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Abstract

We illustrate how the Hawking Hubble temperature could simply be the minimum tem-
perature above zero anywhere in the Hubble sphere. It perhaps defines the “temperature
gap,” so to speak — the minimum temperature above zero — and therefore, also the “energy
gap.” Of course, this does not exclude that Hawking radiation from any black hole of any
size may also occur. Secondly, the Planck temperature is likely the maximum temperature
at any localized subatomic point in the Hubble sphere. Additionally, we demonstrate how
the Cosmic Microwave Background (CMB) temperature could simply be a form of geometric
mean temperature between these minimum and maximum temperatures over the course of
cosmic time. This mathematical discovery suggests a re-consideration of Ry = ct cosmological
models, including black hole cosmological models, even if it possibly could also be consistent
with the A-CDM model. Most importantly, this paper contributes to the growing literature
in recent years asserting a tightly-constrained relationship between the CMB temperature
and the Hubble constant, as well as other global parameters of the Hubble sphere.

Keywords: Hawking temperature, Planck temperature, CMB temperature, geometric
mean, Compton wavelength, Hubble sphere, Cosmological models.

1 All electromagnetic energy can be expressed through
the Compton wavelength

Arthur Holly Compton [1] in 1923 gave us a formula for the Compton wavelength of a particle



A= — (1)

mc

Furthermore, the reduced Compton wavelength is equal to A = %, where A is the reduced

Planck constant h = % Since pure energy can be expressed as equivalent rest-mass energy
m = CEQ then we can also write
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Haug [2] has recently at length discussed and demonstrated how the Compton wavelength
likely is the true matter wavelength and how the de Broglie wavelength likely only is a
mathematical derivative of this. We ask the reader to go to that paper for an in-depth
discussion on this. Even if not agreeing on this, one simply needs to understand that the
formulas just represented are valid.

2 The maximum and minimum temperatures and
their links to the shortest and longest reduced Comp-
ton wavelengths

The Planck [3, 4] temperature is given by

1 [he® E 1 c1
T,=—\|— =L =hf,— =h—— ~ 1.42 x 10*%k
ENE TR TR x 10 (3)

This means that the Planck temperature is the Planck frequency times the Planck con-
stant, which is the Planck energy expressed as a temperature by dividing the Planck energy
by the Boltzmann constant.

The Planck length is assumed by many physicists [5-8] to be the shortest meaningful
length. This also means that the Planck frequency is the highest possible frequency and
this again indicates that the Planck energy is the highest possible energy for a photon:
E, = myc? = hi = hfy,, where f, is the Planck frequency. Furthermore, since the Planck
temperature simply is the Planck energy converted to the temperature scale of Kelvin by
dividing it by the Boltzmann constant, this implies that the Planck temperature is likely the
highest possible temperature, as also suggested by multiple researchers [9], even if there is
still some question as to whether the maximum temperature could be somewhat lower [10] or
somewhat higher [11] than the Planck temperature. It has recently been demonstrated that
the Planck length is closely related to gravity, as the Planck length and other Planck units
can be extracted directly from gravitational observations without knowledge of G or h, see
[12, 13].

The reduced Compton wavelength of the Planck energy is
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Alternatively, we could modify the Planck temperature slightly by assuming that the
shortest possible wavelength is related to the radius of a Planck mass micro black hole, which
has a Schwarzschild radius of Ry = 22;”” = 2l, and a circumference of 27 R, = 4nl, with a
corresponding (circumference) Planck temperature of:
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This is exactly half of the Hawking temperature of a Planck mass micro black hole:
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If the maximum temperature is linked to the shortest possible reduced Compton wave-
length, and if the Planck energy is the highest localized energy possible, then the lowest
possible energy must be linked to the longest possible wavelength in the universe. We assert
that the longest possible wavelength is the diameter of the Hubble sphere. This implies that
the minimum temperature is related to what we can call the “Hubble frequency,” and it must
be given by:

c
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The term 5 }%H can be referred to as the Hubble frequency fr ~ 1.09 x 10~'® per second.

Consequently, the minimum temperature is simply given by Tiin = A fHkib. This represents
the lowest frequency above zero that one can observe, as no wavelength can be longer than
the diameter of the universe or certainly no longer than the circumference of the universe as
we soon will look at also.

In the A-CDM model, the diameter of the universe extends far beyond the Hubble radius
Ry due to the assumption of the expansion of space, including accelerated expansion. How-
ever, there is a series of alternative cosmological models within the linear Ry = ct category,
as illustrated in, for example, [14-18]. Yet another concept to consider is the idea that the
Hubble sphere is a black hole with an event horizon at the the Hubble radius. In this scenario,
no wavelength can be longer than the diameter of the Hubble sphere or, at the very most,
the circumference of the Hubble sphere. This imposes a maximum limit on the wavelength
of electromagnetic radiation and, consequently, a minimum energy above zero — a sort of
“energy gap,” and the lowest even theoretical measurable energy above zero. The notion that
the observable universe could be inside a black hole is not a recent idea. It was proposed as
early as 1972 by Pathria [19] and later in 1994 by Stuckey [20]. This idea, despite being in
conflict with the A-CDM model, continues to be a topic of ongoing discussion, as evidenced
by recent publications such as [21-23].

We observe that if we multiply this minimum temperature by %, it is surprisingly identical
to the Hawking temperature [24] when the mass in the Hawking temperature is the critical
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The difference of ﬁ between the prediction from equation (7) and the Hawking tempera-
ture formula could have multiple reasons. Even if not ideal, it is not abnormal to adjust the
end result with a factor like 27r. For example, Adler et al. [25] did so and simply called it a
“calibration factor.” The maximum reduced Compton wavelength could also be seen as the
circumference of the Hubble sphere instead of the Hubble diameter, making the difference
only a factor of 2 relative to Hawking temperature equation (8) as we then get a minimum
temperature of:
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So, we will assume, by Hawking temperature equation (8), that the minimum temperature is
the Hawking temperature.




The small difference mentioned above could be because the Hawking radiation is being
derived from the Schwarzschild metric. Other metrics, such as the Kerr [26] and Kerr-
Newman [27, 28] metric as well as recent Haug and Spavieri metric [29], can likely also be
used to derive similar temperatures; but, likely, there will only be small differences from the
Hawking temperature. We do not have the final answer as to why there is a small difference
of 27 or 7 in the formulas, so we will, like Adler et al, for the moment, call whatever the
small difference may be a calibration factor.

For now, let’s assume that the Hawking temperature and the minimum temperature
calculated from this alternative method, based on the Compton wavelength and the Compton
frequency, indeed represents the minimum temperature inside a black hole. This would mean
that the Hawking temperature possibly does not solely represent radiation emitted from a
black hole, but could also be the minimum temperature (above zero) that could potentially
be observed at any point inside the Hubble sphere. We can call this the Hawking Hubble
temperature.

3 The CMB temperature as a geometric mean of
the maximum and minimum temperature in the Hub-
ble sphere

Since the discoveries by Hubble [30] and Lemaitre [31], as well as the theoretical work of
Friedmann, there has been great progress in cosmology, both experimental and theoretical.
However, the standard A-CDM model, as well as most other cosmological models, has no way
to predict the current CMB temperature.

Mean temperature plays an important role in various fields, including climate science, fluid
dynamics, and biophysics [32]. To our knowledge, mean temperatures have not been linked to
the CMB temperature, except that the 2.725k measurement can by words be called a type of
mean (i.e., average) temperature in all of the empty space of the Hubble sphere. To establish
a more solid theoretical connection to the CMB as a mean temperature, a solid mathematical
and physical foundation is necessary. It is not sufficient to simply take the mean of some
temperatures and call it the mean temperature; as we will suggest, one must comprehend the
Planck temperature, cosmic temperatures, and their inter-relationships in terms of the only
variable that differentiates different energy levels—namely, the electromagnetic wavelength.
Additionally, we know from mathematics and statistics that various types of means exist.

The geometric mean traces back to the Pythagoreans, who defined the three most com-
monly used means even of our time—namely, arithmetic mean, geometric mean, and harmonic
mean (see [33]). The geometric mean, indicating a central tendency of a finite set of real num-
bers by using the product of their values, has wide applications across diverse fields, from
economics, finance, engineering, nuclear medicine, informatics, ecology, surface and ground-
water hydrology, geoscience, geomechanics, machine learning, and chemical engineering, see
[34]. The geometric mean is utilized for various applications and challenges also in physics.
For instance, Henderson [35] demonstrated the use of the geometric mean for problems in gas
dynamics, Zhang et al. [36] employed the geometric mean density of states in one-dimensional
nonuniform systems, and Yamagami [37] relied on the geometric mean of states and transi-
tion amplitudes, see also [38]. The potential role of geometric means in average temperatures
should not be surprising. The reason that maximum and minimum temperatures in the Hub-
ble sphere have not previously been linked to the CMB as a geometric mean temperature is
likely to be that it has only recently been discovered that the reduced Compton wavelength
plays a much more central role in energy, matter, and even gravity than previously thought.



Assume that the measured CMB temperature is somehow related to some type of mean
value between the maximum and minimum allowed temperature in the Hubble sphere. The
longest possible reduced Compton wavelengh in the universe, or at least in a Ry = ¢t universe
as well as a black hole Hubble sphere, is the diameter of the Hubble sphere, so we have

S\Ma:cimum = 2}%H (10)

Furthermore, the shortest possible reduced Compton wavelength is assumed to be the Planck
length so we have

S\Minimum = lp' (11)

The geometric mean of the shortest and longest reduced Compton wavelength is given by

Xgm = \/S\Mammumj\Mzmmum =V 2-RHlp (12)

we can call this wavelength: S\gm, the geometric mean reduced Compton wavelength of the
observable universe. The temperature correlating with this wavelength we find by taking the
energy of its frequency and simply dividing that by the Boltzmann constant. This gives
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If we divide this by a calibration factor of 47, and use the recent Hubble constant value given
by Kelly et al. [39] of 66.675 % (km/s)/Mpc, we obtain the CMB temperature of

1 c 1 1
— fie — fmikbzm ~ 2.7270082 (14)

5 c
\/W kydm Agm kpdm

Or, if we use instead the circumference of the Hubble sphere instead of the diameter as the

longest possible wavelength, and the Planck circumference of a micro black hole instead of

the Planck length as the minimum wavelength, then we get:

Tym =
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So here we only need to use a calibration factor of % to get the Hubble temperature very close
to measured CMB temperature values; see, for example, [40-43] (see also the appendix). We
are convinced that this is not simply a coincidence. The CMB temperature seems indeed
to simply be related to the geometric mean of the shortest and longest wavelengths possible
within the observable universe. Since the only thing that differentiates the different energy
levels of electromagnetic radiation (a single beam of photons) is the wavelength, an energy
that corresponds to the geometric mean of the shortest and longest wavelengths, expressed as
temperature (simply by dividing it by the Boltzmann constant), can be termed the geometric
mean temperature. This suggests that the CMB temperature is simply the geometric mean
temperature between the lowest and highest possible temperatures in the Hubble sphere, but
through our reduced Compton wavelength approach. In our view, this is quite revolutionary,
as it also points in the direction that Ry = ct cosmological models as well as black hole
cosmological models seem to be supported over the A-CDM model. However, as we will also
show, the A-CDM model should not yet be excluded.

Our new discovery also seems to be related to recent breakthroughs in the theoretical
foundation of the CMB temperature linked to the Planck scale. In their black hole cosmolog-
ical model, Tatum et al. [44, 45] proposed the following formula for the CMB temperature
in 2015:

Tym =
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In direct comparison to the Hawking temperature formula, the M in the denominator is
simply changed to /M.m,, where M, is the critical mass in the Friedmann [46] universe.

Making use of the Schwarzschild formula, Tatum et al also re-wrote their formula in the form

of

(16)
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Their use of geometric means in these formulae is now obvious. Recently, it has been
proven that these Tatum et al formulae are derivable also from the Stefan-Boltzmann law
[47]. Furthermore, it has been demonstrated that rewriting them to find the Hubble constant
(by substituting Hy for ¢/Ry) and then deriving the Hubble constant from published CMB
temperature studies dramatically increases the accuracy in predicting the Hubble constant,
see [48]. Tatum et al define R, above as the Schwarzschild radius of the Planck mass, so this
means Ry = R = 26;‘# = 2l,, which also means that their formula easily can be re-written
as

(17)
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Where f,, is the reduced Compton frequency of an energy with a wavelength consisting of
the geometric mean wavelength from the lowest and highest possible temperatures in the
Hubble sphere. The Tatum et al formula immediately above gives an identical result to that
given in our last geometric mean temperature formula. One should remember that the use
of the Schwarzschild formula for substitutions between mass and radius is allowable in a
black hole cosmology model. One can even use such a substitution in the Hawking black
hole temperature formula to arrive at the following equation (by realizing that the mass in a
Schwarzschild black hole must be M = %):
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This result is identical to equation (6), so no calibration factor is needed.

Our new geometric mean methodology in this paper arrives at the same formulae using a
very different approach in comparison to Tatum et al: by focusing on the Compton wavelength
and Compton frequency in matter and energy, and by taking the geometric mean between the
maximum and minimum reduced Compton wavelengths, we then examine the temperature to
which this leads. This provides a new perspective on the Hawking temperature, potentially
being the minimum temperature in a black hole, and the Planck temperature the maximum
temperature, and the average temperature inside the black hole simply as the geometric mean
temperature in the way described in detail above.

Figure 1 demonstrates the Hubble sphere, where we show the minimum temperature that
likely is in the Hubble sphere surface and the CMB temperature that is the geometric mean
temperature in the Hubble sphere. The CMB temperature varies according to which cosmic
epoch we are considering. As with the Hubble sphere minimum temperature, the CMB
temperature was a higher temperature in the past than it is now. Cosmic mass and radius
values were presumably smaller the earlier the cosmic epoch.

Trw (19)



Geometric mean temperature = CMB temperature
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Figure 1: This figure illustrates one possible geometric interpretation of our approach. The Hawking
temperature, besides representing Hawking radiation, also seems to be consistent with a minimum
temperature in the Hubble sphere, which could be at the very surface of the Hubble sphere. The
current CMB temperature is the geometric mean temperature related to the minimum possible wave-
length (the Planck length) and the maximum possible wavelength, which is related to the Hubble
diameter. This seems to be able to precisely measure the CMB temperature now and in the past.
Such a geometric picture can likely be consistent with multiple cosmological models, in particular,
black hole cosmological models, something that will be discussed in the following section.

4 Hubble sphere in growing black hole models

Two of the most interesting cosmological models likely to benefit from using a geometric mean
CMB temperature are growing black hole models and R;, = ¢t models. A growing black hole
model is illustrated in Figure 2.

The Tatum et al. [44] model appears to have been the first cosmological model that
accurately predicted the Hubble constant value using only the CMB temperature as an in-
put value. This model basically assumes that the current Hubble sphere started out as a
Schwarzschild black hole continually growing in mass and radius in a way consistent with
a type of Ry, = c¢t model, where the Hubble radius is equal to the Schwarzschild radius
(Rp, = Rs) at any cosmic time ¢. On the other hand, the Lambda-CDM model does not
have the mathematics or geometry that can predict today’s CMB temperature from a known
Hubble constant value, or vice-versa. That said, we do not exclude yet that the geometric
mean approach between minimum and maximum temperatures, which we introduce herein,
might also be incorporated into the Lambda-CDM model. However, if so, we suspect that
it might be an overly-complicated process, something we leave up to future research to find
out.

The growing black hole model of Tatum et al. is interesting in several other respects, not
the least of which is the 4-axis log graph it implies with respect to growth and expansion of
the cosmological black hole. See Figure 3.

In such a model, expansion is commensurate with mass growth over cosmic time. This
is very different from the A-CDM model, but it may be worth considering that there could
be ongoing matter production coming from the cooling cosmic vacuum under continuing
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Figure 2: This figure illustrates a universe that started as a Planck mass black hole and then grew
into today’s Hubble sphere. The black hole radius, which is also the Hubble radius, grows at speed
of light c.
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adiabatic expansion. If so, then this might suggest a new way to approach the cosmological
constant problem. However, such is beyond the scope of the present paper.

Figure 4 illustrates such a growing black hole model. The universe in this model starts as
a Planck mass black hole at the Planck temperature, and presumably arises from what we
might call a “primordial Planck mass soup” at the Planck density. The radius of the black
hole universe grows at speed of light ¢, as one might expect for a Ry = ¢t model. The CMB
temperature, which is the temperature inside the black hole is always simply the geometric
mean between the Planck temperature (maximum temperature) and the Hawking Hubble



minimum temperature, which again is directly linked to the Hawking temperature at the
continually-expanding cosmic horizon surface of the Hubble sphere.

Hubble sphere started as Planck mass black holes with Planck temperature
( = maximum temperature )
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Figure 4

Geometric methods are very general, as they rely on core geometric principles, specifically
the geometric mean in this case. The same approach can therefore likely be applied to a series
of different black hole models, such as Kerr [26] black holes, Kerr-Newman [27] black holes,
and Haug-Spavieri [29] metric black holes. Most, if not all, of these could be extended
to growing black hole models somewhat similar to that of Tatum et al. While this must
be carefully investigated, the main framework for how to incorporate CMB temperature in
them based on our geometric mean approach is already laid out in this paper. The general
principles described here should still hold, but the exact values and interpretations of different
black hole universes will naturally vary to some extent. We leave that for further work and
investigation.



5 Information horizon universes and steady-state
black hole type universes

As the geometric mean approach is mostly based on core principles in geometry and energy
(such as simply E = hf), it is very likely that our approach can be applied to a series
of different cosmological models. Each model must naturally be carefully investigated and
checked against many observations, as well as other models such as A-CDM, before one can
come to any conclusions and a consensus view. However, we would like to mention a few
more models that are likely consistent with the geometric mean temperature approach, just
to demonstrate its possible broad application for cosmological models.

Above, we briefly described growing black hole models, where one model, the Tatum et
al model, has already been linked to CMB and Hubble constant theoretical predictions that
can also be explained by our geometric mean approach, both in the present and as a dynamic
model wherein the Hubble sphere keeps expanding. Another perspective would be a steady-
state black hole type universe where every point in the universe is ultimately linked to Planck
mass particles popping into and out of existence (see [49]), and where the Hubble radius is
more of a type of information horizon. It is important to be aware that any universe with
infinite spatial extension (extending infinitely in space), if it has even a minimum energy
density, will, at least from a mathematical point of view, have an event horizon as seen from
any point in space. Therefore, the observable universe will be different from the total universe.

The exact event horizon and its interpretations can naturally vary between different metric
solutions to Einstein’s [50] field equation. Such an event horizon could, under certain assump-
tions, simply also be interpreted as an information horizon, preventing any information from
reaching us beyond such a radius.

Such a steady-state model of the universe, wherein the center is everywhere and there is
an event horizon at the Hubble radius everywhere, simply due to the energy density of the
universe, is illustrated in figure 5. Such models would then need another form of dynamics
to explain them, for example, as to why the predicted CMB temperature would vary as one
looks farther out. One possibility could be that the energy density actually varies through the
Hubble sphere, but other models of cosmological red-shift might also suggest an alternative
explanation. We just point this out to illustrate that our geometric mean approach could
potentially be consistent with multiple cosmological models.
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Planck mass micro black hole particle with Planck temperature
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Figure 5: This figure illustrates a possible steady-state universe where the center of the universe
is everywhere, and all matter is ultimately linked to Planck mass particles. In this model, the
Hubble radius serves as an information horizon because the universe has a minimum energy density
everywhere. We mention this to demonstrate that our geometric mean CMB temperature approach
could potentially be applied to multiple types of cosmological models.

6 Multiple possible mechanisms by which the CMB
temperature could be linked to the Planck temper-
ature.

Adler, Chen, and Santiago [25] claim that, “In the current standard viewpoint, small black
holes are believed to emit black body radiation at the Hawking temperature.” This is some-
thing we agree on, and Haug [49, 51] has recently indicated, based upon quantum gravity
theory, that all matter may ultimately be derived from “virtual” Planck mass particles pop-
ping into and out of existence, lasting only the Planck time. These Planck mass particles
should have the mathematical properties of micro black holes, and their energy could be the
currency of such interchanges. Perhaps they are largely responsible for quantum fluctuations
in vacuum energy. This speculation provides us with a possible underlying deeper theory of
how the Cosmic Microwave Background (CMB) temperature could be related to the Planck
temperature.

The Planck temperature, the maximum temperature which could exist in space, could
be present only in Planck-sized areas of space, popping into and out of existence. Even an
electron or proton is enormous in terms of spatial dimensions compared to the radius of a
Planck mass particle micro black hole. All of our measurements of the CMB temperature
might be of photons radiating from Planck mass vacuum particles popping into and out
of existence. Our approach appears to be consistent with a new way to quantize general
relativity theory; Einstein’s field equation can be re-written as [51]:

11
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This re-written form of the field equation gives all the same results as before, but it leads,
for example, to a re-written Schwarzschild metric of the following form

1
R;w - §g/wR + Ag;w = T,uv' (20)
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where A/ is the reduced Compton wavelength of the mass M, and gQ? = (df? + sin? fd¢?).
The term ;\I—L is the reduced Compton frequency per Planck time that represents the quan-
tization of gravity. This new way to rewrite the Schwarzschild metric provides exactly the
same predictions as the standard Schwarzschild solution, but it offers a deeper insight, in
our view. It shows that gravity is ultimately linked to the Planck scale and establishes a
connection between gravitational objects such as the Earth, the Sun, and even the mass or
energy of the Hubble sphere and the Planck scale.

Again it is important to be aware that the Planck length can be found from gravity ob-
servations without any knowledge of G or even £, see [12]. Already in 1984 Cahill [52, 53]
suggested that the Planck units could be more fundamental than the gravity constant; he
simply rearranged the Planck mass formula m, = % with respect to G and got G = L’—%
However, Cohen [54] correctly pointed out that this just led to a circular problem, as no one
at that time had demonstrated a way to find Planck units independent of G. This view has
been held until recently, see for example the interesting paper by McCulloch [55]. Now it is
fully possible to find Planck units from gravity observations with no knowledge of G and h.
In our view this means that the Planck scale now indirectly has been detected. This also
indirectly may explain why we can predict the CMB temperature from theoretical consider-
ations combined with a practical knowledge of the shortest and longest possible wavelengths
in the Hubble sphere.

Another view more consistent with the A-CDM model is that Planck mass particles (micro
black holes) existed only just after the Big Bang, and that these particles decayed into today’s
known particles. Lloyd Motz [56-58] was likely the first to suggest the existence of a very
fundamental particle with a mass equal to the Planck mass. However, he knew the Planck
mass was way too massive in comparison to observed particles, such as protons and electrons.
Motz tried to overcome this challenge by claiming that the Planck mass particles created
just after the Big Bang had radiated most of their energy away and that this energy could
have been the origin of the creation of particles such as protons and electrons. Others have
suggested a similar idea that there were plenty of Planck mass-type particles just after the
Big Bang, see De [59], but that such super-heavy particles have radiated away most of their
energy. Omne possibility is therefore that the Cosmic Microwave Background (CMB) is in
some way a remnant of that epoch. Only further scrutinizing of the CMB temperature can
provide a final conclusion to these answers. What is most important is that both the Stefan-
Boltzmann law and this new geometric mean temperature approach essentially lead to the
same conclusion and to the formulae suggested by Tatum et al. Now the CMB temperature
can clearly be predicted and described theoretically and not only simply measured. This
theoretical relationship, unknown to most astrophysics at the time of this writing, seems to
bind the different properties of the observable universe more closely together than before. It
could be that our recent theoretical breakthroughs concerning the CMB temperature might
lead to improved cosmological models.

12



Consistent with this view remains the possibility that the universe is a black hole-like
object wherein the Hubble horizon has been, and continues to be, expanding at light speed.
This would be a distinct class of Ry = ct growing black hole cosmological models. Our
new theoretical understanding of the Cosmic Microwave Background should naturally be
carefully scrutinized by multiple researchers over time to check which cosmological models,
as well as quantum gravity models, it best conforms with, or if even our new theoretical
CMB framework needs further modification. Surprisingly, there now appears to be a close
theoretical link between CMB temperature, the Hubble constant, and other global parameters
of the universe; see [44, 48].

7 Outstanding issues

Our geometric approach explains the likely relationship between the CMB temperature, the
Planck temperature, and the Hawking temperature and even between the Hubble constant
and the CMB temperature. Despite our current geometric approach, a similar relation has also
been proven by the Stefan-Boltzmann law. However, there is likely still more to understand
here. The Hubble tension [60, 61] implies an unexplained difference in the Hubble constant
when inferred from local measurements, such as supernovae standardized candles, and when
inferred from the cosmic microwave background (CMB). It could potentially be that our new
and deeper theoretical geometrical understanding of the CMB temperature can help solve
this issue, or alternatively, that a future solution to the Hubble tension will slightly alter our
CMB model. We have already pointed out that more metrics should be investigated based
on this approach. But for now, we know at least that using the Planck temperature and
the Hawking temperature corresponds to both a maximum and minimum temperature in the
Hubble sphere, even when relying on just the Schwarzschild metric.

We are also naturally aware of the empirical color temperature 7). of the CMB as a function
of redshift, 7, ~ Tomp(1 + z). No deviations from the expected (1 + z) scaling behavior of
the CMB temperature have been observed. However, it should be noted that the uncertainty
in measurements is extremely large for a CMB linked to high z measurements. For example,
in [62], the CMB temperature was measured for the cosmic epoch at z = 6.34, yielding a
microwave background temperature of 16.4-30.2k within one standard deviation uncertainty.
This uncertainty is notably extremely high compared to most other properties of the cosmos.
Therefore, it is not unthinkable that our new methodology and theoretical understanding
could also lead to new insights in this regard, but to find that out would likely require a great
deal more research.

8 Conclusion

The Planck temperature is likely the maximum possible temperature anywhere in the ob-
servable universe. We propose that it is linked to the shortest possible reduced Compton
wavelength, the Planck length. We have also explained how the minimum possible tempera-
ture can be considered to be associated with a reduced Compton wavelength corresponding
to a photon wavelength the diameter of the Hubble sphere. Interestingly and surprisingly,
the CMB temperature could well be connected to an energy level that is simply the geometric
mean between these minimum and maximum energy levels, or more precisely, to an energy
connected to the geometric mean of the shortest and longest possible reduced Compton wave-
lengths in the universe. This would seem to imply that the Hawking Hubble temperature
is, in fact, a minimum temperature (above zero) anywhere in the Hubble sphere. Our ap-
proach suggests a solid theoretical framework for predicting and understanding the CMB

13



temperature, rather than solely observing it.
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Appendix: Wien’s Law versus Planck’s law for get-
ting to the CMB temperature

The CMB temperature has not been measured directly. Instead, it is the radiation frequency
that is measured. There is a whole spectrum of radiation frequencies, but the peak frequency
can be easily transformed into temperature by utilizing Wien’s (approximation) law or the
more exact Planck’s law. The transformation from the measured peak wavelength to CMB
temperature can be achieved by utilizing Wien’s law. According to Wien’s law, we can
determine that

_ he

b= — 22
S (22)
and the CMB temperature is then given as
b he 1

ToMp= — = ———— 23
MB )\peak 5kb )\peak ( )

For a peak wavelength of 1.0634 mm this gives a CMB temperature of Topp = 2.706k

From Planck’s-Law we get
h

¢ ~ 0.002897773 (24)

b= k(5 + Wo(=5/€5))

where Wy is the Labert W function. If the peak wavelength is 1.0634 mm this gives a CMB
temperature of approximately

TCMB = ~ 2.725k (25)

/\peak

This means that transforming measured peak wavelength from the CMB spectrum to CMB
temperature using Wien’s law will underestimate the CMB temperature by approximately
0.019k compared to using the more exact Planck’s law.
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