‹ ' .
We do not find explicit solutions for the relation F pA, Bq " 0, but the problem can be investigated numerically, based on the Newton algorithm. Note however that the Jacobian matrix ∇F pA, Bq becomes singular as B tends to 0, making the problem stiffer as the solution λ is getting close to the imaginary axis. Fig. 5 displays the zeros of F in the pA, Bq-plane, for several values of the wave speed c. As c becomes large, we see that the zeros tends to the eigenvalue of the asymptotic problem, which lies on the horizontal axis. It conforts the intuition that the eigenvalues of L for the coupled problem do have a real part, thus leading to instability, and they should converge as c Ñ 8 to the purely imaginary eigenvalues of the For these reasons, we are going to deduce spectral properties on L from the spectral analysis of L , as proposed in [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF]. Indeed, the spectral analysis of the operator L is easier; at least we know that the spectrum embeds into R due to the self-adjointness character of L . The spectral properties of the operator L are summarized in the following statement. Note that, due to the coupling with the wave equation on the whole R n , there is a non empty essential spectrum. From now on, we denote by 0 " p0, 0, 0, 0q. Theorem 4.3 Let L be the operator defined by (43). Then, the following assertions hold:

1. KerpL q " SpanpX 0 q, with X 0 " pS 0 , 0q, S 0 " p0, 1, 0, τ q; 2. σ ess pL q " t1{2u;

3. If τ " `1 and 0 ă κ ă 2, L has one negative eigenvalue, associated to a onedimensional eigenspace; if τ " `1 and κ ą 2, L has two negative eigenvalues, associated to one-dimensional eigenspaces; if τ " ´1 L has three negative eigenvalues associated to one-dimensional eigenspaces;

4. Given Y 0 a solution of L Y 0 " ´J X 0 , we have p´J X 0 |Y 0 q ă 0.

Proof. The operator L self-adjoint, its spectrum lies in R. Let us study the solutions of L X " λX.

In particular, we have λ̟ j " ̟ j {2. Hence, when λ " 1{2, any X " p0, W q, with W " p0, π, 0, 0q or p0, 0, 0, πq, π P L 2 pR n q, lies in KerpL ´1{2q. Next, we also have ´λ

´1 2 ¯ϕ0 " 1 ? 2 p´∆q 1{2 σq 0 , ´λ ´1 2 ¯ϕ1 " τ ? 2 p´∆q 1{2 σq 1 .
Moreover, we can write

ˆσp´∆q ´1{2 ϕ j dz " 1 p2πq n ˆp σx ϕ j |ξ| dξ " ˆp´∆q ´1{2 σϕ j dz.
Hence, when λ " 1{2, any X " p0, W q, with W " pϕ, 0, 0, 0q or p0, 0, ϕ, 0q, ϕ P L 2 pR n q orthogonal to p´∆q ´1{2 σ, lies in KerpL ´1{2q. Therefore, for λ " 1{2, the eigenspace is infinite-dimensional. Reasoning by a contradiction argument, based on Weyl's criterion, we can show that there is no other values in the essential spectrum of L , see [START_REF] Goudon | Plane wave stability analysis of Hartree and quantum dissipative systems[END_REF].

From now on, we suppose λ 1{2. It allows us to infer ̟ 0 " ̟ 1 " 0 and

ϕ 0 " p´∆q ´1{2 σq 0 ? 2pλ ´1{2q , ϕ 1 " τ p´∆q ´1{2 σq 1 ? 2pλ ´1{2q .
Consequently, bearing in mind ´σp´∆q ´1σ dz " κ, we obtain the following 4 ˆ4 system for S " pq 0 , p 0 , q 1 , p 1 q, λS "

¨τ `κ{2 λ ´1{2 0 ´1 0 0 τ 0 ´1 ´1 0 τ `κ{2 λ ´1{2 0 0 ´1 0 τ ‹ ‹ ‹ ‹ ‹ ‹ ' S.
We remark that the relations for pq 0 , q 1 q and pp 0 , p 1 q are uncoupled. We start by observing that λp 0 " τ p 0 ´p1 and λp 1 " ´p0 `τ p 1 which admit non trivial solutions provided pλ ´τ q 2 ´1 " λpλ ´2τ q " 0.

Hence, 0 and 2τ are eigenvalues for L with Spanp0, 1, 0, τ, 0q Ă KerpL q, and Spanp0, 1, 0, ´τ, 0q Ă KerpL ´2τ q, respectively. We turn to the equations for pq 0 , q 1 q which admit non trivial solutions provided

´λ ´τ ´κ{2 λ ´1{2 ¯2 ´1 " ´λ ´τ ´κ{2 λ ´1{2 ´1¯´λ ´τ ´κ{2 λ ´1{2 `1¯" 0.
This holds iff pλ ´1{2qpλ ´τ ´1q ´κ{2 " 0 or pλ ´1{2qpλ ´τ `1q ´κ{2 " 0. We distinguish the two cases:

• If τ " `1, we get pλ ´1{2qpλ ´2q ´κ{2 " 0 or pλ ´1{2qλ ´κ{2 " 0;

• If τ " ´1, we get pλ ´1{2qλ ´κ{2 " 0 or pλ ´1{2qpλ `2q ´κ{2 " 0.

In both cases, with the second order equation pλ ´1{2qλ ´κ{2 " λ 2 ´λ{2 ´κ{2 " 0, we find the following eigenvalues of opposite signs λ " 1{2 ˘a1{4 `2κ 2 P σpL q.

Moreover, from pλ ´1{2qpλ ´2τ q ´κ{2 " λ 2 ´p1{2 `2τ qλ `τ ´κ{2 " 0, we find λ " 1{2 `2τ ˘ap1{2 ´2τ q 2 `2κ 2 P σpL q.

Hence, when τ " `1 with 0 ă κ ă 2, this gives two positive eigenvalues; when τ " ´1 or τ " `1 with κ ą 2 we obtain two eigenvalues of opposite signs. Finally, ´J X 0 reads p´1, 0, ´τ, 0, 0q. It is orthogonal to KerpL q " SpanpX 0 , 0q and it makes sense to consider the equation L Y 0 " ´J X 0 . Imposing Y 0 P pKerpL qq K , we find

Y 0 " 1 κ ´1, 0, τ, 0, ´?2p´∆q ´1{2 σ, 0, ´?2p´∆q ´1{2 σ, 0 ¯.
Accordingly, we get p´J X 0 |Y 0 q " ´2 κ ă 0. (This product is left unchanged by adding to Y 0 any element of KerpL q.)

Linearization about the extra solutions when κ ą 2

Let now now assume κ ą 2. We use the same notation as in [START_REF] Lin | Instability, index theorem, and exponential trichotomy for Linear Hamiltonian PDEs[END_REF]. Considering a perturbation of the solution given by ( 24)-( 25), the linearized equations read

iB t v 0 " Av 0 ´v1 `α ˆRn σφ 0 dz, iB t v 1 " Bv 1 ´v0 `β ˆRn σφ 1 dz, 1 c 2 B 2 tt φ 0 ´∆φ 0 " ´α2σRepv 0 q, 1 c 2 B 2 tt φ 1 ´∆φ 1 " ´β2σRepv 1 q.
With the change of variables pv j , " q j `ip j , φ j q Ñ ´qj , p j , ϕ j " p´∆q 1{2 φ j , ̟ j " B t φ j c ¯,

we get B t X " LX with LX " ¨Ap 0 ´p1 ´Aq 0 `q1 ´α ˆRn p´∆q ´1{2 σϕ 0 dz ´p0 `Bp 1 q 0 ´Bq 1 ´β ˆRn p´∆q ´1{2 σϕ 1 dz cp´∆q 1{2 ̟ 0 ´cp´∆q 1{2 ϕ 0 ´2cασq 0 cp´∆q 1{2 ̟ 1 ´cp´∆q 1{2 ϕ 1 ´2cβσq 1 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' .
We set L " J L , with J defined by (42) and

L X " ¨Aq 0 ´q1 `α ˆRn p´∆q ´1{2 σϕ 0 dz Ap 0 ´p1 Bq 1 ´q0 `β ˆRn p´∆q ´1{2 σϕ 1 dz ´p0 `Bp 1 ϕ 0 2 `αp´∆q ´1{2 σq 0 ̟ 0 2 ϕ 1 2 `βp´∆q ´1{2 σq 1 ̟ 1 2 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' . ( 45 
)
We readily obtain the following analog to Proposition 4.1.

Proposition 4.4

Let us denote by X the vector constructed from X by changing the components p j and ̟ j into ´pj and ´̟j . Let pλ, Xq be an eigenpair of L. Then, p´λ, Xq, pλ, Xq and p´λ, Xq are equally eigenpairs of L. Moreover, we can write L " J L with J a skew-symmetric operator and L a selfadjoint operator.

The next step consists in studying the spectrum of the self-adjoint operator. Theorem 4.5 Let L be the operator defined by (45). Then, the following assertions hold:

1. KerpL q " SpanpX 0 q, with X 0 " pS 0 , 0q, S 0 " p0, 1, 0, Aq; 2. σ ess pL q " t1{2u;

3. L has one negative eigenvalue, associated to a one-dimensional eigenspace (npL q " 1);

4. Given Y 0 a solution of L Y 0 " ´J X 0 , we have p´J X 0 |Y 0 q ă 0.

Proof. The proof of the second item follows exactly the same lines as in Theorem 4.3. We also readily check that KerpL q " Spantp0, 1, 0, A, 0qu. We have ´J X 0 " p´1, 0, ´A, 0q and solving L Y 0 " ´J X 0 with Y 0 P pKerpL qq K yields

Y 0 " 1 2pA ´Bq p´1, 0, A, 0, 2αp´∆q ´1{2 σ, 0, ´2Aβp´∆q ´1{2 σ, 0q, (46) 
and thus we get pY 0 | ´J X 0 q " ´A 2 ă 0. We now study the eigenvalues λ t0, 1{2u of L . We arrive at the matrix system

¨A `B λ ´1{2 0 ´1 0 0 A 0 ´1 ´1 0 B `A λ ´1{2 0 0 ´1 0 B ‹ ‹ ‹ ‹ ‹ ' ¨q0 p 0 q 1 p 1 ‹ ‹ ' " λ ¨q0 p 0 q 1 p 1 ‹ ‹ ' .
The equations for pp 0 , p 1 q and pq 0 , q 1 q uncouple. The former leads to the relation λpλ ´A ´Bq " 0 which gives the eigenvalues 0 and A `B " κ. The latter leads to the relation

0 " ˆA `B λ ´1{2 ´λ˙ˆB `A λ ´1{2 ´λ˙´1 " 1 p2λ ´1q 2 `4λ 4 ´4pA `B `1qλ 3 `λ2 `p4A 2 `4B 2 `A `Bqλ ´2pA ´Bq 2 " 1 p2λ ´1q 2 `4λ 4 ´4pκ `1qλ 3 `λ2 `p4A 2 `4B 2 `κqλ ´2pA ´Bq 2 ˘"
1 p2λ ´1q 2 P pλq with P a fourth order polynomial. Descartes' rule of sign then tells us that P has exactly one negative root, see Fig. 6. We have thus proved the third item in Theorem 4.5.

Spectral and linearized stability

We start with the study of the spectral stability of the solution ( 23) of ( 1)-( 2). Let L be defined by (43). According to [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF], we introduce the operator

M " ´J L J , A " PM P,
where P is the orthogonal projection on pKerpL qq K , and we set K " PL ´1P . We are interested in the generalized eigenvalue problem

M X " µ X, L X " X.
Recall that X has to belong to pKerpL qq K and we need to compute the product pKX|Xq " p X|Xq, which is thus left unchanged by adding to X an element in KerpL q. Hence, X can be chosen in pKerpL qq K . Solving the generalized eigenvalue problem amounts to solve τ q 0 ´q1 " µq 0 τ p 0 ´p1 `c ? 2

ˆRn σ̟ 0 dz " µp 0 , ´q0 `τ q 1 " µq 1 , ´p0 `τ p 1 `τ c ? 2 ˆRn σ̟ 1 dz " µp 1 2c 2 p´∆ϕ 0 q " µ φ0 2c 2 p´∆̟ 0 q `c ? 2σp 0 " µ ̟0 2c 2 p´∆ϕ 1 q " µ φ1 2c 2 p´∆̟ 1 q `τ c ? 2σp 1 " µ ̟1 coupled to τ q0 ´q 1 `1 ? 2 ˆRn σp´∆q ´1{2 φ0 dz " q 0 τ p0 ´p 1 " p 0 ´q 0 `τ q1 `τ ? 2 ˆRn σp´∆q ´1{2 φ1 dz " q 1 ´p0 `τ p1 " p 1 φ0 2 `1 ? 2 p´∆q ´1{2 σ q0 " ϕ 0 , ̟0 2 " ̟ 0 , φ1 2 `τ ? 2 p´∆q ´1{2 σ q1 " ϕ 1 , ̟1 2 " ̟ 1 .
This leads to the following relations ´´µ

c 2 ´∆¯̟ 0 " ´1 c ? 2 σp 0 , ´´µ c 2 ´∆¯̟ 1 " ´τ 1 c ? 2 σp 1 ,
and ´´µ

c 2 ´∆¯φ 0 " ´?2p´∆q 1{2 σ q0 , ´´µ c 2 ´∆¯φ 1 " ´τ ? 2p´∆q 1{2 σ q1 .
When µ ă 0, these equations can be solved by means of the Fourier transform and we get

p ̟ 0 pξq " ´1 c ? 2 p σpξq |µ|{c 2 `|ξ| 2 p 0 , p ̟ 1 pξq " ´τ c ? 2 p σpξq |µ|{c 2 `|ξ| 2 p 1 , x φ0 " ´?2|ξ|p σpξq |µ|{c 2 `|ξ| 2 q0 , x φ1 " ´τ ? 2|ξ|p σpξq |µ|{c 2 `|ξ| 2 q1 . It follows that 1 ? 2 ˆRn σp´∆q ´1{2 φ0 dz " ´q 0 ˆRn |p σpξq| 2 |µ|{c 2 `|ξ| 2 dξ p2πq n looooooooooooomooooooooooooon "κ |µ|{c 2 , τ ? 2 ˆRn σp´∆q ´1{2 φ1 dz " ´q 1 κ |µ|{c 2 , c ? 2 
ˆRn σ̟ 0 dz " ´p0 κ |µ|{c 2 τ c ? 2 ˆRn σ̟ 1 dz " ´p1 κ |µ|{c 2 .
With the matrices defined in [START_REF] Shatah | Spectral condition for abstract instabilty[END_REF], we are thus led to

M 0 ˆp 0 p1 ˙" ˆp0 p 1 ˙, M κ |µ|{c 2 ˆp0 p 1 ˙" µ ˆp 0 p1 ˙,
together with

M κ |µ|{c 2 ˆq 0 q1 ˙" ˆq0 q 1 ˙, M 0 ˆq0 q 1 ˙" µ ˆq 0 q1 ˙. Since M κ |µ|{c 2 M 0 " M 0 M κ |µ|{c 2
, we deduce, like for the asymptotic model, that µ ă 0 should be such that detpM 0 M κ |µ|{c 2 ´µIq " 0. This condition leads to 0 " p2 ´τ κ γ `γc 2 q 2 ´pκ γ ´2τ q 2 " p2 ´τ κ γ `γc 2 ´κγ `2τ qp2 ´τ κ γ `γc 2 `κγ ´2τ q " γc 2 p2p2 ´τ κ γ q `γc 2 q where we set γ " ´µ c 2 " |µ| c 2 . When τ " ´1 or τ " `1 with 0 ă κ ă 2, we have 2p2 ´τ κ γ q γc 2 ą 0 for any positive γ, hence there is no solution to this equation: in these cases we have N ń " 0. If τ " `1 and κ ą 2, it is thus required to make the non linear quantity

F pγq " γ ´2 c 2 pκ γ ´2q
vanishes. The function F is continuous, increasing from p0, 8q to p´2 c 2 pκ ´2q, `8q; hence there exists a unique γ c " ´µc c 2 ą 0 such that F pγ c q " 0. Finally, we have to compute pKX, Xq. Since X P pKerpL qq K , PX " X and pKX, Xq " p X, Xq. Using the equations for pq 0 , q1 q and pp 0 , p1 q together with γ c c 2 " 2pκ γc ´2q ą 0, we deduce that the eigenvectors associated to µ c are such that q1 " ´q 0 and p1 " ´p 0 . On the one hand, choosing q0 " 1 and p0 " 0, we have

X " ˆ1, 0, ´1, 0, F ´1 ˆ´? 2|ξ|p σpξq γ c `|ξ| 2 ˙, 0, F ´1 ˆ?2|ξ|p σpξq γ c `|ξ| 2 ˙, 0 Ẋ " ˆ2 ´κγc , 0, κ γc ´2, 0, 1 ? 2 F ´1 ˆ´|ξ|p σpξq γ c `|ξ| 2 `p σpξq |ξ| ˙, 0, 1 ? 2 F ´1 ˆ|ξ|p σpξq γ c `|ξ| 2 ´p σpξq |ξ| ˙, 0 ṡo that p X, Xq " ´2pκ γc ´2q `2 ˆRn ˆ|ξ| 2 |p σpξq| 2 pγ c `|ξ| 2 q 2 ´|p σpξq| 2 γ c `|ξ| 2 ˙dξ p2πq n " ´γc c 2 ´2γ c ˆRn |p σpξq| 2 pγ c `|ξ| 2 q 2 dξ p2πq n ă 0.
On the other hand, choosing q0 " 0 and p0 " 1, we have

X " ˆ0, 1, 0, ´1, 0, ´2 ? 2 c F ´1 ˆp σpξq γ c `|ξ| 2 ˙, 0, 2 ? 2 c F ´1 ˆp σpξq γ c `|ξ| 2 ˙Ẋ " ˆ0, 2, 0, ´2, 0, ´?2 c F ´1 ˆp σpξq γ c `|ξ| 2 ˙, 0, ? 2 c F ´1 ˆp σpξq γ c `|ξ| 2 ˙ṡo that p X, Xq " 4 `8 c 2 ˆRn |p σpξq| 2 pγ c `|ξ| 2 q 2 dξ p2πq n ą 0.
We can conclude N ń " 1.

When µ ą 0, the symbol p σpξq |ξ| 2 ´µ{c 2 has a singularity which is non square integrable; this forces to set p 0 " p 1 " 0, and q0 " q1 " 0, so that ̟ 0 " ̟ 1 " 0, and φ0 " φ1 " 0. It implies q 0 " q 1 " 0 and p0 " p1 " 0; there is no non trivial solution of the generalized eigenvalue problem with µ ą 0, that is N ǹ " 0.

For µ " 0, the equations reduce to τ q 0 ´q1 " 0 τ p 0 ´p1 `c ? 2

ˆRn σ̟ 0 dz " 0, ´q0 `τ q 1 " 0, ´p0 `τ p 1 `τ c ? 2 ˆRn σ̟ 1 dz " 0 2c 2 p´∆ϕ 0 q " 0 2c 2 p´∆̟ 0 q `c ? 2σp 0 " 0 2c 2 p´∆ϕ 1 q " 0 2c 2 p´∆̟ 1 q `τ c ? 2σp 1 " 0 It yields ϕ 0 " ϕ 1 " 0 and ̟ 0 " ´1 c ? 2 p´∆q ´1σp 0 , ̟ 1 " ´τ c ? 2 p´∆q ´1σp 1 , hence the systems M 0 ˆq0 q 1 ˙" 0, M κ ˆp0 p 1 ˙" 0.
Solving these systems, we obtain p 0 " 0 " p 1 and q 1 " τ q 0 . As a consequence X is proportional to ´J X 0 . Reinterpreting pKX, Xq " pKp´J X 0 q| ´J X 0 q as p´J X 0 |Y 0 q with Y 0 given in Theorem 4.3, we obtain pKp´J X 0 q| ´J X 0 q ă 0 and we conclude that N 0 n " 1.

To sum up, we have the following

N 0 n " 1, N ǹ " 0 and N ń " # 0 if τ " ´1 or τ " 1 and κ ă 2, 1 if τ " 1 and κ ą 2. .
We remind the reader that the spectral stability means that the spectrum of L is contained in iR. To derive information about σpLq, we use the counting argument of [7, Theorem 1] (see also [START_REF] Lin | Instability, index theorem, and exponential trichotomy for Linear Hamiltonian PDEs[END_REF]) which asserts that

N ń `N0 n `Nǹ `NC `" npL q.
The presence of spectrally unstable directions corresponds to N ń 0 or N C ` 0. Gathering the obtained information, we infer that • if τ " 1 and κ ă 2, N ń " 0 and N C `" npL q ´1 " 0;

• if τ " 1 and κ ą 2, N ń " 1 and N C `" npL q ´1 ´1 " 0;

• if τ " ´1, N ń " 0 and N C `" npL q ´1 " 2.

Accordingly, we conclude with the following claim. Proposition 4.6 Suppose 0 ă κ ă 2 and let τ " `1. Then, the reference solution (23) of (1)-( 2) is spectrally stable. If τ " ´1 or τ " `1 with κ ą 2, the reference solution (23) of (1)-( 2) is spectrally unstable. This result is illustrated in Figure 7. Inspired by the asymptotic problem, see Proposition 3.2 and Figure 3, we guess that the linearized stabiltiy requires suitable orthogonality conditions. Indeed, we can check that KerpLq " Spanp0, 1, 0, τ, 0q and KerpL ˚q " Spanp1, 0, τ, 0, 0q. In particular, denoting Ψ " p1, 0, τ, 0, 0q, we have d dt pX|Ψq " 0, and in order to prevent grows of the linearized solution, we select initial data such that pX init |Ψq " 0, which reduces to q init,0 `τ q init,1 " 0.

When κ ą 2, a similar statement holds for the solution [START_REF] Jaksic | Ergodic properties of classical dissipative systems[END_REF]. Proposition 4.7 Suppose κ ą 2. Then, the reference solution (25) of (1)-( 2) is spectrally stable. Proof. As before, we are concerned with the generalized eigenvalue problem M X " µ X, L X " X with X, X P pKerpL qq K . It now takes the form Aq 0 ´q1 " µq 0 Ap 0 ´p1 `2αc

ˆRn σ̟ 0 dz " µp 0 , ´q0 `Bq 1 " µq 1 , ´p0 `Bp 1 `2βc ˆRn σ̟ 1 dz " µp 1 ,
2c 2 p´∆ϕ 0 q " µ φ0 2c 2 p´∆̟ 0 q `2αcσp 0 " µ ̟0 , 2c 2 p´∆ϕ 1 q " µ φ1 , 2c 2 p´∆̟ 1 q `2βcσp 1 " µ ̟1 , 

Aq 0 ´q 1 `α ˆRn σp´∆q ´1{2 φ0 dz " q 0 , Ap 0 ´p 1 " p 0 ´q 0 `B q1 `β ˆRn σp´∆q ´1{2 φ1 dz " q 1 , ´p 0 `B p1 " p 1 , φ0 2 `αp´∆q ´1{2 σ q0 " ϕ 0 , ̟0 2 " ̟ 0 , φ1 2 `βp´∆q ´1{2 σ q1 " ϕ 1 , ̟1 2 " ̟ 1 .
As before the operator p´µ c 2 ´∆q plays a crucial role. In particular, if µ ą 0 it cannot be inverted so that the possibility to find non trivial solutions with µ ą 0 is exluded. As a consequence, N ǹ " 0. When µ ă 0, we have

´´∆ ´µ c 2 ¯̟0 " ´α c σp 0 , ´´∆ ´µ c 2 ¯̟1 " ´β c σp 1 ,
and ´´∆ ´µ c 2 ¯φ 0 " ´2αp´∆q 1{2 σ q0 , ´´∆ ´µ c 2 ¯φ 1 " ´2βp´∆q 1{2 σ q1 .

Setting γ " ´µ c 2 ą 0 and κ γ as before leads to the following systems of equations

ˆA ´2α 2 κ γ ´1 ´1 B ´2β 2 κ γ ˙ˆp 0 p 1 ˙" µ ˆp 0 p1 ˙, ˆA ´1 ´1 B ˙ˆp 0 p1 ˙" ˆp0 p 1 ȧnd ˆA ´1 ´1 B ˙ˆq 0 q 1 ˙" µ ˆq 0 q1 ˙, ˆA ´2α 2 κ γ ´1 ´1 B ´2β 2 κ γ ˙ˆq 0 q1 ˙" ˆq0 q 1 ˙.
As before, µ ă 0 should be such that det

ˆˆA ´1 ´1 B ˙ˆA ´2α 2 κ γ ´1 ´1 B ´2β 2 κ γ ˙´µI ˙" 0 This condition is equivalent to 0 " det ˆˆA ´1 ´1 B ˙ˆA ´2 B κ κ γ ´1 ´1 B ´2 A κ κ γ ˙´µI " det ˆˆAκ ´2 κγ κ ´κ `2A κγ κ ´κ `2B κγ κ Bκ ´2 κγ κ ˙`γc 2 I " ´Aκ ´2 κ γ κ `γc 2 ¯´Bκ ´2 κ γ κ `γc 2 ¯´´2 B κ γ κ ´κ¯´2 A κ γ κ ´κ" pA `Bqκγc 2 ´4 κ γ κ γc 2 `pγc 2 q 2 " γc 2 ´κ2 ´4 κ γ κ `γc 2 " γc 2 ´κ2 ´4 `4 ´1 ´κγ κ
¯`γc 2 where we use A " β 2 κ, B " α 2 κ and A `B " κ. However, since κ ą 2 and κ ą κ γ for any γ ą 0, we have γc 2 ´κ2 ´4 `4

´1 ´κγ κ ¯`γc 2 ¯ą 0 so that N ń " 0. Finally, Theorem 4.5 tells us that N 0 n " 1, while npL q " 1. Applying the counting argument, we conclude that N C `" 0.

Orbital stability

To discuss the orbital stability of solutions to (1)-( 2), it would be useful to write the system in a more convenient way by means of the change of variables u j " q j `ip j , ϕ j " p´∆q 1{2 ψ j , p j " B t ψ j c .

Hence, (1)-( 2) reads as

B t q 0 " p 0 ´p1 `p0 ˆRn p´∆q ´1{2 σϕ 0 dz B t ϕ 0 " cp´∆q 1{2 ̟ 0 B t p 0 " ´q0 `q1 ´q0 ˆRn p´∆q ´1{2 σϕ 0 dz B t ̟ 0 " ´cp´∆q 1{2 ϕ 0 ´cσp|q 0 | 2 `|p 0 | 2 q B t q 1 " p 1 ´p0 `p1 ˆRn p´∆q ´1{2 σϕ 1 dz B t ϕ 1 " cp´∆q 1{2 ̟ 1 B t p 1 " ´q1 `q0 ´q1 ˆRn p´∆q ´1{2 σϕ 1 dz B t ̟ 1 " ´cp´∆q 1{2 ϕ 1 ´cσp|q 1 | 2 `|p 1 | 2 q
(47)

and it can be written as

B t X " J ∇H SW pXq. (48) 
with X " pS, W q P R 4 ˆpL 2 pR n qq 4 as in (41), J defined by (42) and

H SW pXq " |q 0 ´q1 | 2 `|p 0 ´p1 | 2 2 `1 4 ˆRn p|̟ 0 | 2 `|̟ 1 | 2 `|ϕ 0 | 2 `|ϕ 1 | 2 q dz `1 2 ˆRn p´∆q 1{2 σpϕ 0 p|q 0 | 2 `|p 0 | 2 q `ϕ1 p|q 1 | 2 `|p 1 | 2 qq dz (49)
Next, we denote by F pSq " |X| 2 2 "

q 2 0 `q2 1 `p2 0 `p2 1 2
and introduce the functional E pXq " H SW pXq `ωF pSq which is thus conserved by the dynamical system (48). Let X ˚" pS ˚, W ˚q one of the special solutions described in subsection 2.2. In particular, S ˚" pQ ˚0, 0, Q ˚1, 0q with ˆQ˚0

Q ˚1˙" 1 ? 2 ˆ1 τ ˙, ω " κ 2 `τ ´1 for (23) (50) ˆQ˚0 Q ˚1˙" ˆα β ˙, ω " κ ´1 for (25) (51) 
and W ˚" pϕ 0˚, 0, ϕ 1˚, 0q where ϕ ˚j " ´|Q ˚j | 2 p´∆q ´1{2 σ.

Adapting the argument used for the asymptotic model, we consider the level set S " tX " pS, W q, F pSq " F pS ˚q " 1{2u.

and its tangent set given by T S " tpS, W q, ∇F pS ˚q ¨S " 0u.

Note that pS, W q " pq 0 , p 0 , q 1 , p 1 , W q P T S if and only if Q ˚0q 0 `Q˚1 q 1 " 0. The orbit associated to X ˚is given by

O " ! pS θ , ´|Q ˚0| 2 p´∆q ´1{2 σ, 0, ´|Q ˚1| 2 p´∆q ´1{2 σ, 0q, S θ " RpθqS ˚, θ P R ) .
and pT Oq K is made of pS, W q with S " pq 0 , p 0 , q 1 , p 1 q such that Q ˚0p 0 `Q˚1 p 1 " 0.

Remark 4.8

In contrast to the observation made for the asymptotic problem in Remark 3.3, and to a common property of Hamiltonian systems, here the phase invariance property holds in a restricted sense: the energy H pXq, and E pXq as well, is left unchanged when changing X " pS, W q into pRpθqS, W q, where the rotation Rpθq acts only on a part of the variables.

The Euler-Lagrange relation for the coupled problem can be reformulated as

∇E pX ˚q " 0 ( 52 
)
and L , defined in (43) or (45), corresponds to the Hessian of E evaluated at X ˚given by (50) or (51) respectively. We wish to establish a coercivity estimate, on a certain subspace, for the quadratic form X Þ Ñ D 2 E pX ˚qpX, Xq. This is a crucial property for establishing the orbital stability. A straightforward computation gives, for any X P T S X pT Oq K ,

D 2 E pX ˚qpX, Xq " Q ˚1 Q ˚0 q 2 0 ´q1 q 0 `2Q ˚0q 0 ˆRn p´∆q ´1{2 σϕ 0 dz `Q˚1 Q ˚0 p 2 0 ´p1 p 0 `Q˚0 Q ˚1 q 2 1 ´q0 q 1 `2Q ˚1q 1 ˆRn p´∆q ´1{2 σϕ 1 dz `Q˚0 Q ˚1 p 2 1 ´p0 p 1 `1 2 p}ϕ 0 } 2 L 2 pR n q `}ϕ 1 } 2 L 2 pR n q q `1 2 p}̟ 0 } 2 L 2 pR n q `}̟ 1 } 2 L 2 pR n q q
where we use the fact that p1 ´|Q ˚0| 2 κ `ωqQ ˚0 " Q ˚1 and p1 ´|Q ˚1| 2 κ `ωqQ ˚1 " Q ˚0. Now, since X P T S X pT Oq K , we have Q ˚0q 0 `Q˚1 q 1 " 0 " Q ˚0p 0 `Q˚1 p 1 , so that

D 2 E pX ˚qpX, Xq " ˆ1 Q ˚0Q ˚1 ˙pq 2 0 `q2 1 q `2Q ˚0q 0 ˆRn p´∆q ´1{2 σϕ 0 dz `2Q ˚1q 1 ˆRn p´∆q ´1{2 σϕ 1 dz `ˆ1 Q ˚0Q ˚1 ˙pp 2 0 `p2 1 q `1 2 p}ϕ 0 } 2 L 2 pR n q `}ϕ 1 } 2 L 2 pR n q q `1 2 p}̟ 0 } 2 L 2 pR n q `}̟ 1 } 2 L 2 pR n q q
By virtue of the Cauchy-Schwarz inequality,

2|Q ˚j ||q j | ˇˇˇˆR n p´∆q ´1{2 σϕ j dz ˇˇˇď 2|Q ˚j ||q j | ? κ}ϕ j } L 2 ď κ ǫ |Q ˚j | 2 q 2 j `ǫ}ϕ j } 2 L 2
for any ǫ ą 0. Therefore,

D 2 E pX ˚qpX, Xq ě ˆ1 Q ˚0Q ˚1 ´κ ǫ |Q 0˚| 2 ˙q2 0 `ˆ1 Q ˚0Q ˚1 ´κ ǫ |Q 1˚| 2 ˙q2 1 `ˆ1 Q ˚0Q ˚1 ˙pp 2 0 `p2 1 q `ˆ1 2 ´ǫ˙p }ϕ 0 } 2 L 2 pR n q `}ϕ 1 } 2 L 2 pR n q q `1 2 p}̟ 0 } 2 L 2 pR n q `}̟ 1 } 2 L 2 pR n q q. ( 53 
)
Assume that X ˚is such that pQ ˚0, Q ˚1q is given by (50). Then Proposition 4.6 implies that X ˚is spectrally stable only for τ " 1 and 0 ă κ ă 2. In this case, (53) reads as

D 2 E pX ˚qpX, Xq ě ´2 ´κ 2ǫ ¯pq 2 0 `q2 1 q `2pp 2 0 `p2 1 q `ˆ1 2 ´ǫ˙p }ϕ 0 } 2 L 2 pR n q `}ϕ 1 } 2 L 2 pR n q q `1 2 p}̟ 0 } 2 L 2 pR n q `}̟ 1 } 2 L 2 pR n q q ě Cpǫq}X} 2 .
with Cpǫq " min `2 ´κ 2ǫ ˘, `1 2 ´ǫ˘( . Note that Cpǫq ą 0 provided ǫ is chosen such that κ 4 ă ǫ ă 1 2 . This leads to the orbital stability of X ˚given by (50) when τ " 1 and 0 ă κ ă 2. Note that if τ " 1 and κ ą 2 or τ " ´1, then the quadratic form X Þ Ñ D 2 E pX ˚qpX, Xq has no definite sign on T S X pT Oq K .

Next, let κ ą 2 and let X ˚be such that pQ ˚0, Q ˚1q is given by (51). Then Proposition 4.7 implies that X ˚is always spectrally stable. In this case, (53) reads as

D 2 E pX ˚qpX, Xq ě ´κ ´κ ǫ α 2 ¯q2 0 `´κ ´κ ǫ β 2 ¯q2 1 `κpp 2 0 `p2 1 q `ˆ1 2 ´ǫ˙p }ϕ 0 } 2 L 2 pR n q `}ϕ 1 } 2 L 2 pR n q q `1 2 p}̟ 0 } 2 L 2 pR n q `}̟ 1 } 2 L 2 pR n q q
where we use that αβ " 1 κ . Next, we consider separately the cases τ " 1 and τ " ´1. If τ " 1, we write q 1 " ´α β q 0 so that

D 2 E pX ˚qpX, Xq ě κ ˆ1 β 2 ´2 ǫ α 2 ˙q2 0 `κpp 2 0 `p2 1 q `ˆ1 2 ´ǫ˙p }ϕ 0 } 2 L 2 pR n q `}ϕ 1 } 2 L 2 pR n q q `1 2 p}̟ 0 } 2 L 2 pR n q `}̟ 1 } 2 L 2 pR n q q " κ β 2 ǫ ˆǫ ´2 κ 2 ˙ˆ1 ´α2 β 2 ˙q2 0 `κ β 2 ǫ ˆǫ ´2 κ 2 ˙q2 1 `κpp 2 0 `p2 1 q `ˆ1 2 ´ǫ˙p }ϕ 0 } 2 L 2 pR n q `}ϕ 1 } 2 L 2 pR n q q `1 2 p}̟ 0 } 2 L 2 pR n q `}̟ 1 } 2 L 2 pR n q q.
By choosing 2 κ 2 ă ǫ ă 1 2 which is possible since κ ą 2 and since α 2 β 2 ă 1, we obtain D 2 E pX ˚qpX, Xq ě Cpǫq}X} 2 with Cpǫq ą 0 and for any X P T S X pT Oq K .

If τ " ´1, we write q 0 " ´β α q 1 so that

D 2 E pX ˚qpX, Xq ě κ α 2 ǫ ˆǫ ´2 κ 2 ˙q2 0 `κ α 2 ǫ ˆǫ ´2 κ 2 ˙ˆ1 ´β2 α 2 ˙q2 1 `κpp 2 0 `p2 1 q `ˆ1 2 ´ǫ˙p }ϕ 0 } 2 L 2 pR n q `}ϕ 1 } 2 L 2 pR n q q `1 2 p}̟ 0 } 2 L 2 pR n q `}̟ 1 } 2 L 2 pR n q q.
and we can conclude as above.

Instability

In this section we study the nonlinear instability of the solution X ˚given by (50) whenever τ " ´1 or τ " 1 and κ ą 2, i.e. whenever X ˚is spectrally unstable. To this goal, we use again the same change of variables as in the previous section so that (1)-( 2) reads as (47). Note that the reasoning of [START_REF] Maeda | Instability of bound states of nonlinear Schrödinger equations with Morse index equal to two[END_REF], as described in Section 3.4, can be applied only in the case τ " 1 and κ ą 2, the Morse index of L being larger than 2 when τ " ´1. Hence, we are going to apply the general result described in [START_REF] Shatah | Spectral condition for abstract instabilty[END_REF] to treat both cases at the same time. The instability analysis is of different nature than in Section 3.4. In Section 3.4, the method of [START_REF] Maeda | Instability of bound states of nonlinear Schrödinger equations with Morse index equal to two[END_REF] relies on the spectral property of the self-adjoint operator L ; it shows a linear growth of the perturbation by using the energy conservation, but it requires a strong assumption on the dimension of the eigenspace of unstable directions. Here, the arguments of [START_REF] Shatah | Spectral condition for abstract instabilty[END_REF], which has been extended to various type of non linear Schrödinger equation in [START_REF] Colin | Instability of standing waves for a system of nonlinear Schrödinger equations with three-wave interaction[END_REF][START_REF] Georgiev | Nonlinear instability of linearly unstable standing waves for nonlinear Schrödinger equations[END_REF], uses the fact that L admits an eigenvalue with a positive real part. This property can be deduced from the counting argument. As pointed out in [START_REF] Shatah | Spectral condition for abstract instabilty[END_REF], we show that the perturbation, starting from the worst linearly unstable direction, exits a certain ball in a time which scales like the logarithm of the inverse of the size of the initial perturbation. We start by observing that the linearized operator L satisfies pLX|Xq " ´1 ? 2 ˆRn p´∆q ´1{2 σpϕ 0 p 0 `τ ϕ 1 p 1 q dz ´c ? 2 ˆRn σp̟ 0 q 0 `τ ̟ 1 q 1 q dz.

The Cauchy-Schwarz inequality yields

|pLX|Xq| ď 2p a κ{2 `c ? 2}σ} L 2 pR n q q}X} 2 .
As it will be detailed below, the operator λ ´L is onto for sufficiently large (real part of) λ's. Accordingly, we can apply Lumer-Phillips' theorem [START_REF] Renardy | An Introduction to Partial Differential Equations[END_REF]Th. 12.22] to the linearized equation

B t X " LX.
It can be formulated as the existence of the semi-group t Þ Ñ e Lt , which satisfies the continuity estimate: there exists Λ ą 0 such that for any t ě 0, }e Lt } ď e Λt . For further purposes, we denote K 0 " sup }e Lt }, 0 ď t ď 1 ( .

Then, we express the problem by considering the evolution of a perturbation of X åccording to the dynamical system (47). More precisely, we set ˆq j pj ˙" Rpωtq ˆQ˚j `qj p j ˙, φj " ϕ ˚j `ϕj , φj " ̟ j .

From (47), we deduce that the perturbation Y " pq 0 , p 0 , q 1 , p 1 , ϕ 0 , ̟ 0 , ϕ 1 , ̟ 1 q satisfies B t Y " LY `F pY q where the nonlinear remainder reads

F pY q " ¨p0 ˆRn σp´∆q ´1{2 ϕ 0 dz ´q0 ˆRn σp´∆q ´1{2 ϕ 0 dz p 1 ˆRn σp´∆q ´1{2 ϕ 1 dz ´q1 ˆRn σp´∆q ´1{2 φ 1 dz 0 ´cσp|p 0 | 2 `|q 0 | 2 q 0 ´cσp|p 1 | 2 `|q 1 | 2 q ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' .
The orbital stability of the solution (50) to (47) is rephrased in the orbital stability of 0 for this problem. More precisely, we shall obtain the critical estimates by using the integral formulation Y ptq " e Lt Y init `ˆt 0 e Lpt´sq F pY psqq ds (54) of the problem. The application of the reasonings in [START_REF] Shatah | Spectral condition for abstract instabilty[END_REF] relies on the following estimate Lemma 4.9 There exists C 1 ą 0 such that for any X, we have |F pXq| ď C 1 |X| 2 .

Proof. In order to estimate F pY q, we make the following quantities appear

p|p j | 2 `|q j | 2 q ˆˆR n p´∆q ´1{2 σφ j dz ˙2 ď κp|p j | 2 `|q j | 2 q}ϕ j } 2 L 2 pR n q and p|p j | 2 `|q j | 2 q 2 ˆRn |σ| 2 dz " }σ} 2 L 2 pR n q p|p j | 2 `|q j | 2 q 2 .
It leads to the asserted conclusion with C 1 " 2p ? κ `c}σ} L 2 pR n q q.

Next, we need the following information on the spectrum of L.

Proposition 4.10 σpe L q " e σpLq .

This statement strengthens the embedding exppσpLqq Ă σpe L q which always holds. It is not a prerequisite but it simplifies the argument, see [START_REF] Shatah | Spectral condition for abstract instabilty[END_REF]. According to Gearhart-Greiner-Herbst-Prüss Spectral Mapping Theorem, see e.g. [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF]Prop. 1] (in fact, we use the criterion in the same form as in [START_REF] Gesztesy | A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations[END_REF]Section 2]), the proof relies on a uniform estimate on the resolvent pλ ´Lq ´1, as Impλq Ñ ˘8 with Repλq 0 fixed, that we are going to establish. We denote H " R 4 ˆpL 2 pR n qq 4 endowed with the norm

}X} H " b |q 0 | 2 `|p 0 | 2 `|q 1 | 2 `|p 1 | 2 `}ϕ 0 } 2 L 2 pR n q `}̟ 0 } 2 L 2 pR n q `}ϕ 1 } 2 L 2 pR n q `}̟ 1 } 2 L 2 pR n q .
Let λ P Czt0u and for a given data X 1 , we consider the equation

pλ ´LqX " X 1 ,
that is λq 0 ´τ p 0 `p1 " q 1 0 , λp 0 `τ q 0 ´q1 `1 ?

2 ˆRn p´∆q ´1{2 σϕ 0 dz " p 1 0 , λq 1 `p0 ´τ p 1 " q 1 1 , λp 1 ´q0 `τ q 1 `τ ?

2 ˆRn p´∆q ´1{2 σϕ 1 dz " p 1 1 , λϕ 0 ´cp´∆q 1{2 ̟ 0 " ϕ 1 0 , λ̟ 0 `cp´∆q 1{2 ϕ 0 `c ? 2σq 0 " ̟ 1 0 , λϕ 1 ´cp´∆q 1{2 ̟ 1 " ϕ 1 1 , λ̟ 1 `cp´∆q 1{2 ϕ 1 `τ c ? 2σq 1 " ̟ 1 1 . Therefore, we get ̟ 0 " p´∆q ´1{2 c pλϕ 0 ´ϕ1 0 q, ̟ 1 " p´∆q ´1{2 c pλϕ 1 ´ϕ1 1 q,
which allows us to write ´λ2

c 2 ´∆¯ϕ 0 " λ c 2 ϕ 1 0 `p´∆q 1{2 ̟ 1 0 ´?2p´∆q 1{2 σq 0 , ´λ2 c 2 ´∆¯ϕ 1 " λ c 2 ϕ 1 1 `p´∆q 1{2 ̟ 1 1 ´τ ? 2p´∆q 1{2 σq 1 .
We solve these equations by means of Fourier transform. Note that this makes the symbol `λ2 c 2 `c2 ξ 2 ˘appear. However, it does not vanish out of the axis iR. Hence, we still can use the function

z P CziR Þ ÝÑ κ z " ˆRn |p σpξq| 2 z 2 `|ξ| 2 dξ p2πq n
As consequence, we arrive at the reduced system: λq 0 ´τ p 0 `p1 " q 1 0 , λp 0 `τ q 0 ´q1 ´κλ 2 {c 2 q 0 " S 0 , λq 1 `p0 ´τ p 1 " q 1 1 , λp 1 ´q0 `τ q 1 ´κλ 2 {c 2 q 1 " S 1 , where we have set

S 0 " p 1 0 ´1 ? 2 ˆRn p σpξq x ̟ 1 0 pξq λ 2 {c 2 `|ξ| 2 dξ p2πq n ´λ ? 2c 2 ˆRn p σpξq x ϕ 1 0 pξq pλ 2 {c 2 `|ξ| 2 q|ξ| dξ p2πq n , S 1 " p 1 1 ´τ ? 2 ˆRn p σpξq x ̟ 1 1 pξq λ 2 {c 2 `|ξ| 2 dξ p2πq n ´τ λ ? 2c 2 ˆRn p σpξq x ϕ 1 1 pξq pλ 2 {c 2 `|ξ| 2 q|ξ| dξ p2πq n . ( 55 
)
Since λpq 0 `τ q 1 q " q 1 0 `τ q 1 1 , we obtain λp 0 `2τ q 0 ´κλ 2 {c 2 q 0 " S 0 `τ pq 1 0 `τ q 1 1 q λ , λp 1 ´2q 0 `τ κ λ 2 {c 2 q 0 " S 1 ´τ pτ ´κλ 2 {c 2 q pq 1 0 `τ q 1 1 q λ .

It eventually yields pλ 2 `4 ´2τ κ λ 2 {c 2 qq 0 " λq 1 0 ´pS 1 ´τ S 0 q `p2 ´τ κ λ 2 {c 2 q pq 1 0 `τ q 1 1 q λ (56) which already explains (when setting X 1 " 0) the relation (44) for studying the eigenvalues of L. Next, we are going to use the following elementary claim. }σ} L 2 pR n q }̟ 1 0 } L 2 pR n q ď ? 2}σ} L 2 pR n q 4|a| 2 }̟ 1 0 } L 2 pR n q .

4.11

By direct inspection, Lemma 4.11 also yields the following estimate.

Lemma 4.13 Let λ " a `ib P C, with a 0 and |b| ě ? 3|a|. Then, we have

|κ λ 2 {c 2 | ď c 2 }σ} 2 L 2 pR n q 2 ? 2|a| 2 .
Let λ " a`ib P C. By virtue of Lemma 4.13, when b is large enough, λ 2 `4 ´2κ λ 2 {c 2 does not vanish. We can therefore obtain q 0 from the data X 1 with (56). Moreover, as b Ñ 8, with a 0 fixed, 1 λ 2 `4´2κ λ 2 {c 2 , and λ λ 2 `4´2κ λ 2 {c 2 both tend to 0. We conclude that we can find some r ą 0 and M ą 0 (depending on a, c, σ) such that for any b P R, |b| ě r, we have }X} H " }pa `ib ´Lq ´1X 1 } H ď M}X 1 } H . This justifies Proposition 4.10.

In case of spectral instability, L admits eigenvalues with positive real value. There is only a finite number of such eigenvalues (as indicated by the counting argument). Since, exppσpLqq Ă σpe L q we thus already know that the spectral radius of e L is larger than 1. In fact, we can use the identity in Proposition 4.10. Let us denote λ ˚" a ˚`ib ˚P σpLq, a ˚" sup Repλq, λ P σpLq ( ą 0.

Of course, for any t ě 0, we have |e λ˚t | " e a˚t and the spectral radius of e L is e a˚ą 1, see [START_REF] Georgiev | Nonlinear instability of linearly unstable standing waves for nonlinear Schrödinger equations[END_REF] for more details. We are going to use the following claim.

Lemma 4.14 [32, Lemma 2 & Lemma 3]

There exists a constant K 1 , such that for any t ě 0, there holds }e tL } L pHq ď K 1 e 3a˚t{2 .

Let us define ǫ ą 0 such that 4K 1 p1 `C1 q 2 a ˚ǫ ă 1 with C 1 and K 1 defined in Lemma 4.9 and 4.14 respectively. Then, pick an arbitrary 0 ă δ ă ǫ and set T ǫ " 1 a ˚ln ´ǫ δ Let Y ˚be a normalized eigenvector of L associated to λ ˚:

LY ˚" λ ˚Y˚, }Y ˚}H " 1.

It will serve to define the initial perturbation that leads to instability: we start from the perturbation Y ˇˇt"0 " δY ˚, which has thus an arbitrarily small norm. As a matter of fact, (54) becomes Y ptq " δe λ˚t Y ˚`ˆt 0 e Lpt´sq F pY psqq ds.

We are going to contradict the orbital stability by showing that Y pT ǫ q is at a distance larger than κǫ, for a certain constant κ ą 0, to the orbit O. Let

Tǫ " sup t P r0, T ǫ s, }Y psq} ď p1 `C1 qδe a˚s for 0 ď s ď t ( P p0, T ǫ s.

The Duhamel formula (54) yields }Y ptq} ď δe a˚t `ˆt 0 K 1 e 3a˚pt´sq{2 C 1 }Y psq} 2 ds 50 by using Lemma 4.9 and 4.14. Therefore }Y ptq} ď δe a˚t `K1 C 1 p1 `C1 q 2 δ 2 ˆt 0 e 3a˚pt´sq{2 e 2a˚s ds ď δe a˚t `K1 C 1 p1 `C1 q 2 δ 2 2e 2a˚t a ď δe a˚t ˆ1 `2K 1 C 1 p1 `C1 q 2 a ˚δe a˚Tǫ ˙ď δe a˚t ˆ1 `C1 2K 1 p1 `C1 q 2 a ˚ǫḣ olds for any t P r0, Tǫ s Ă r0, T ǫ s. Hence, ǫ is chosen small enough so that this implies }Y ptq} ă ˆ1 `C1 2 ˙δe a˚t , which would contradict the definition of Tǫ if Tǫ ă T ǫ . We deduce that }Y ptq} ď p1 `C1 qδe a˚t ď p1 `C1 qǫ holds for any t P r0, T ǫ s. Owing to this estimate, we go back to the Duhamel formula and we obtain, for 0 ď t ď T ǫ , }Y ptq ´δe λ˚t Y ˚} ď ˆt 0 |e Lpt´sq F pY psqq| ds ď ˆt 0 e 3a˚pt´sq{2 K 1 C 1 }Y psq} 2 ds ď K 1 C 1 p1 `C1 q 2 δ 2 ˆt 0 e 3a˚pt´sq{2 e 2a˚s ds ď 2K 1 C 1 p1 `C1 q 2 a ˚δ2 e 2a˚t ď 2K 1 C 1 p1 `C1 q 2 a ˚δ2 e 2a˚Tǫ " 2K 1 C 1 p1 `C1 q 2 a ˚ǫ2 .

(57) We distinguish the components of the solution X ˚" pS ˚, W ˚q, Y ptq " p Sptq, W ptqq and Xptq " pSptq, W ptqq " pRpωtqpS ˚`S ptqq, W ˚`W ptqq. We wish to evaluate Ξ ǫ " inf θ }XpT ǫ q ´pRpθqS ˚, W ˚q} " inf θ }pRpωT ǫ qpS ˚`S pT ǫ qq, W ˚`W pT ǫ qq ´pRpθqS ˚, W ˚q} " inf θ }pS ˚`S pT ǫ q, W ˚`W pT ǫ qq ´pRp´ωT ǫ qRpθqS ˚, W ˚q} " inf θ 1 }Y pT ǫ q `X˚´p Rpθ 1 qS ˚, W ˚q}.

Let θ ǫ denote the phase which reaches this infimum:

Ξ ǫ " }Y pT ǫ q `X˚´p Rpθ ǫ qS ˚, W ˚q}.

We observe that Ξ ǫ ď inf θ 1 `}Y pT ǫ q} `}X ˚´pRpθ 1 qS ˚, W ˚q} ˘ď }Y pT ǫ q} ď p1 `C1 qǫ. This estimate is meaningful provided Y K ˚ 0. This is indeed the case because J S S ˚" 1 ?

2 p0, ´1, 0, ´τ q and we can check that pJ S S ˚, 0q lies in KerpLq while Y ˚P KerpL ´λ˚q , with λ ˚ 0.

A Proof of L 2 and energy conservation properties

The three models can be cast under the general form

i d dt ˆu0 u 1
˙" ˆA0 ´1 ´1 A 1 ˙ˆu 0 u 1 ẇhere A 0 " A 1 " 1 for (4), A 0 " 1 ´κ|u 0 | 2 , A 1 " 1 ´κ|u 1 | 2 for (5), and A 0 " 1 `´σψ 0 dz, A 1 " 1 `´σψ 1 dz for (1)-(2). In any case, A 0 and A 1 are real. Therefore, we obtain d dt p|u 0 | 2 `|u 1 | 2 q " u 0 i pA 0 u 0 ´u1 q ´u0 i pA 0 u 0 ´u1 q `u1 i pA 1 u 1 ´u0 q ´u1 i pA 1 u 1 ´u0 q " A 0 i pu 0 u 0 ´u0 u 0 q `A1 i pu 1 u 1 ´u1 u 1 q `1 i p´u 0 u 1 `u1 u 0 ´u0 u 1 `u1 u 0 q " 0, which proves the conservation of |u 0 | 2 `|u 1 | 2 . Moreover, we have

1 2 d dt |u 0 ´u1 | 2 " ´1 2 d dt pu 0 u 1 `u1 u 0 q " ´1 2 
ˆu1 i pA 0 u 0 ´u1 q ´u1 i pA 0 u 0 ´u1 q `u0 i pA 1 u 1 ´u0 q ´u0 i pA 1 u 1 ´u0 q " ´1 2i pA 0 pu 1 u 0 ´u1 u 0 q `A1 pu 0 u 1 ´u0 u 1 qq " ´pA 0 ´A1 qImpu 0 u 1 q.

For (5), this combines to

κ 4 d dt p|u 0 | 4 `|u 1 | 4 q " κ|u 0 | 2 2 ˆu0 i pA 0 u 0 ´u1 q ´u0 i pA 0 u 0 ´u1 q κ|u 1 | 2 2 ˆu1 i pA 1 u 1 ´u0 q ´u1 i pA 1 u 1 ´u0 q " ´κ|u 0 | 2 2i pu 0 u 1 ´u0 u 1 q ´κ|u 1 | 2 2i
pu 1 u 0 ´u1 u 0 q " κp|u 0 | 2 ´|u 1 | 2 qImpu 0 u 1 q " ´pA 0 ´A1 qImpu 0 u 1 q, so that (9) holds. For (1)-( 2), we also compute the energy of the vibrational field ´1 i ˆRn σ ´ψ0 pu 0 u 1 ´u1 u 0 q `ψ1 pu 1 u 0 ´u0 u 1 q ¯dz " ˆRn σ `|u 0 | 2 B t ψ 0 `|u 1 | 2 B t ψ 1 ˘dz `2pA 0 ´A1 qImpu 0 u 1 q.

Gathering these identities, we arrive at [START_REF] Colin | Instability of standing waves for a system of nonlinear Schrödinger equations with three-wave interaction[END_REF].

i d dt u 0 d dt u 1

 01 ptq " u 0 ptq ´u1 ptq `u0 ptq ˆRn σpzqψ 0 pt, zq dz, i ptq " u 1 ptq ´u0 ptq `u1 ptq ˆRn σpzqψ 1 pt, zq dz, (1) coupled to the wave equations ˆ1 c 2 B 2 tt ´∆˙ψ 0 pt, zq " ´σpzq|u 0 ptq| 2 , ˆ1 c 2 B 2 tt ´∆˙ψ 1 pt, zq " ´σpzq|u 1 ptq| 2 .

Figure 1 :`|Btψ j | 2 c 2 `

 12 Figure 1: Evolution of the "Wave contribution" 1 4 ř 1 j"0 ´Rn `|Btψ j | 2 c 2 `|∇ψ j | 2 ˘dz and the

Figure 3 :

 3 Figure 3: Simulation of the linearized asymptotic model (26). The circled points indicate the initial state, the cross indicate the final state. (a)-(b): stable case κ " 1.4 and τ " `1; phase portrait at T " 250 (a) and evolution of the L 2 norm (b) for a well prepared data.The solution remains in a bounded domain. Similar results can be obtained when τ " ´1 or, with κ ą 2, for the linearized problem[START_REF] Lenzmann | Uniqueness of ground states for pseudo-relativistic Hartree equations[END_REF]. (c)-(d): κ " 1.4 and τ " `1 with ill prepared data; phase portrait at T " 100 (c) and evolution of the L 2 norm (d); the L 2 norm of the solution grows linearly. (e)-(f): instable case κ " 2.4 and τ " `1; phase portrait at T " 50 (e) and evolution of the L 2 norm (f)

Figure 4 :

 4 Figure 4: Simulation of the non linear asymptotic model: phase portrait at T " 100, with κ " 1.4 and τ " ´1 (a), with κ " 1.4 and τ " 1 (b), with κ " 2.4 and τ " 1 (c). The circled points indicate the initial state, the cross indicate the final state

,

  |M pV q| ď |Rpθ ˚pV qqV ´X˚| `|ΛpV qX 2´κ | ď 2ǫ, |apV q| ď |M pV q| ď 2ǫ, | M pV q| ď |M pV q| `|apV q| ď 4ǫ.

Lemma 4 . 2

 42 Let µ ą 0. Then, we have lim BÑ0 ˘P p´µ, Bq " P.V.

Figure 5 :

 5 Figure 5: Numerical identification of the zeros of F for several values of the wave speed c (κ " 0.5604 and τ " ´1). The cross on the horizontal axis indicates the coordinates corresponding to the eigenvalue of the asymptotic problem.

Figure 6 :

 6 Figure 6: Graph of the poynomial function z Þ Ñ P pzq for several values of κ (κ P t2.01, 2.1, 2.3, 2.4, 2.5u

PFigure 7 :

 7 Figure 7: Simulation of the linearized coupled model: phase portrait at T " 100, for κ " 1.1 with τ " ´1 (a), with τ " 1 for well-prepared initial data (b), with τ " 1 for ill-prepared initial data (c), and with κ " 2.0688, τ " 1 at T " 150 for well-prepared initial data (d). The circled points indicate the initial state, the cross indicate the final state

Figure 8 :

 8 Figure 8: Simulation of the coupled model: phase portrait at T " 700, with τ " `1 (a, c, e), with τ " ´1 (b, d, f), and several values of κ: κ " 0.193 for (a, b), κ " 1.58 for (c, d), κ " 2.42 (e, f). The circled points indicate the initial state, the cross indicate the final state

  ApXptqq ´ApV s q. This contradicts the stability assumption tXptq, t ě 0u Ă U ǫ which implies that ApXptqq remains bounded. Indeed, |ApXptqq| ď |X 2 | |Rpθ ˚pX ptqqqXptq| ď |X 2 |p|Rpθ ˚pX ptqqqXptq ´X˚| `|X ˚|q ď |X 2 |pǫ `|X ˚|q.

	.
	Consequently, there holds
	Cǫ ˚t ď ApXprqq dr " 4 Stability analysis for the coupled system (1)-(2) ˆt 0 Pprq dr " ˆt 0 d dt
	4.1 Linearized equations
	4.1.1 Linearization about the solution (23)

  This allows us to estimate the resolvent pλ ´Lq ´1. Lemma 4.12 Let λ " a `ib P C, with a 0, |b| ě ? 3|a|. Then, there exists a constant C a ą 0 such that the quantities S 0 , S 1 in (55) satisfy|S j | ď C a }X 1 } H .Proof. The only difficulty is to estimate the integrals involving σ. Owing to Lemma 4.11 and the Cauchy-Schwarz inequality, we obtain } L 2 pR n q .

	where we have used that, by assumptions on a, b, | cospθq| " |a| ? a 2 `b2 ď 1 2 . It thus implies ˇˇ1 λ 2 `ǫ ˇˇď ? 2 r 2 , ˇˇλ λ 2 `ǫˇˇˇď ? 2 r .
	ˇˇλ c 2 ˆRn 0 Similarly, we get p σpξq x ϕ 1 0 pξq pλ 2 {c 2 `|ξ| 2 q|ξ| dξ p2πq n ˇˇď ? 2 |λ| ˆRn |p σpξq| | x ϕ 1 dξ 0 pξq| |ξ| p2πq n ď ? 2 |λ| ˆˆR n |p σpξq| 2 |ξ| 2 dξ p2πq n ˙1{2 ˆˆR n ď ? 2κ |λ| }ϕ 1 0 } L 2 pR n q ď ? κ ? 2|a| }ϕ 1	| p ϕ 1 0 pξq| 2 dξ p2πq n	˙1{2
	|b| ě `ǫˇˇˇď ? ˇˇλ λ 2 2 ? 3|a|, then, for any ǫ ě 0 we ˇˇλ ˇˇ" ˇˇ1 ˇˇ. a 2 `b2 , so that ? 2 |λ| 2 , ˇˇ, ? ˇˇď Proof. We write λ " re iθ with r " have ˇˇ1 λ 2 `ǫ ˇˇ1 ˇˇ1 |λ| . ˇˇ1 c 2 ˆRn p σpξq x ̟ 1 0 pξq λ 2 {c 2 `|ξ| 2 dξ p2πq n ˇˇď ? 2 |λ| 2 ˆRn |p σpξq| | x ̟ 1 dξ 0 pξq| p2πq n ? 2 ď |λ| 2
	λ 2	`ǫˇˇˇ"	e iθ r 2 `e´iθ ǫ	λ 2	`ǫ	e iθ r `e´iθ ǫ{r
	Now, we re-organize					
	|e iθ r 2 `e´iθ ǫ| 2 " r 4 `ǫ2 `2r 2 ǫ cosp2θq " pr 2 ´ǫq 2 `4r 2 ǫ cos 2 pθq ě pr 2 ´ǫq 2 2 `r4 `ǫ2 2 ě r 4 , 2 |e iθ r `e´iθ ǫ{r| 2 " r 2 `ǫ2 r 2 `2ǫ cosp2θq " ´r ´ǫ r ¯2 `4ǫ cos 2 pθq ě pr ´ǫ{rq 2 2 `r2 `ǫ2 {r 2 2 ě r 2 2 .

Let λ " a `ib P C, with a and b reals. If

  Next, we have }X ˚´pRpθ ǫ qS ˚, W ˚q} ď Ξ ǫ `}Y pT ǫ q} ď 2p1 `C1 qǫ, which implies that lim ǫÑ0 θ ǫ " 0. Hence, a basic Taylor expansion tells us thatX ˚´pRpθ ǫ qS ˚, W ˚q " p´θ ǫ J S S ˚, 0q `ǫr ǫ , lim pT ǫ q `X˚´p Rpθ ǫ qS ˚, W ˚q|Y K ˚˘ě ˇˇδe λ˚Tǫ `Y˚| Y K ˚˘``Y pT ǫ q ´δe λ˚Tǫ Y ˚|Y K ˚˘´θ ǫ `pJ S S ˚, 0q|Y K ˚˘Possibly at the price of choosing a smaller ǫ, coming back to (57), we can make both quantities ˇˇ`Y pT ǫ q ´δe λ˚Tǫ Y ˚|Y K ˚˘ˇď › › `Y pT ǫ q ´δe λ˚Tǫ Y ˚› › }Y K ˚} and ǫ }Y K ˚} ě ˇˇδe λ˚Tǫ `Y˚| Y K ˚˘ˇ´ˇ`Y pT ǫ q ´δe λ˚Tǫ Y ˚˘|Y K

						ǫÑ0	}r ǫ } " 0.
	Now, we are going to use the following splitting of the initial perturbation
	Y ˚"	`Y˚| pJ S S ˚, 0q	˘pJ S S ˚, 0q }pJ S S ˚, 0q} 2	`Y K ˚,	`Y K ˚|pJ S S ˚, 0q ˘" 0.
	The Cauchy-Schwarz inequality yields	
	Ξ ǫ }Y K ˚} ě	ˇˇ`Y			˚loooooooomoooooooon	`ǫ`r	ǫ |Y K
						"0
						ˇˇ`r	ǫ |Y K ˚˘ˇď ǫ}r ǫ }}Y K ˚}
	smaller than ǫ 4 }Y K ˚}2 . It follows that	
	Ξ ǫ ˚˘ˇ´ǫˇ`r δe a˚Tǫ }Y K ˚}2 ´ǫ 2 }Y K ˚}2 " ǫ 2 }Y K ˚}2 .	ǫ |Y K ˚˘ě

  1 2 d dt ˆRn ´1 c 2 p|B t ψ 0 | 2 `|B t ψ 1 | 2 q `|∇ψ 0 | 2 `|∇ψ 1 | 2 ¯dz `|u 0 | 2 B t ψ 0 `|u 1 | 2 B t ψ 1 ˘dz.Finally, we compute the evolution of the interaction energyd dt ˆRn σpψ 0 |u 0 | 2 `ψ1 |u 1 | 2 q dz " ˆRn σ `|u 0 | 2 B t ψ 0 `|u 1 | 2 B t ψ 1 ˘dz | 2 B t ψ 0 `|u 1 | 2 B t ψ 1 ˘dz

	"	ˆRn	" ´1 c 2 B 2 tt ψ 0 ´∆ψ 0 ¯Bt ψ 0	`´1 c 2 B 2 tt ψ 1 ´∆ψ 1 ¯Bt ψ 1	*	dz
	"	´ˆR n	σ `ˆR n `ˆR n	σψ 0 σψ 1	ˆu0 i ˆu1 i	pA 0 u 0 ´u1 q pA 1 u 1 ´u0 q	´u0 i ´u1 i	pA 0 u 0 ´u1 q ˙dz pA 1 u 1 ´u0 q ˙dz
				"	ˆRn	σ `|u 0	

J X ´κ " ´X0 , J X 2τ ´κ " ´X2τ .

B Proof of Lemma 4.2.

We extend Σ by 0 on p´8, 0q and we assume that Σ is supported in r´R `?µ, R `?µs, for some 0 ă R ă 8. Extending the discussion to a function with fast decay at infinity follows from a standard density argument. We start by defining the principal value P.V.