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Abstract

Tasks in psychophysical tests can at times be repetitive and cause individuals to lose

engagement during the test. To facilitate engagement, we propose the use of a humanoid

NAO robot, named Sam, as an alternative interface for conducting psychophysical tests.

Specifically, we aim to evaluate the performance of Sam as an auditory testing interface,

given its potential limitations and technical differences, in comparison to the current laptop

interface. We examine the results and durations of two voice perception tests, voice cue

sensitivity and voice gender categorisation, obtained from both the conventionally used lap-

top interface and Sam. Both tests investigate the perception and use of two speaker-specific

voice cues, fundamental frequency (F0) and vocal tract length (VTL), important for charac-

terising voice gender. Responses are logged on the laptop using a connected mouse, and

on Sam using the tactile sensors. Comparison of test results from both interfaces shows

functional similarity between the interfaces and replicates findings from previous studies

with similar tests. Comparison of test durations shows longer testing times with Sam, primar-

ily due to longer processing times in comparison to the laptop, as well as other design limita-

tions due to the implementation of the test on the robot. Despite the inherent constraints of

the NAO robot, such as in sound quality, relatively long processing and testing times, and

different methods of response logging, the NAO interface appears to facilitate collecting sim-

ilar data to the current laptop interface, confirming its potential as an alternative psychophys-

ical test interface for auditory perception tests.

Introduction

In social robotics, the main mode of communication with humans is speech [1]. In this study,

we take advantage of the speech and communication tools on a low-cost humanoid robot,

NAO, to conduct psychophysical tests on voice perception. From this implementation, three

points of discussion can be derived: can a humanoid robot be used as an alternative interface

to a computer implementation for psychophysical testing?, what is the perception people have
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towards having a social robotic agent as an alternative interface and conduct clinical tests?,

and how does the presentation of different voices, either natural or synthesised, potentially

influence communication between a human and robot? The factors that influence these differ-

ent components are vast; e.g., personality, education [2], background [3], gender [4] etc., and

while these factors may have multiple interrelated connections between them, the focus of the

current manuscript is on the first component; can a humanoid NAO robot be effectively used

as a psychophysical testing interface?

Speaker-specific voice cues, such as fundamental frequency (F0), related to the perceived

pitch of a voice and determined by glottal pulse rate, and vocal-tract length (VTL), related to

the speech spectral profile and the size of the talker [5, 6], are two key characteristics in differ-

entiating voices and identifying a speaker’s voice gender [7–9]. Individuals with normal hear-

ing are sensitive to voice cues, and can perceive very small differences, around 1–2 semitones

[8, 10–12]. In multi-talker situations, the categorisation of voice based on gender may assist

one in identifying and focussing on a voice, especially during simultaneous talking [7]. Fur-

thermore, the categorisation of voice gender is not only important from a medical perspective,

such as in the advancing and developing of devices utilised by hard-of-hearing individuals, but

also in the context of social robot implementations where the perceived gender of either a nat-

ural or synthesised voice presented by a robot can influence its effectiveness, depending on its

application. This is explored in an extensive meta-analysis by [13]. When categorising the per-

ceived gender of a voice, normal-hearing listeners use both voice cues effectively [7, 8, 11, 14].

In contrast, hard-of-hearing users of auditory prosthetic devices; e.g, cochlear implants, have

difficulty differentiating voice cues [8] and seem to rely heavily on F0 differences for voice gen-

der categorisation while being unable to make use of VTL differences [7]. This example indi-

cates much is still to be uncovered regarding the perception of voice and speech, especially

with hearing devices, to fully understand the abilities and limitations of voice perception, and

to accordingly improve performance of augmentative devices, such as hearing aids and

cochlear implants.

In investigating voice and speech perception, the psychophysical tests are often long and

repetitive to ensure data reliability [15–17]. Establishing and maintaining engagement and

focus during such studies can be a challenge for all participants, but also especially for individ-

uals with relatively short attention spans such as children [18, 19], or listeners with limited

hearing abilities, who also often happen to be older individuals [20]. These populations are

often understudied for voice perception, perhaps partially due to such challenges. Voice per-

ception in children and younger and older adults with hearing loss has mostly recently started

to be investigated [12, 21, 22].

The standard setup for auditory psychophysical tests involves a computer interface used for

both the presentation of stimuli and collection of responses, which can be recorded in audio or

through a simple interaction involving mouse clicks, keyboard entry or similar. To help with

potential attention and engagement issues and to maintain good quality of test results, com-

puter interfaces are at times further modified to include cartoons, cartoon characters, or ani-

mations [12, 23, 24]. In this study, as a new alternative psychophysical test interface to the

conventional computer interface, we propose a humanoid NAO robot, which could potentially

result in the collection of sufficiently reliable measurements of perceptual performance while

doing so in an engaging manner. As suggested by [1], speech with a robot can be advantageous

in motivating and engaging users. Further supporting this, [25] have shown that between a

humanoid robot and a computer, the robot was better at retaining the attention of children

during learning tasks. The literature also shows that the physical embodiment of an agent is

preferred over its virtual counterpart, and contributes favourably to its social presence [26–

29], potentially motivating interactors to exert more effort on a given task [30, 31]. Moreover,
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the NAO robot has been used previously as an entertaining interface for the maintaining of

engagement during game-like activities for both children and adults [32]. However, a test

interface, regardless of its engagement potential, is not entirely useful if it does not produce

reliable data. As a first step towards the use of the robot as an auditory test interface, in this

study, we will be investigating the reliability aspect of the data collected via the NAO robot,

and in a separate study, the engagement based on human-robot interaction will be addressed

[33].

In the field of social robotics, one of the most frequently used humanoid robots is the NAO

from SoftBank Robotics. The use of the NAO has been suggested in the literature to facilitate

testing procedures in hearing research [34–36]. Especially in human-robot interactions, the

robot’s relatively small size, its friendly and human-like appearance, and its sociable and non-

judgemental characteristics seem to be helpful [37]. The NAO has been successfully used in

previous studies as a therapeutic interface, motivating participants to learn and interact [38–

42] (for an extensive review see [43]).

While the NAO could provide a good test interface for engagement purposes, the imple-

mentation of auditory and speech perception tests could be affected due to potential inherent

limitations of the robot, such as sound quality (due to the internal speaker and sound card

combination), non-experimental sound artefacts (due to the cooling fan and moving actuators

[44]), stimulus processing speed (for tests that require stimuli to be prepared and processed in

real-time during testing), and stimulus presentation and response logging [limited visual,

voice and speech cues due to the non-moving face of the robot and the number of sensors (11

in total)]. On the point of sound quality, literature has also shown that the loudness of sound

can be perceived differently depending on the source of the stimulus; e.g., from different loud-

speakers and headphones, distance to the loudspeaker, hardware differences between output

devices etc., despite the careful equalising between devices [45]. Furthermore, potential per-

ceptual biases could be an additional factor such as the robot’s voice being perceived as more

of a specific gender if the physical characteristics of the robot are visually perceived as that spe-

cific gender [13]. Therefore, such an interface first needs to be confirmed to reliably produce

good quality results for hearing and speech perception tests.

These experiments aim to evaluate how well the NAO would function as an auditory psy-

chophysical testing interface, given the potential limitations and differences in implementation

compared to the computer version, using tests of voice cue perception and subjective categori-

sation of voice gender.

General methods

The present study is part of the larger project Perception of Indexical Cues in Kids and Adults

(PICKA). The PICKA test battery was created by the dbSPL (for more details of the dbSPL

group see www.dbspl.nl) research group at the University Medical Centre Groningen

(UMCG) to investigate voice and speech perception in normal and impaired hearing. In addi-

tion to being part of the larger PICKA project, this study is also part of a larger study compar-

ing the results of the four PICKA tests on the laptop to a humanoid NAO robot we named

“Sam”, chosen to represent a gender-neutral name in an attempt to avoid a prior gender

assignment for the robot. The four PICKA tests are voice cue sensitivity, voice gender categori-

sation, voice emotion identification, and speech-on-speech perception. Two of these tests were

used in this study, conducted as two experiments performed one after the other in a single ses-

sion: Experiment I, voice cue sensitivity (similar to [8, 10–12]) and Experiment II, voice gender

categorisation (similar to [7, 12]). The PICKA tests can be run both in English, Dutch and

Turkish, the former of which was used in this and the larger comparative study. Until this
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study, the tests (developed in Matlab [46]) had been implemented on a laptop, some of which

have interfaces with cartoons and animations, which we used in this study for a fairer compari-

son to the robot [12]. In each experiment, tests were performed both via the laptop (identical

to that reported by [12]) and the new robot interface, Sam.

General NAO robot setup

Sam is a NAO V5 H25 humanoid robot developed by SoftBank Robotics. The body of Sam has

an Atom Z530 1.6 GHz CPU processor, 1 GB RAM, 2 GB flash memory, an 8 GB micro

SDHC card, 11 tactile sensors–three on the head, three on each hand and one on each foot–

two cameras and four ultrasound sensors. Sam has 25 degrees of freedom, enabling it to per-

form movements and actions resembling that of a human.

The operating system on Sam is the NAOqi OS, based on Gentoo Linux created by the orig-

inal developers, Aldebaran. A cross-platform NAOqi SDK (software development kit) frame-

work can be installed onto a local computer to communicate with and control Sam. The

programming languages that can be used to interact with NAO through the SDK are Python

[47], C++ [48], and Java [49].

Since the current version of the PICKA test battery was developed and designed in Matlab,

this was not compatible with Sam if it were to function as an independent interface. Therefore,

the PICKA tests were rewritten into Python, which allowed all tests and stimuli to be stored

and run directly on Sam. However, it should be noted that the processor of Sam (1.6 GHz) is

slower than the laptop (2.5 GHz); thus, from the beginning of the experiments, it was known

that the real-time local generation of stimuli would possibly result in longer durations of the

tests.

Experimental setup

The laptop used was an HP Notebook (Intel Core i5 7th gen) running Ubuntu 16.04. The

PICKA test battery was run using MATLAB 2019b. Stimuli for all tests were played through

the internal speakers and sound card of the laptop. Responses were logged using a connected

mouse to the laptop. The game-like interface with which children were previously tested [12]

was used. Although all other details of the implementation were also identical to the aforemen-

tioned study, the only exception was the use of English stimuli in the present study, differing

from the use of Dutch by [12].

For the robot setup, the stimuli for all tests were played through the internal stereo loud-

speakers located in Sam’s head and using the onboard soundcard. In both tests the tactile sen-

sors on Sam’s hands and head were used to log responses.

Participants

Thirty adults participated in both experiments; however, two participants were excluded from

data analysis due to not meeting the inclusion criteria for normal hearing, and data were ana-

lysed from 28 participants (aged 19–38; 23.6 ± 4.9 years; participants were asked with which

gender they identified, to which they could respond openly: 19 reported female, 9 reported

male). Sample size was based on a rule of thumb for human-robot interaction studies in which

it is recommended that a minimum of 25 participants are included per tested condition [50],

and an extra five participants to account for potential exclusions. Participant recruitment was

conducted between 02/2021–09/2021, and inclusion criteria were kept general to minimise

any selection bias. All participants reported English as either their native or first additional lan-

guage and having completed at least high school education. Informed consent was obtained

prior to the start of the experiment, followed by a pure-tone audiogram to confirm normal
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hearing for inclusion/exclusion [hearing thresholds > 20 dB HL at any of the audiometric

octave frequencies (250–8000 Hz) qualified for exclusion]. Regardless of the outcome of the

audiogram, the experiment was still conducted, and the inclusion/exclusion was applied before

the data analysis phase. Although this deviates from common practice for psychophysical tests,

an additional component of this study was to investigate the observed human-robot interac-

tion, which will be reported in a follow-up publication. The PICKA project protocol was

approved by the METc ethical review committee at the local university hospital (METc 2018/

427, ABR nr NL66549.042.18). Participants provided written consent for their participation

and were assigned a unique participant identifier, and the corresponding key was securely

stored; however, the authors did have access to this information as necessary. The participants

were compensated €8/hr for their participation.

General setup

The order of the interfaces (i.e., starting with the laptop or Sam) in each experiment per partic-

ipant was randomised. In a session, a break was offered to participants both between the two

experiments and between the two interfaces within an experiment. On both interfaces and for

both experiments in each session, a training phase (shorter version of the test) was first per-

formed to familiarise the participant with how the test was conducted and how their responses

were logged. After this, participants started with the actual test. During each experiment, par-

ticipants’ responses were recorded to assess performance for the specific auditory test with

each interface.

In each experiment for each test, participants were seated at a desk with either the laptop or

Sam in an unoccupied and quiet room at the university medical centre. Participants were

seated approximately one metre from the test interface; however, this varied as participants

moved to interact with Sam or the laptop. The unused interface was placed outside the partici-

pants’ line of sight.

Experiment I: Voice cue sensitivity

The voice cue sensitivity test assesses the listener’s ability to detect the smallest perceivable F0

or VTL differences (just noticeable differences; JNDs) when applied to a speaker’s voice (based

on methods by [8]).

Stimuli

To prepare the stimuli, consonant-vowel (CV) syllables were spliced from existing consonant-

vowel-consonant meaningful English words from the Chear Auditory Perception Test (CAPT)

and Consonant Confusion Test (CCT) corpora [51, 52]. The CV tokens had a duration of

142–200 ms. Splicing of syllables (60 in total) was performed identically to methods reported

by [12]. For each trial, three spliced syllables were randomly selected and concatenated to pro-

duce a single CVCVCV syllable triplet (e.g., “bi-fo-ki”).

For this test, the focus is on the difference in F0 and VTL relative to a reference voice. Both

the F0 and VTL differences are expressed in semitones (st), an intuitive frequency increment

unit often used in music and expressed as 1/12th of an octave. The VTL is a distance, hence

related to wavelength and inversely to frequency, and can be expressed as ratios measured on a

logarithmic scale (12log2(r), where r is the expansion/contraction ratio of the formant dis-

tances [8]). This conversion of the voice cues to semitone units allows both F0 and VTL values

to be expressed in comparable units, instead of relying on the original Hertz or millimetre for

F0 and VTL, respectively. To obtain the F0 contour and spectral envelope of each syllable

when using the laptop, the analysis module STRAIGHT [53] was used. Extraction of these
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same parameters in Sam’s Python implementation of the PICKA battery was performed using

the analysis module PyWORLD [54] in place of STRAIGHT. Application of the modified

voice cue parameters was made with methods identical to [8]. The F0 of the reference voice

was set to 242 Hz. This reference F0 was the same value used by [12], despite using a different

female speaker since the language was different (average F0 across all English syllable stimuli

used was 248 Hz). This was done to make the results more comparable across studies. VTL is

related to the distribution of the formant frequencies resulting from vocal tract resonances.

Shortening of the VTL by the expansion/contraction ratio of the formant distance shifts all the

formants to a higher frequency by that same ratio. Therefore, a positive VTL change corre-

sponds to a negative formant frequency shift in semitones [4]. The VTL of the reference voice

was left unchanged from the original speaker.

All stimuli for both interfaces were calibrated to 65 dB SPL using a Knowles Electronics

Mannequin for Acoustic Research (KEMAR, GRAS, Holte, Denmark) head assembly and a

Svantek sound-pressure level metre (Type 2610, Brüel Kjær and Sound & Vibration Analyser,

Svan 979).

Laptop vs robot

Interface. The laptop game-like interface of the voice cue sensitivity test can be seen in

Fig 1, panel A. The three-syllable triplets were presented by each of the three identical aquatic

animals. The participant then clicked the animal that sounded different from the other two,

and visual feedback was given for correct responses by fish and sea creatures moving. Sam as a

Fig 1. Voice cue sensitivity test as presented via the laptop game-like interface (A) and Sam (B, C). In (A), the three octopi produce voice stimuli,

and the participant enters the different voice by clicking on the corresponding octopus. Positive feedback is given by the fish doing a circular-dance and

the octopus swimming towards and joining the other sea creatures. Feedback was presented by the outlining of the correct response in the case of

incorrect answers and; the next stimulus was played after logging of an incorrect response. The sand clock in the top right indicates progress

proportional to the number of trials completed. The illustrations were made by Jop Luberti for the purpose of the PICKA project. This image is

published under the CC BY 4.0 licence (https://creativecommons.org/licenses/by/4.0/). In (B), a response is logged by touching Sam’s left hand. The

green eyes indicate that a response can be given. In (C), visual feedback in the form of head movements is presented indicating if the response was

correct or incorrect. With Sam there is no indicator of progress.

https://doi.org/10.1371/journal.pone.0294328.g001
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test interface can be seen in Fig 1, panels B and C. Tactile sensors on Sam’s hands and head

(the three sensors on each hand and the head were grouped together as one) were used for

response logging, and visual feedback was given for correct responses by Sam nodding.

Implementation. Implementation of the test on both interfaces was fundamentally simi-

lar regarding the on-the-fly preparation of stimuli, adaptive procedure, conditions for termi-

nating blocks, visual feedback during the testing and training phases, and presentation of the

stimuli from the interface itself (i.e., no external sound cards or speakers were used). Differ-

ences in the implementation concerned the human robot interaction. This included Sam

introducing themself and the PICKA test to the participant, and Sam’s verbal encouragement

and offer of a break between blocks, detailed below.

Procedure. In each trial, the listener was presented with three acoustic stimuli, each made

up of the same triplet of different syllables, where one of the three stimuli differed either in F0

or in VTL relative to the other two reference triplets. The task for the listener was to identify

which of the three presented stimuli sounded different from the other two. The overall para-

digm followed a three-interval three-alternative forced-choice (3I-3AFC) adaptive 2-down-

1-up staircase model, converging to 70.7% correct discrimination [55]. After two consecutive

correct responses, the relative difference between the different and the reference stimuli was

reduced, making identification of the differing stimulus more difficult. After one incorrect

response, the relative difference increased, making identification of the different stimulus eas-

ier. The test comprised four runs representing four directions of voice manipulation: two for

F0 discrimination and two for VTL discrimination. Each run started with a difference of either

-12 st or + 5 st for ΔF0 (corresponding to values typical of male and child talkers, respectively)

or +3.8 or -7.0 st for ΔVTL (corresponding to values typical of male and child talkers, respec-

tively). From this starting point, the voice cue difference decreased (i.e., approached 0 st differ-

ence compared to the unmodified reference voice) after two consecutive correct responses or

increased after one incorrect response with a predetermined step size, initially set at 2 st. As

more correct responses were given, the step size was also adapted by reducing the previous

step size by a factor of
p

2, becoming exponentially smaller such that the step size approached

but never reached a 0 st voice cue difference. Although the voice cue difference increased after

an incorrect response, the step size was not modified. A reversal was defined when a single

incorrect response was given after at least two correct responses, or two correct responses were

given after at least one incorrect response. Each run ended in one of three ways: 1) if 15 conse-

cutive incorrect responses were given, 2) if a total of 150 stimuli were presented or 3) after

eight reversals had been reached. When a run ended in the latter, the JND was calculated by

averaging the difference in semitones over the last six reversals. The former two conditions

were implemented as a measure to ensure the test would not continue indefinitely, or in case

the participant could not continue with the test. However, this did not occur in any of our

experiments; all participants finished each run after the eight reversals.

Participants first familiarised themselves with the test through a training consisting of six

randomly selected practice stimuli, identical to test stimuli but performed with a larger, fixed

step size of 3 st to speed up the adaptive procedure. The syllable triplets used in the training sti-

muli were not reused in the testing phase. Following the training, the first of the four test runs

was started, the order of which (voice cue and direction) was randomised for each participant.

In both the training and testing phases on both interfaces, positive visual feedback was given to

participants. On the laptop, this was provided by the central fish turning in a circle, and the

aquatic animal representing the correct response “swimming” to a growing line of sea animals

representing previous correct responses. Although no explicit negative feedback was presented

for incorrect responses, the correct response is briefly outlined in green before continuing

with the next stimulus without any further animations. At the end of each run, a “Start” button
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was displayed to begin the next run, and the participant was allowed to take a short break

before starting the next run; however, this was not explicitly indicated to participants.

On the laptop, the three aquatic animals presented the stimuli; on Sam, specific tactile sen-

sors corresponded to the order in which the stimuli were presented: the first stimulus corre-

sponded to Sam’s right hand, the second to the head and the third to Sam’s left hand. After

each stimulus, Sam’s eyes changed colour from white to green to indicate that a response

could be given, after which the eyes returned to white. This was implemented to prevent par-

ticipants from logging their responses too early before the stimulus had finished playing. After

each response, visual feedback was presented as either a head nod if correct or a head shake if

incorrect (Fig 1, panel C). Although the addition of the explicit negative feedback differs from

the implementation of the laptop, the lack of a screen with the robot, unlike the laptop, may

make it unclear as to whether or not a participant’s response was logged without such an

explicit visual cue. To maintain engagement throughout each run, Sam autonomously encour-

aged participants to continue depending on their performance. The choice of whether or not

to provide encouragement was decided by a randomly generated number between 0 and 1. If

the number was less than some threshold, initially set at 0.1, encouragement would be pro-

vided. If the previous response was correct, Sam would say either “Keep going!” or “Doing

well.”. If the previous response was incorrect, Sam would motivate them by saying either “Give

it another go” or “Keep trying”. Every time the response was incorrect, the encouragement

threshold was increased by 0.05 until encouragement was given, after which the threshold was

reset to 0.1.

After each run, Sam asked the participant if they wanted to take a break, to which they

could verbally respond with either “yes” or “no”. If they responded “yes”, Sam would ask if

they would like to stand up and follow along in a stretch routine, to which they could again

verbally respond. If the participant chose not to take a break, the next run would start.

Data analysis

To determine if the two implementations were comparable for the voice cue sensitivity task

performance, JND thresholds from either interface were first log-transformed to convert the

data into a normal distribution, as the thresholds are always a positive value. Repeated-mea-

sures ANOVAs were performed for each voice cue, F0 and VTL, separately using the interface

the test was performed on, and the direction (negative or positive) of the vocal cue as the two

within-subjects factors (two interfaces ╳ two voice cue directions). To improve the robustness

of the data analysis, Bayesian repeated-measures ANOVAs were performed for each voice cue

using the same within subject factors mentioned above. Similar classical and Bayesian repeated

measures ANOVAs were performed to examine the effect of the interface and cue direction on

the duration of each test run.

Bayesian inferences were used in this study because we are looking for evidence that the

two interfaces are similar, and this type of conclusion cannot be reached with a classical (fre-

quentist) approach. In the frequentist approach, the p-value is the probability of obtaining

results at least as extreme as those seen in the collected data given that the null hypothesis (H0)

was true [56]. Therefore, a lack of significance is often falsely interpreted as the absence of an

effect [57], which we may be tempted to interpret as the two interfaces being equivalent. In

comparison, a Bayesian analysis allows for an alternative interpretation and reasoning of the

results through the reporting of the magnitude of evidence [i.e., the likelihood of the data

under the assumption of H0 rather than H1 (the alternative hypothesis)]. An estimate of this

evidence is presented as the Bayes’ factor, which provides the relative likelihood of the data

with respect to the null hypothesis (BF01 = H0/H1) or any other hypothesis (BF10 = H1/H0). it
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should also be noted that these two notations of the Bayes’ factor are indeed reciprocals of one

another (i.e., BF01 = 1/BF10). Bayesian analyses were performed using the statistical software

JASP [58], which categorises the evidence based on the Bayes’ factor as shown in Fig 2. Further

discussion on classical vs Bayesian inference is presented in the General Discussion (also see

[56] for a detailed introduction to the Bayesian method).

Organisation of the data was performed using the data analysis software R [59], and JASP

was used for all statistical analyses. Bayesian analyses for both vocal cues used the default priors

suggested by JASP: a uniform model prior with r scale fixed effects = 0.5, r scale random effects
= 1 and r scale covariates = 0.354 and enforced principle of marginality on the fixed effects. All

processed data is openly available at [60].

Results

Fig 3 depicts JND thresholds obtained with each interface and previously reported thresholds

in previous studies [6, 8]. Laptop F0 JNDs [2.453 ± (standard deviation of) 2.130] were on

average 1.212 st larger than Sam’s F0 JNDs (1.241 ± 1.146), and laptop VTL JNDs

(1.828 ± 1.124) were on average 0.450 st larger than Sam’s VTL JNDs (1.378 ± 0.725). Results

of the repeated measures ANOVA (main factor of test interface with two levels; laptop, robot)

showed no statistically significant difference between the JND thresholds for F0 due to the

interface [F(1, 28) = 4.170, p = 0.051, η2p = 0.130], nor was there a cue direction effect [F(1,28)

= 0.035, p = 0.852, η2p = 0.130]. Similarly, there was no significant effect of the interface on

VTL vocal cue [F(1,28) = 0.032, p = 0.859, η2p = 0.001]; however, there was a significant effect

due to cue direction [F(1,28) = 5.337, p = 0.028, η2p = 0.160]. Results showed no significant

effect for an interaction between the interface and the direction of the F0 cue [F(1,28) = 0.005,

p = 0.946, η2p = 1.65e-4], but indeed a significant effect for an interaction between the interface

and VTL voice cue direction [F(1,28) = 5.578, p = 0.025, η2p = 0.166]. However, following a

post-hoc Bonferroni-Holm correction test, the significant effect was only between the direc-

tions of the VTL cues on the laptop, not between the two interfaces.

The average duration of the voice cue sensitivity test (including all 4 runs) was 19 ± 2.7 min

on the laptop and 29 ± 3 min on Sam. These times are exclusive of breaks taken by partici-

pants. On average, most participants did not take a break when using the laptop, whereas an

additional two minutes on average was due to breaks when using Sam. Repeated measures

ANOVA (main effect of test interface with two factors: laptop, robot) showed that Sam took

significantly longer to complete in comparison to the laptop for the F0 vocal cue [F(1,28) =

52.964, p< 0.001, η2p = 0.654], but cue direction had no effect [F(1,28) = 1.472, p = 0.235, η2p

Fig 2. Classification scheme for the Bayes factor (BF01) by JASP.

https://doi.org/10.1371/journal.pone.0294328.g002
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= 0.050]. Similarly, the VTL vocal cue showed that Sam took significantly longer to complete

the test [F(1,28) = 52.670, p< 0.001, η2p = 0.653], but no effect due to cue direction [F(1,28) =

3.603, p = 0.068, η2p = 0.114]. For both vocal cues, there was no effect on the duration due to

an interaction between the interface and the direction of the cue [F0: F(1,28) = 2.524,

p = 0.123, η2p = 0.083; VTL: F(1,28) = 0.026, p = 0.873, η2p = 9.232e-4].

Bayesian repeated measures ANOVAs showed strong evidence that Sam took longer to

complete the test for the F0 vocal cue (BF10 = 2.133e+5), and anecdotal evidence that cue

direction did not affect the duration of the F0 test runs (BF10 = 0.388). Bayesian results also

showed that Sam took longer to complete the test for VTL vocal (BF10 = 1.652e+5), and

anecdotal evidence that the cue direction also affected the duration (BF10 = 1.035). Further-

more, there was anecdotal evidence of an interaction between the interface and cue direc-

tion for the F0 vocal cue (BF10 = 1.120), and moderate evidence of no interaction for the

VTL vocal cue (BF10 = 0.261). Fig 4 depicts the durations to complete each of the four test

runs in the present experiment, as well as a comparison to data reported by [12]. Data

reported by [11] is excluded from the analysis of test duration as they had used a different

interface for the test (i.e., they did not use the same game-like interface as used in this exper-

iment or by [12]).

Fig 3. Comparison of just-noticeable difference (JND) thresholds from the laptop, Sam, and previous studies, (left to right in each panel) shown

for F0 and VTL in left and right panels, respectively. Boxes indicate the range, quartiles, and median thresholds. Lower thresholds indicate better

performance in the voice cue sensitivity test. Yellow = Laptop, maroon = Sam, cyan = normal hearing adult data from [11], red = normal hearing adult

data from [12].

https://doi.org/10.1371/journal.pone.0294328.g003
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Discussion

In Experiment I, we implemented a test of voice cue sensitivity on Sam to compare JND mea-

surements with the current laptop game-like interface in order to evaluate the viability of using

a NAO robot interface for auditory psychophysical tests. Results for the voice cue sensitivity test

showed no statistically significant difference in JND thresholds between the two interfaces con-

cerning both F0 and VTL. For both voice cues, the thresholds on Sam were overall either

smaller or similar to those obtained on the laptop, meaning that there was no indication for the

performance being worse or the responses provided being less accurate when using Sam. This

is a confirmation that whatever technical limitations Sam may have that could impact sound

quality or sound processing, did not negatively affect the JND thresholds for this test with the

young adult, normal-hearing population tested, compared to a laptop implementation.

Interpretation of the Bayesian analysis results is presented as follows. Bayesian analyses

showed that F0 JND thresholds were 1.6 times more likely to result in a non-zero difference

between the means; however, this evidence is only anecdotal; any variation in the means

between the two interfaces is likely due to the sample size. In comparison, Bayesian analyses

showed that the VTL JND thresholds were 3.3 (reciprocal of BF10 = 0.304) times more likely to

result in a zero difference between the means. Regarding the direction of the voice cue, Bayes-

ian analyses showed that for F0, results were 5.3 times more likely to have no effect on the

overall JND threshold, and 1.1 times more likely to affect the VTL JND threshold. With respect

to interactions between the direction of the voice cue and the interface, the interaction was 3.8

Fig 4. Box plot depicting the duration to complete the four test runs of the voice cue perception task, as well as a comparison to data reported by

[12]. Data reported by [12] only considered two of the test conditions: -VTL and +F0.

https://doi.org/10.1371/journal.pone.0294328.g004
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times more likely to have no effect on the F0 JND threshold, but 4.6 times more likely to affect

the VTL JND threshold.

In addition to comparing the results of the voice cue sensitivity test between the interfaces,

when comparing the current results to those of previous studies using similar procedures, it

was also observed that the F0 JNDs on Sam when using English stimuli were not significantly

different from those reported by [12] [t(51.45) = 1.33, p = 0.189, Cohen’s d = 0.322; BF10 =

0.39] nor from those reported by [11] [t(34.795) = -1.404, p = 0.17, Cohen’s d = 0.500; BF10 =

0.88], both of whom had used Dutch stimuli. In comparison, the F0 JNDs from the laptop

were found to be statistically different from the data reported by [12] [t(70.953) = 4.777,

p< 0.001, Cohen’s d = 0.940; BF10 = 5.82], but were not statistically different from the data

reported by [11] [t(49.096) = 0.910, p = 0.367, Cohen’s d = 0.260; BF10 = 0.38]. A closer inspec-

tion of the data reveals that a few participants obtained much higher thresholds on the laptop

in comparison to their matched conditions on Sam, causing the expanded threshold range

seen in Fig 3. The three participants with the largest deviation between the two interfaces,

listed in Table 1, started the experiment on Sam; thus, it is unlikely that a learning effect could

have caused the observed variations. It is possible, however, that after performing the test on

Sam, participants were fatigued and were not as attentive to the task when performing it for

the second time on the laptop. Furthermore, because the starting interface was balanced across

all participants, the absence of this asymmetry may suggest that using Sam is motivational

enough to combat the effects of fatigue when performing the test for a second time with Sam.

Since the same stimuli were used on both interfaces, ideally, it is expected that any variation

between the interfaces would be identical. However, based on the t-test and effect size compar-

ing the JNDs obtained on the laptop with those obtained by [12], it is likely that the large dis-

crepancies seen in Table 1 could be related to the quality of the speakers on either interface, as

their respective built-in speakers were used, and not external higher quality speakers. In addi-

tion, the procedure used by [12] made use of headphones instead of the loudspeakers; how-

ever, speakers were used in this study for consistency with the speakers of Sam. Moreover,

both studies by [11, 12] included native Dutch speaking participants, and thus could be more

selective with their inclusion criteria. In comparison, also being in the Netherlands and con-

ducting the tests in English, participants included in the present study were only required to

have a good understanding of English and did not have to be native speakers. Although the

speakers on the laptop may have been of poorer quality compared to what is typically used in

auditory research, the consistency in results obtained on Sam with those obtained in previous

Table 1. Comparison of largest participant threshold discrepancies between the laptop and Sam. NHA = normal

hearing adult.

JND Threshold (st)

Participant ID Voice Condition Laptop Sam

NHA013 +F0 5.82 2.99

NHA023 +F0 6.45 1.05

-F0 5.66 1.79

NHA027 +F0 8.42 1.09

Comparing the VTL thresholds obtained on Sam and the laptop with previously reported data showed no significant

difference between Sam and data reported by [12] [t(43.15) = 1.23, p = 0.23, Cohen’s d = 0.25; BF10 = 0.39], but

indeed a significant difference compared to [11] [t(51.42) = -2.14, p = 0.037, Cohen’s d = -0.51; BF10 = 2.03]. There

was also a significant difference between VTL thresholds obtained on the laptop and [12] [t(71.143) = 3.67, p< 0.001,

Cohen’s d = 0.60; BF10 = 1.66]; however, there was no significant difference with [11] [t(80.152) = 0.59, p = 0.56,

Cohen’s d = 0.11; BF10 = 0.26].

https://doi.org/10.1371/journal.pone.0294328.t001
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studies does show that the JND test is robust not only across languages, but also regarding

implementations and procedures.

It was seen that the duration of the test on Sam was longer than on the laptop; however, the

duration of the test did not differ significantly between Sam and from durations reported by [12]

[F0: t(39.48) = -1.206, p = 0.235, Cohen’s d = -0.336, BF10 = 0.482; VTL: t(30.294) = 0.794, p =
0.433, Cohen’s d = 0.246, BF10 = 0.394]. A similar comparison regarding the duration could not

be made with data reported by [11] as they had used a different interface than that used in this

experiment (i.e. they did not use the game-like version of the PICKA test battery). To investigate

the longer running time on Sam, we have also inspected the number of trials on each interface.

On average across all runs, the number of trials to complete in a block was 37 ± 8 on the laptop,

and 42 ± 8 on Sam. Although more trials were needed on average to achieve the JND threshold

on Sam [t(115) = 4.113, p< 0.001, Cohen’s d = 0.561, BF10 = 231.775], this difference does not

fully explain the overall longer duration of the test. A perhaps more important factor that likely

influenced the duration of the test was the processing time of the stimuli. The average processing

time for a single stimulus was around two seconds on Sam, and one second on the laptop. This is

a limitation of Sam’s hardware, and it is expected that newer models of the NAO could solve this

processing discrepancy. Despite the longer testing duration on Sam, both including and exclud-

ing the breaks, Sam was still able to collect comparable JND thresholds to the laptop interface.

One could argue that a more powerful humanoid robot, such as Pepper (another of Aldebar-

an’s robots), could be used in place of Sam to compensate for the processing delays. While this

is technically true as both robots use (nearly) identical software platforms, are designed to por-

tray a friendly agent, and have been used in various HRI scenarios such as engagement and

social robot application (for a review please see [37]), Sam offers other advantages over Pepper

for our specific application, most notably, its small size and lower cost. Sam’s smaller size makes

it easily transportable to various testing locations. In addition, should anything go awry, a

smaller robot minimises the risk of potential harm to users, especially in smaller testing loca-

tions such as clinical rooms. A simpler solution to the low processing power of Sam could be

the offline generation of all JND stimuli through simulations, and then use the pre-generated

stimuli during testing. However, this could introduce a new problem of storage space on Sam.

The incorporation of a stronger processor that could be attached to Sam as a type of “backpack”

[61] could be another solution to the processing capacity of Sam. Instead of replacing Sam’s

central processing unit (CPU), an additional CPU could be used in parallel to perform the

more process intensive tasks. There are a number of ways in which processing time for the JND

stimuli could be reduced, all of which could be thoroughly explored as future improvements.

It should also be considered that the inclusion of a dedicated break offered to participants

after each test block could potentially have an effect on the performance results. It has been

shown in literature that the duration one interacts with an agent, the perception they have

towards the agent may change [62, 63]. [62] has shown how over the course of an interaction,

perceptions of warmth and competence of a virtual agent can change, whereas [63] has shown

how during an interaction with a robot, positive interactions tend to result in more favourable

perceptions of the robot. Following this, there is a possibility that the inclusion of the follow-

along stretch routine during the break may have increased the likeability of Sam, potentially

motivating participants to exert more effort in proceeding test blocks.

Experiment II: Voice gender categorisation

The voice gender categorisation test investigates the subjective categorisation of a speaker’s

expressed gender in their voice, and how voice cues and manipulations can influence the per-

ception of voice gender. This test is based on the methods by [7, 12].
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Stimuli

To investigate this voice cue influence, pre-generated stimuli from English consonant-vowel-

consonant spoken words taken from the same corpora as in Experiment I (CAPT and CCT)

were used. Each stimulus presented during the test was randomly chosen from a limited list of

words: “bike”, “pool”, “watch” and “hat”; which were altered in F0 and VTL. Similar to meth-

ods described by [12], stimuli were root-mean equalised, after which stimuli were modified

using the STRAIGHT Matlab module on the laptop or PyWORLD on Sam. F0 and VTL were

manipulated independently from each other, and in cases where both cues were altered in a

single stimulus, F0 alterations were first applied followed by VTL alterations. When no alter-

ations were made (F0 = 0.0 st and VTL = 0.0 st), the original stimulus was still resynthesized to

account for any potential synthesis artefacts. Three levels of modifications were used for each

voice cue in all stimuli, identical to that used by [12]; decreasing F0 from 0.0 to -6.0 st and

-12.0 st and increasing VTL from 0.0 to +1.8 st and +3.6 st. In addition, combinations of these

voice cues were used for each word. This resulted in nine voice alterations for each word, pro-

ducing 36 pre-processed stimuli (nine voice conditions ╳ four words) for the block. To famil-

iarise participants with the test, the same eight example words were used for all participants,

taken from the 36 stimuli at the two widest vocal manipulation conditions (four words ╳ two

widest voice conditions–F0 = 0.0 st, VTL = 0.0 st, and F0 = -12.0 st, VTL = +3.6 st).

Laptop vs. robot

Interface. For the voice gender categorisation test on the laptop’s game-like interface,

when the stimulus was presented, a cartoon image of either a male or female was shown on an

animated television screen. Participants had to agree or disagree if the presented voice gender

matched the image gender. When performing the test on Sam, only the tactile sensors on the

hands (the three sensors on each hand grouped together as one) were used to log responses.

Implementation. Similar to Experiment I, the core paradigm of the voice gender categori-

sation test was similar between the two interfaces, and stimuli were presented without the use

of external sound cards or speakers. Sam provided an introduction and explanation of the test

before the training phase, similar to Experiment I. Unlike Experiment I, however, stimuli were

pre-processed for both interfaces. Additionally, no visual feedback was provided to partici-

pants from either interface, as the voice gender categorisation was a subjective choice; nor was

there any encouragement provided or any breaks offered due to the shorter duration of the

test in comparison to Experiment I.

Procedure. The test consisted of one block in which all 36 aforementioned stimuli were

presented in a randomised order. Each stimulus was presented once, after which the listener

had to decide on whether the voice sounded male or female. While a person’s expressed gender

is more flexible and wider than these two categories [64], for methodological simplicity and to

enable a comparison to previous work, we have followed the previous procedures [7, 12]; and

as a result, participants were only given the options of these two categories.

Participants were first presented with a training phase consisting of the eight example

words to familiarise themselves with the task procedure. Thereafter, the data collection was

started. An example of the test interface on the laptop is shown in Fig 5. In both training and

data collection, there was no visual feedback provided, as the voice gender categorisation is a

subjective choice; and, therefore, there was no (in)correct categorisation. Since the test con-

sisted of one block, only a break was offered between the two interfaces.

The laptop game-like version required participants to click on either a green tick to indicate

that the presented voice gender and the picture gender matched, or a red cross if they did not

match. In comparison, Sam’s hands corresponded with either a male or female categorisation,
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randomising the hand-gender pair after each stimulus was presented. The purpose of such ran-

domisation was to avoid a bias for participants continuously touching the same hand, whilst

bringing their attention back to Sam. After the randomisation, Sam indicated which hand cor-

responded with which gender before allowing the participant to log their response. This was

done by Sam lifting and rotating its hand outward before returning it to its default position on

its legs. Although this differs from the laptop implementation, the latter does also include a

degree of randomisation when the image of a male or female person is randomly presented.

An increase in the test duration as a result of this method of indicating the gender-hand pair

was taken into account; however, based on the relatively short duration of this test from the lit-

erature, it was presumed this would not heavily affect the average duration of the test. After

Sam indicated the gender-hand pair, visual cues were provided by changing the colour of

Sam’s eyes (similar to Experiment I): from white to green indicated a response could be given,

back to white indicated the response had been logged.

Data analysis

Analysis of the categorisations made during the voice gender perception test was performed

similarly to that carried out by [12], whereby cue weights were calculated as a perceptual

weighting of F0 and VTL for participants’ categorisation judgments, effectively splitting cate-

gorisations as a function of the two voice cues. Calculations were made by first normalising F0

and VTL relative to the reference speaker’s voice and were defined as follows: δF0 = -ΔF0/12–

0.5, δVTL = ΔVTL/3.6–0.5, thus making the two voice cues functionally equivalent. This

resulted in the reference female voice, which had an ΔF0 = 0.0 st, a ΔVTL = 0.0 st, correspond-

ing to a δF0 = -0.5 and a δVTL = -0.5; and the male-sounding voice with an ΔF0 = -12.0 st,

ΔVTL = +3.6 st, corresponding to a δF0 = +0.5 and a δVTL = +0.5. Using a mixed-effects logis-

tic regression model with slopes for δF0 and δVTL per participant, the coefficients for each

participant could be extracted, in lme syntax: response ~ (δF0 + δVTL|participant). These coef-

ficients provide a prediction on a logit scale relative to the normalised δF0 and δVTL ranges,

which can subsequently be converted into “Berkson” units (Bk) per semitone so that they

Fig 5. Voice gender categorisation as presented on the laptop. After each stimulus was presented, the image on the

TV would change to show either a male or female person and participants would either agree (clicking the green tick)

if the voice matched the new image or disagree (clicking the red cross) if the two did not match in their subjective

opinion. The illustrations were made by Jop Luberti for the purpose of the PICKA project. This image is published

under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1371/journal.pone.0294328.g005
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correspond to a log2 odds ratio per semitone [12, 65]. Using the calculated Bk units and cue

weights (Bk units per semitone difference) of the models. Paired samples student t-tests were

performed to test for differences between the two interfaces. As with Experiment I above,

Bayesian paired samples t-tests were also performed to improve the robustness of the statistical

results. Bayesian analyses were carried out using the default Cauchy prior (? = 0.707) and a

null hypothesis that the means between the two interfaces were equal.

Results

Fig 6, panel A depicts the distribution of the cue weights for each interface and panel B the

contribution of F0 and VTL on the voice gender categorisation. The colour of each square

indicates the frequency of categorisation based on the influence of VTL difference (dVTL) and

F0 difference (dF0). Squares coloured toward the yellow side of the spectrum indicate more

Fig 6. Panel (A) is a boxplot depicting the overall cue weightings (Bk/st) of F0 and VTL for voice gender categorisation, shown separately for the two

interfaces and in comparison, to previously reported data by [12]. Boxes show quartiles, and the line in each box shows the median cue weights. The

dots indicate outliers’ cue weights. Panel (B) is a mapping of the voice gender categorisation judgments as a function of the contributions of ΔF0 and

ΔVTL voice cue differences (dF0 and dVTL, respectively) on voice gender categorisation for each interface, and a comparison to previous data from

[12].

https://doi.org/10.1371/journal.pone.0294328.g006
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female categorisations, whilst squares toward the dark blue side indicate more male categorisa-

tions. Results of the paired student t-tests showed a statistically significant difference between

the means of the intercepts [t(28) = 2.549, p = 0.017, Cohen’s d = 0.455], but no significant dif-

ference between the means of the cue weights for the F0 [t(28) = -0.952, p = 0.349. Cohen’s d =

-0.177] and VTL [t(28) = 0.53, p = 0.6, Cohen’s d = 0.135] voice cues.

Bayesian analyses between the two interfaces showed strong evidence that the two interfaces

were different with regards to the means for the intercepts (BF10 = 43.21), but no difference

between the means for the cue weights of the F0 model (BF10 = 0.298), or the cue weights of

the VTL model (BF10 = 0.225). Bayesian results also showed anecdotal evidence for a difference

in gender categorisation between the two interfaces (BF10 = 1.248).

The average duration to complete the test was 3 min ± 17 s on the laptop, and 5 min ± 49

sec on Sam. Comparison of the duration to complete the test between the two interfaces

showed that Sam took significantly longer to complete [t(28) = 15.840, p< 0.001, Cohen’s

d = 3.717; BF10 = 3.567e+12]. This difference in duration can be seen Fig 7 below, also com-

paring the durations to that reported by [12].

Discussion

In Experiment II, we implemented a voice gender categorisation task on Sam to compare the

categorisation of a voice’s gender between Sam and the currently used laptop interface.

Fig 7. Boxplots depicting the duration to complete the voice gender categorisation task on the laptop and Sam interfaces, as well as a comparison

to data reported by [12].

https://doi.org/10.1371/journal.pone.0294328.g007
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Classical analyses showed a significant difference between the gender categorisation between

interfaces and intercepts of the cue weights, but no difference between the cue weights them-

selves. Bayesian analyses of the Bk units between the two interfaces showed strong evidence

(i.e., 43.2 times more likely) for a difference in the cue weight intercepts. Cue weights for F0

and VTL also showed moderate evidence (4.35 and 3.33 times more likely, respectively) of no

difference between the two interfaces. Bayesian analyses showed anecdotal evidence for a dif-

ference in overall categorisations of gender between the two interfaces; however, the use of the

Bayesian method here indicates that the significant difference seen in the classical method

indeed has a small effect size, and thus any differences observed are likely limited to the

observed data set, and thus cannot be generalised for larger populations.

With respect to the difference observed between the gender categorisations and the inter-

cepts of the cue weights between the two interfaces, one could speculate that this could be the

result of an interference effect: with more conflicting cues, participants have more difficulties

answering. Such interference could be caused by the potential for participants to subcon-

sciously attribute a gender to Sam based on their physical appearance despite our efforts to

keep Sam gender neutral [66–70]. This may have occurred in this test based on the intercepts

for F0. The value of the intercept, as determined by the logistic regression above, indicates the

degree to which there is a bias in categorising a voice as a female gender with a 0 st difference

to the reference voice. A lower intercept would indicate more of a bias toward male categorisa-

tions over female categorisations. Furthermore, this bias was significantly lower with Sam

(0.90 ± 1.11) in comparison to the laptop (1.37 ± 0.95), showing a bias toward male categorisa-

tions with Sam.

It must be noted that although we attempted to implement this test with Sam as comparably

similar to the laptop as possible, some elements from the laptop game-like implementation

could not be replicated on Sam. In the laptop version, a cartoon image of a person was pre-

sented after the stimulus was presented to which participants could either agree or disagree on

whether they perceived the voice gender to match the gender of the image. Although at the

processing level the images had a specific gender associated with them, this binary choice was

not as evident to the participants as with Sam, which presented only the right or left hands for

male or female; images depicted on the laptop interface were not always stereotypically male

or female. Based on the design of the test on the laptop, participants were asked to identify if

the voice matched the image, not if the voice was male or female. Thus, whilst the test required

participants to make a binary male or female categorisation on Sam, to some extent this choice

was an abstraction in the laptop version. Additionally, using visual images of female and male

faces on the computer was also not entirely bias-free as their evaluation as female or male

would still rely on the participant’s own concept of female and male, and how well the images

would fit with these. Further, it could also be argued that there is no visual cue change with

Sam; therefore, if some bias was present based on the physical appearance of Sam, it would

have been consistent throughout the test. Hence, such consistent bias across stimuli should

only lead to a shift of results with respect to the reference voice, but no further noise across tri-

als. Different than in Experiment I, in Experiment II all these biases are inherent to both inter-

faces, potentially affecting the perceived voice gender when presented with face images or

Sam, but what matters is that the test seems to be usable on each interface, producing mean-

ingful data.

Comparing the observed data to that collected by [12], voice gender categorisation using

Sam showed a statistically significant difference with respect to the intercepts [t(19.858) =

-2.887, p = 0.009, Cohen’s d = -1.060, BF01 = 19.036]; however, no statistically significant dif-

ference with respect to the F0 cue weights [t(17.624) = -1.923, p = 0.07, Cohen’s d = -0.748,

BF01 = 2.600], but a significant difference with respect to the VTL cue weights [t(18.811) = –
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2.751, p = 0.013, Cohen’s d = -1.055, BF01 = 18.459]. Data obtained when using the laptop

closely matches the voice gender categorisation of the adult group from data reported by [12],

as depicted in Fig 6. Furthermore, there is no statistically significant difference between the

intercepts of previous data and the laptop data [t(18.318) = -1.990, p = 0.062, Cohen’s d =

-0.759, BF01 = 2.763]; however, there was a statistically significant difference in the F0 cue

weights between previous data and the laptop [t(17.359) = –2.311, p = 0.033, Cohen’s d =

-0.906, BF01 = 6.670]; and with respect to the VTL cue weights [t(20.517) = -2.375, p = 0.027,

Cohen’s d = -0.859, BF01 = 4.963].

Therefore, although variation was seen in the intercepts between the laptop and Sam, Sam

seems to still produce data comparable with the laptop; however, both the laptop and Sam data

showed varying degrees of differences when compared to the data reported by [12]. This can

be interpreted as whether performing the voice gender categorisation test on the laptop or on

Sam, as far as examining the influence of F0 and VTL on voice gender categorisation, there is

no difference in consistency between the two interfaces.

We implemented the experiment such that the pairing of the gender and Sam’s hand were

randomised after each presented stimulus, and Sam would indicate which hand should be

used for each gender. As expected the test took longer to complete on Sam in comparison to

the laptop, however, this was due to other reasons than those in Experiment 1. Nevertheless,

results for voice gender categorisation collected from Sam are still identical to those collected

on the laptop. Furthermore, the increase in duration is also a consequence of the design of the

implementation on Sam, as expected. After each stimulus is presented, Sam takes a few sec-

onds to indicate which hand should be touched for a male or female categorisation, lengthen-

ing the duration of the test. This design choice was made to prevent the possibility of

participants attributing a gender to one hand, and using that hand when voices were more dif-

ficult to categorise, potentially introducing an additional bias. In addition, test duration may

have been increased due to a lack of visual cues when categorising a voice. The categorisation

of a voice may be easier when presented with a face, as in the laptop version, thus making the

decision process quicker. In comparison, participants had to pay more attention to the pre-

sented voice with Sam as this was the only cue presented, possibly causing hesitations in partic-

ipants’ categorisations, and increasing the duration of the test. The total duration of the test on

Sam was also longer than that reported in previous studies, which corresponds to approxi-

mately three minutes [12] [t(35.706) = 13.18, p< 0.001, Cohen’s d = 3.160].

General discussion

In both auditory research and clinical settings, due to the inherent repetitiveness and long

duration of many auditory perception psychophysics tasks, using a humanoid NAO robot was

suggested as a new alternative interface. If it can produce reliable data, an additional advantage

could be to make the testing more enjoyable and help with engagement. Therefore, as a first

step, the goal of the present experiments was to evaluate our NAO robot, Sam, as an auditory

testing interface by comparing participants’ results (in both test performance accuracy and

duration) on voice perception and voice gender categorisation when using Sam to those when

using the current laptop game-like interfaces and to previously reported literature.

Comparison of test performance

The test performance was measured in JNDs (Experiment I) and Berkson units (Experiment

II). Results have shown that, overall, Sam is comparable to the laptop interface and to previous

studies that have used the same or similar test procedures, thus meaning the measured perfor-

mances were similar within participants between both interfaces. Although some discrepancies
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were observed in the experiments, there was always some consistency either between the two

interfaces or between Sam and previously reported data.

The small discrepancies observed in the results could have been due to a number of factors,

such as differences in sound quality between the interfaces, as well as the use of English stimuli

in comparison to the Dutch stimuli previously used [10, 12]. In addition, [12] used head-

phones, whereas in the two experiments of the present study, stimuli were presented by the

internal speakers of Sam and the laptop. Without the use of specially designed speakers or

headphones, it is possible that stimuli were presented sub-optimally and possibly with some

degradation. It is not possible to connect external speakers or headphones to Sam, thus using

these on the laptop would produce an unfair comparison. Despite these discrepancies, auditory

test performance was shown to be similar between the two interfaces, as shown in Figs 2 and 4

for the voice cue sensitivity and voice gender categorisation, respectively.

Certain design choices made when implementing the tests onto Sam may have also affected

the obtained test performance results. Most notably would be the visual cues provided by the

laptop and not by Sam, such as the faces in Experiment II. Without these visual cues, it might

be difficult or require some memorisation for the participants when logging responses on

Sam, as the methods to do so are not as salient in comparison to the laptop. This is largely

applicable to Experiment I, which required participants to remember how the order of pre-

sented stimuli related to the sensors on Sam.

The choices in design are a consequence of attempting to implement tests that had origi-

nally been designed to be run on a computer interface onto Sam. It is not yet clear how much

of an impact such choices have on the test results and if they even pose limitations. With more

variations of similar experiments in future studies, these details would be optimised.

For using a robot for voice perception tests, previous work by [71] explored how the pitch

of a robot’s voice in conjunction with its physical appearance is perceived by children and its

potential influence on user acceptance. Subsequent to this, [72] used the NAO to investigate

how synthesised voices to sound that of male or female impacted children’s perception of the

gender of the robot. The authors had hypothesised that children could attribute a male gender

to the NAO regardless of the gender of the voice. Although the study does not explain the

motivation for this specifically, based on other studies, this increased attribution of a male gen-

der to the robot could be due to the robot’s body shape more resembling a typical male body

than female body [66, 67]. This generalised male attribution to the NAO by both children and

adults is also commented on by [68]. In their study, school-age children interacted with the

robot for an average of 10 minutes. The experiment was an interactive game wherein the

robot, which either had a male or female voice, asked for a specific card from a selection lying

on a table. The game itself was not relevant to the research question; however, following the

game, children were interviewed on what gender they perceived the robot to have. Results

showed that younger children (5–8 years) were less likely to assign a gender to the robot based

on the perceived voice in comparison to older children (9–12 years), showing that younger

children tended to attribute a gender to the robot independently of its voice. A potential gen-

der categorisation bias could affect the performance of Sam as an auditory test interface, as

Experiment II showed a bias towards male categorisations even when stimuli were presented

at the reference female voice. While this bias needs to be further investigated to confirm if it

exists, there is a possibility that despite the attempts at gender-neutrality when referring to

Sam (such as always referring to it as “Sam” and avoiding the use of gendered pronouns when

talking about the robot to participants), participants may have inadvertently attributed a male

gender to Sam, potentially biassing their categorisations. In contrast, however, adults seem to

assign a gender to a robot based on the voice, even when the robot is presented as gender neu-

tral [69]. When the robot body is presented in a gender specific manner, adults seem to further
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enforce their stereotypical perception of the robot’s gender [72, 73]. Further, adults even seem

to have preferences for different voices for different task applications [74]. These results sug-

gest that in identifying a voice presented via a humanoid robot, the perceived gender of the

voice may be biassed based on the appearance of the robot and the context, and vice versa,

potentially affecting the overall voice perception process. Since we have not explicitly studied

this potential bias, which may also be part of the laptop version, we cannot yet conclude with

certainty if one interface would have more bias than the other. Nevertheless, the potential gen-

der attribution to Sam will be investigated in the follow-up human robot interaction study.

Comparison of test durations

In so far as an auditory interface, we have shown Sam to be comparable to the laptop and pre-

vious similar studies with regard to the voice cue sensitivity and voice gender categorisation

tests; however, it is also important to address the increased durations of the tests. In some

cases, the longer test duration could be attributed to the design of the test implementation on

Sam. One such factor that affected the increased duration was the stimulus processing time on

Sam in Experiment I. Although a stimulus took on average two seconds to process on Sam, on

the laptop it was around one second, on average resulting in a doubling of the time to complete

the test on Sam. Having observed how much longer it takes to real-time process speech stimuli

by the robot, for further applications and until there are substantial improvements to the robot

processing power, using offline processed stimuli for a robot interface for auditory testing

could be recommended (similar to Experiment II). In Experiment II, the increased duration of

the test was due to Sam indicating which hand to use for the two gender categories (taking five

seconds) after each of the 36 stimuli. This resulted in the presentation of stimuli at a slower

rate than with the laptop, adding an extra three minutes to the total test duration.

In summary, despite the limitations due to the design of the implementation on Sam, it was

observed that auditory perception testing results collected on Sam were still comparable to

those from the laptop and previously reported data. While we will conduct a detailed analysis

of the human robot interaction-related aspects, the observations of the present study support

the potential for Sam to conduct longer auditory perception tests.

A word on inferential statistics

The decision to use both classical (Frequentist) and Bayesian inference in this manuscript was

primarily due to the design and expected outcome of the experiments. When using the classi-

cal p-value inferential approach, often the desired outcome is a small enough p-value to infer

that any difference in the data is not due to chance but can also be extrapolated to a larger pop-

ulation. However, when the p-value is large, this is interpreted as insufficient certainty as to

whether a difference exists. In comparison, because Bayesian inference is solely focussed on

the observed data (and not based on a hypothetical data set as with classical inference) [56], it

provides an alternative interpretation of the data; how much evidence (based on the observed

data) can be attributed to the presence or absence of an effect.

However, it must be noted that for both statistical approaches in both experiments, due to

the respective effect sizes and anecdotal evidence, results reported here are likely affected by

the sample size. The benefit of using the Bayesian approach is that the current results can be

used as the prior for follow-up tests using identical setups, thus providing stronger inferential

power. In comparison, the use of the p-value (the Frequentist approach) would require either

conducting the same experiment again with a new hypothesis and sample or redesigning of

the experimental setup.
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Examining the conducted experiments closer, the difference between the frequentist and

Bayesian results regarding the gender categorisation between the interfaces shows one of the

benefits of using the Bayesian approach. Based on frequentist methods, a statistically signifi-

cant difference, without reporting an effect size (such as Cohen’s d), would infer that the cate-

gorisation of voice gender is significantly dependent on the interface used. However, this effect

size is included in the Bayesian result, and thus with a single statistic, it can be inferred that

although there may be a difference in the results, there is only anecdotal evidence supporting

it, and thus likely is limited to the observed data.

Comparing the results of both the classical and Bayesian approaches in the above experi-

ments, consistency can be observed between statistical significance (classical) and evidence

(Bayesian) based approaches. In the first experiment, the only discrepancy between the two

approaches to the statistics was for any difference between the F0 JND thresholds obtained on

either interface. The small effect size (0.084) and anecdotal evidence (BF10 = 1.638) are both

good indicators that based on the observed data, it cannot be concluded if there is indeed a dif-

ference between the two interfaces for this vocal cue, but also that there is no difference. There-

fore, this would require further testing to appropriately draw a conclusion. Similarly, in

Experiment II the only discrepancy between the classical and Bayesian statistics was the overall

voice gender categorisation between the two interfaces. These results too had a small effect size

(0.1) and low Bayes factor (BF10 = 1.248), and thus again, no appropriate conclusion can be

drawn as to the existence of a difference between the two interfaces.

Concluding remarks

The auditory performance results of the present study show promise for conducting the

PICKA psychophysics tasks, insofar as the voice cue sensitivity and voice gender categorisation

tests are concerned on Sam. Furthermore, our results contribute to the growing potential of

using humanoid robots for both learning and testing applications [34–36, 75, 76], also for spe-

cific target groups and rehabilitation applications (e.g., [43, 77, 78]), and our general under-

standing of speech communication and voice perception in HRI, an increasingly relevant

topic for social robots [1, 13, 79, 80].

To not only further reduce the duration of the tests on Sam, but also to negate possibility con-

founding effects due to inconsistent positive and negative feedback between the two interfaces

[81], the visual feedback during the voice cue sensitivity test could be simplified such that only

positive feedback is presented (nodding only when the given response is correct); otherwise, con-

tinuing with the next stimulus, shortening the test duration. Although this feedback only takes

one or two seconds, as mentioned with the hand identification during the gender categorisation

test, the summation of these delays after each stimulus can result in a longer than intended test.

An additional, albeit more complex, technical modification that could be made to the imple-

mentation of both tests could be the incorporation of automatic speech recognition (ASR).

Rather than logging responses by touching Sam’s sensors, verbal responses could be given.

Although the NAO does have speech recognition capabilities, it is not expected that it would be

sufficient for such testing purposes, as the speech recognition module performs poorly and often

requires higher than natural speech volumes in order to recognise any speech. However, should

this problem be overcome through the use of third-party software, such as the speech recogni-

tion system Kaldi [82], this could be a viable alternative to the tactile response logging method.
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