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Uniform Random Dictatorship: A characterization without strategy-proofness *

Although they exclude any possibility of a compromise ex-post, uniform random dictatorship methods provide a solution to conflicts of interest that guarantees an ex-ante fairness. Axiomatic characterizations of random dictatorships in the classical literature of social choice theory use strategy-proofness. In a probabilistic framework that embeds tops-onlyness and anonymity, for three or more alternatives, we provide a characterization that uses an independence condition instead: uniform random dictatorship is the only social choice rule that is efficient and independent. This characterization also establishes that under efficiency and anonymity, independence and strategy-proofness are equivalent. In the particular case of two alternatives, independence becomes vacuous and we propose a characterization without independence.

Introduction

Tops-only social choice rules are those whose choices depend only on the alternatives individuals find the best. As such, they overlook how individuals rank alternatives other than the one they think to be the best. Tops-onlyness is a condition of interest for at least two reasons. First, it economizes the information required to make a collective decision. Next, there is a tight connection between strategy-proofness and tops-onlyness for resolute social choice rules that choose a single alternative: over the full domain of preferences, unanimity and strategy-proofness result in dictatorships, hence implying tops-onlyness [START_REF] Gibbard | Manipulation of voting schemes: a general result[END_REF][START_REF] Satterthwaite | Strategy-proofness and Arrow's conditions: Existence correspondence theorems for voting procedures and social welfare functions[END_REF]. The implication of tops-onlyness by strategy-proofness prevails for several restricted domains [START_REF] Weymark | Strategy-Proofness and the Tops-Only Property[END_REF][START_REF] Chatterji | Tops-only domains[END_REF].

While dictatorships strongly violate anonymity, the plurality rule that picks the alternatives considered as best by the highest number of individuals exemplifies an irresolute social choice rule that is anonymous and tops-only.

In fact, on a fixed population, it is the only social choice rule that is tops-only, anonymous, neutral and satisfies a certain monotonicity property [START_REF] Kelly | Characterizing plurality rule on a fixed population[END_REF]. Tops-onlyness is also a key condition to characterize the plurality rule in social choice models with a variable society [START_REF] Yeh | An efficiency characterization of plurality rule in collective choice problems[END_REF][START_REF] Sekiguchi | A characterization of the plurality rule[END_REF].

All these concepts have their counterparts in social choice models where outcomes are randomized1 . A well-known class of social choice rules in this framework are random dictatorships, which assign to individuals a probability distribution for being a dictator. Not only random dictatorships are tops-only but they are the only probabilistic social choice rules that are strategy-proof and (ex-post) efficient (Gibbard, 1977, Corollary 1). As in the resolute case, the implication of tops-onlyness by unanimity and strategyproofness prevails for several restricted domains [START_REF] Chatterji | Tops-only domains[END_REF][START_REF] Chatterji | On random social choice functions with the tops-only property[END_REF].

We focus on a particular element of the class of random dictatorships, namely the uniform random dictatorship where individuals have the same probability of being the dictator. Thus, uniform random dictatorship chooses the top alternative of an individual who is picked uniformly at random. Therefore, the probability that a given alternative is chosen is the topsupport of that alternative, defined as the percentage of voters for whom this alternative is top-ranked.

Letting m ≥ 2 be the number of alternatives, a probabilistic and topsonly social choice rule is a mapping whose inputs are elements of the m -1 dimensional simplex, where each entry corresponds to the top-support of a specific alternative, defined as the percentage of voters for whom this alternative is top-ranked. The outcome is also an element of the m -1 dimensional simplex whose value at each entry gives the probability that the corresponding alternative gets chosen. Thus, we consider probabilistic topsonly social choice rules (PTS) that map a multidimensional simplex into itself. As inputs are m-tuples of percentages rather than being preferences assigned to individuals, anonymity is embedded in the definition of a PTS.

By the same token, the model is able to handle variable-size societies.

Remark that a profile of top alternatives does not reflect any information about how individuals rank rest of the alternatives. As such, nothing can be said about the social welfare induced by an alternative that is top-ranked by no individual. Thus, it makes sense for a PTS to overlook such alternatives and only consider those that are top-ranked by at least one individual. As a condition in this spirit, we qualify a PTS as efficient, if it requires that an alternative whose top-support is zero gets zero probability of being chosen.

We also consider an independence condition under which the probability that an alternative is chosen depends only on its top-support. Thus, when an independent PTS is used, the probability that an alternative is chosen becomes independent of the top-support of other alternatives. As a result, an independent PTS can be expressed by a family of basic mappings, one for each alternative, that map the unit interval [0, 1] to itself, transforming the top-support of an alternative into its probability of being picked.

The conjunction of independence with efficiency singles out uniform random dictatorship when m ≥ 3. Uniform random dictatorship is neutral (i.e., ensures an equal treatment of alternatives) and monotonic (i.e., increasing the top-support of an alternative without increasing the top-support of any other should increase this alternative's probability of getting elected). Thus, the conjunction of independence with efficiency implies neutrality and monotonicity.

Although independence is rather demanding when m ≥ 3, it becomes vacuous for m = 2, being trivially satisfied by every PTS. Moreover, the conjunction of efficiency, neutrality and monotonicity does not imply uniform random dictatorship in this case. On the other hand, when we additionally require basic mappings to be twice differentiable with uniform sign of the second derivative, we again single-out uniform random dictatorship.

Section 2 presents the basic notions and notation. Sections 3 and 4 present the results for m ≥ 3 and m = 2, respectively. Section 5 makes concluding remarks.

Basic notions and notation

Let A with #A = m ≥ 2 be a set of alternatives and N with #N ≥ 2 be a finite set of individuals. The preference of each i ∈ N on A is expressed by her top alternative

t i ∈ A. Let [0, 1] Q = [0, 1] ∩ Q be the set of rational numbers in the [0, 1] interval. A profile of top alternatives (henceforth a profile) is a mapping π : A -→ [0, 1] Q with x∈A π(x) = 1 where π(x) is the ratio of the number of individuals for whom x is the top alternative to #N . A lottery over A is a mapping λ : A -→ [0, 1] with x∈A λ(x) = 1.
We write Π and Λ for the set of profiles and lotteries, respectively. A probabilistic tops-only social choice rule (PTS) is a mapping τ : Π -→ Λ. Given π ∈ Π, we write τ π instead of τ (π) ∈ Λ. Note that anonymity of a PTS, in the sense of equal treatment of individuals, is embedded in the definition of a profile.

3 Uniform random dictatorship: a characterization for more than two alternatives

We qualify a PTS τ as being efficient iff π

(x) = 0 =⇒ τ π (x) = 0 ∀x ∈ A, ∀π ∈ Π. Proposition 1 Let m ≥ 2. If τ : Π -→ Λ is efficient then π(x) = 1 =⇒ τ π (x) = 1 ∀x ∈ A, ∀π ∈ Π.
Proof : Take any π ∈ Π with π(x) = 1 for some x ∈ A. Hence, π(y) = 0 for all y ∈ A\{x}. As τ is efficient, we have τ π (y) = 0 for all y ∈ A\{x}. Thus,

x∈A τ (x) = 1 implies τ π (x) = 1. ■ A PTS τ is independent iff given any x ∈ A and any π, π ′ ∈ Π with π(x) = π ′ (x), we have τ π (x) = τ π ′ (x)
. Note that independence is trivially satisfied when m = 2. Every independent PTS τ can be expressed through a vector (

β x : [0, 1] Q -→ [0, 1]) x∈A of mappings such that τ π (x) = β x (π(x))
∀x ∈ A, ∀π ∈ Π. We refer to each β x as a basic mapping. For the rest, we write A = {x 1 , ..., x m } and index basic mappings over the set M = {1, ..., m} such that for each i ∈ M , β i is used for x i ∈ A. We now characterize basic mappings that express efficient and independent PTSs.

Proposition 2 Let m ≥ 2. A vector (β i ) i∈M of basic mappings expresses an efficient and independent PTS τ iff 1. β i (0) = 0 and β i (1) = 1 for every i ∈ M.

2.

i∈K β i (r i ) + β j (1 - i∈K r i ) = 1 for any k ∈ M \{m}, any K ⊂ M with #K = k, any (r i ) i∈K ∈ [0, 1] k Q with i∈K r i ∈ [0, 1] and any j ∈ M \K.
Proof : To see the "only if" part let (β i ) i∈M express an efficient and independent PTS τ . It is straightforward to see that when

β i (0) = 0 or β i (1) = 1 fails for some i ∈ M , τ is not efficient. Now suppose i∈K β i (r i ) + β j (1 - i∈K r i ) = 1 fails for some k ∈ M \{m}, some K ⊂ M with #K = k, some (r i ) i∈K ∈ [0, 1] k Q with i∈K r i ∈ [0, 1] and some j ∈ M \K. Take π ∈ Π with π(x i ) = r i for all i ∈ K, π(x j ) = 1 - i∈K r i and π(x i ) = 0 for all i ∈ M \(K ∪ {j}). As β expresses τ , we have τ π (x i ) = β(r i ) for all i ∈ K, τ π (x j ) = β(1 - i∈K r i ) and τ π (x i ) = 0 for all i ∈ M \(K ∪ {j}). By construc- tion, m i=1 τ π (x i ) = i∈K β i (r i ) + β j (1 - i∈K r i ) ̸ = 1, contradicting that τ is a PTS.
To see the "if" part, let (β i ) i∈M satisfy the conditions of the proposition.

Take any π ∈ Π. Define

τ π (x i ) = β i (π(x i )) ∀x i ∈ A. Let K = {i ∈ M : π(x i ) > 0}. If #K = 1, say K = {k}, then π(x k ) = 1 and π(x i ) = 0 ∀i ∈ M \{k}. As β i (0) = 0 and β i (1) = 1 for every i ∈ M , we have τ π (x k ) = 1 and τ π (x i ) = 0 ∀i ∈ M \{k}, establishing i∈M τ π (x i ) = 1. Now let #K > 1.
Pick some j ∈ K. By definition of τ , we have

τ π (x i ) = β i (π(x i )) ∀i ∈ K\{j}. By construction, τ π (x j ) = β j (1 - i∈K\{j} π(x i )) and τ π (x i ) = 0 ∀i ∈ M \K.
By construction,

m i=1 τ π (x i ) = i∈K\{j} β i (π(x i )) + β j (1 - i∈K\{j} π(x i ))
which equals 1. Thus, τ is well-defined. By construction it is independent. Finally, it is efficient, as β i (0) = 0 and β i (1) = 1 for every i ∈ M. ■

A PTS τ is neutral iff given any π ∈ Π and any permutation σ :

A ←→ A, we have τ π•σ (x) = τ π (σ(x)) ∀x ∈ A. Remark that an independent PTS τ = (β i ) i∈M is neutral iff β i = β j ∀i, j ∈ M .
Thus, an independent and neutral PTS τ can be expressed by a single basic mapping β:

[0, 1] Q -→ [0, 1] that satisfies τ π (x) = β(π(x)) ∀x ∈ A, ∀π ∈ Π.
Proposition 3 Let m ≥ 3. Every efficient and independent PTS is neutral.

Proof : Let τ = (β i ) i∈M be an efficient and independent PTS. Proposition 2 implies the following two equalities:

β i (r) + β j (1 -r) = 1 ∀i, j ∈ M , ∀r ∈ [0, 1]. β i (r) + β j (q) + β k (1 -r -q) = 1 ∀i, j, k ∈ M , ∀r, q ∈ [0, 1].
Note that the second inequality exploits m ≥ 3.

From the first equality, we can derive β k (1 -r -q) = 1 -β i (r + q) as well as β k (1-r -q) = 1-β j (r +q). Substituting these into the second inequality, we get

β i (r) + β j (q) = β i (r + q) = β j (r + q) ∀i, j ∈ M , ∀(r + q) ∈ [0, 1],
establishing the neutrality of τ . ■ Uniform random dictatorship is the PTS that assigns to each alternative a probability that equals the percentage of individuals for whom that alternative is top. So the uniform random dictatorship τ is expressed by the basic mapping β(r) = r ∀r ∈ [0, 1], ensuring τ π (x) = π(x) ∀x ∈ A, ∀π ∈ Π.

As we show below, not only uniform random dictatorship is efficient and independent, but it is the unique PTS that satisfies both conditions.

Theorem 1 Let m ≥ 3. A PTS τ : Π -→ Λ is efficient and independent iff τ is the uniform random dictatorship.

Proof : It is straightforward to check that the uniform random dictatorship is efficient and independent. To show the "only if" part, let τ be an efficient and independent PTS. Thus, τ is neutral by Proposition 3. Let β be the basic mapping that expresses τ . As τ is efficient, we have β(0) = 0 and β(1) = 1. Proposition 2 implies the following two equalities:

β(r) + β(1 -r) = 1 ∀r ∈ [0, 1]. β(r) + β(q) + β(1 -r -q) = 1 ∀r, q ∈ [0, 1] with r + q ⩽ 1.
satisfied by every PTS. Remark that for for m = 2, Proposition 2 can be restated as follows:

Proposition 4 Let m = 2. A vector (β 1 , β 2 ) of basic mappings expresses an efficient and independent PTS τ iff 1. β i (0) = 0 and β i (1) = 1 for every i ∈ {1, 2} .

2. β 1 (r) + β 2 (1 -r) = 1 ∀r ∈ [0, 1].
Thus, when m = 2, efficient PTSs are precisely those that can be expressed by a basic mapping β 1 with β 1 (0) = 0 and β 1 (1) = 1, which deter-

mines β 2 (r) = 1 -β 1 (1 -r) ∀r ∈ [0, 1].
As Theorem 1 and Proposition 3 both use the strength of independence, they vanish when m = 2, as can be seen through the example that follows.

Example 1 Let β 1 (r) = r2 and β 2 (r) = -r 2 + 2r . By Proposition 4, β 1 and β 2 express a PTS that is efficient, (trivially) independent but not neutral and not the uniform random dictatorship.

For a similar observation, note that the uniform random dictatorship satisfies the following monotonicity condition: A PTS τ is monotonic iff given any x ∈ A and any π, π ′ ∈ Π with π(x) > π ′ (x) and π(y) ⩽ π ′ (y)

∀y ∈ A\{x}, we have τ π (x) > τ π ′ (x). Hence, by Theorem 1, efficiency and independence imply monotonicity when m ≥ 3. On the other hand, when m = 2, an efficient (and trivially independent) PTS may not be monotonic.

We observe this at the example below.

2 Example 2 Let β = β i (r) =            r, if r ⩽ 1 4 or r > 3 4 1 2 -r, if 1 4 < r ⩽ 1 3 2r -1 2 , if 1 3 < r ⩽ 2 3 3 2 -r, othwerwise for all i ∈ {1, 2}
and r ∈ [0, 1] . By Proposition 4, β expresses an efficient PTS τ that is trivially independent. However, β is not monotonically increasing, hence τ is not monotonic.

At this stage, one may ask whether adopting monotonicity and neutrality explicitly while conjoining them with efficiency would characterize the uniform random dictatorship, a result reminiscent to Theorem 1. The answer is negative, as the example below shows.

Example 3 Consider the basic mapping β defined as β(r) = r 2 for r ∈ [0, 1 2 ), β( 1 2 ) = 1 2 and β(r) = -r 2 + 2r for r ∈ ( 1 2 , 1] . By Proposition 4, β expresses an efficient PTS τ which is monotonic and neutral by construction while doesn't express the uniform random dictatorship.

Remark that Example 3 uses a basic mapping that is not continuous, which we now rule out by adopting continuity as an independent condition.

We say that a PTS τ = (β i ) i∈{1,2} is continuous iff β 1 and β 2 are both continuous. Before characterizing the class of continuous, efficient, monotonic and neutral PTSs, observe the logical independence of the four conditions:

Example 1 exemplifies a PTS that is continuous, efficient, monotonic but not neutral. Example 2 is a PTS that is continuous, efficient, neutral but not monotonic. The basic mapping β(r) = 1 2 r + 1 4 ∀r ∈ [0, 1] expresses a PTS that is continuous, monotonic, neutral but not efficient. Example 3 is a PTS that is efficient, monotonic, neutral but not continuous.

The class of continuous, efficient, monotonic and neutral PTSs is not limited to uniform random dictatorship either, as the example below shows.

Example 4 Consider the basic mapping defined as β(r) = 3r 2 -2r 3 for r ∈ [0, 1] . By Proposition 4, β expresses an efficient PTS τ . Moreover, τ is continuous, monotonic, and neutral while it is not the uniform random dictatorship.

Note that the basic mapping β in Example 4 is not only continuous but also twice differentiable. Note also that sgnβ ′′ (r) = -sgnβ ′′ (r) for r ∈ [0, 1 2 ) and r ∈ ( 1 2 , 1]. In fact, the following result singles out the uniform random dictatorship within the class of twice differentiable, efficient, monotonic and neutral PTSs. 

Concluding remarks

In a probabilistic social choice setting that embeds tops-onlyness and anonymity, we characterize uniform random dictatorship in terms of independence and efficiency (Theorem 1). The result needs at least three alternatives. In fact, when there are only two alternatives, independence is vacuously satisfied and we provide an alternative characterization of uniform random dictatorship by using efficiency, monotonicity, neutrality, together with certain differentiability conditions over basic mappings (Theorem 2).3 

There is an abundance of frameworks where imposing independence over the collective choice rule is so demanding that an impossibility is reached.

This literature of impossibilities dates back to the seminal result of [START_REF] Arrow | Social choice and individual values[END_REF] in an ordinal preference aggregation framework, which has its reflections to other frameworks such as group identification by [START_REF] Kasher | On the question" who is aj?" a social choice approach[END_REF], judgement aggregation by [START_REF] List | Aggregating sets of judgments: An impossibility result[END_REF]Pettit (2002, 2004), and classification aggregation by [START_REF] Maniquet | A theorem on aggregating classifications[END_REF], among others. Our framework falls out of this universe: for probabilistic tops-only social choice rules, not only independence can be satisfied, but it almost singles out uniform random dictatorship. Therefore, Theorem 1 can be seen as a positive result.

Muto and Sato (2017) introduce a "same-sidedness" axiom that leads to an impossibility result in a deterministic setting. A probabilistic version of this axiom is considered by [START_REF] Bandhu | Stochastic Samesidedness in the Random Voting Model[END_REF] who characterize the general class of random dictatorships with efficiency and "stochastic samesidedness" when n = 2 or m = 3. Their characterization does not use topsonlyness and cannot be extended to the general case. However, they show that when tops-onlyness is added, random dictatorship can be characterized with efficiency and stochastic same-sidedness for m ≥ 4. Thus, our choice to embed tops-onlyness into the model seems to be a natural choice in order to obtain a general and simple characterization of uniform random dictatorship.

Comparing our Theorem 1 to Theorem 2 (b) of [START_REF] Bandhu | Stochastic Samesidedness in the Random Voting Model[END_REF] allows to observe that when m ≥ 4, stochastic same-sidedness and independence turn out to be equivalent under tops-onlyness, efficiency and anonymity.

This observation is of interest given the technical nature of stochastic samesidedness and the fact that it is implied by independence in a general setting.

These comparisons we make do not apply to the case when m = 2, which is not considered by [START_REF] Bandhu | Stochastic Samesidedness in the Random Voting Model[END_REF].

We close by connecting our findings to the classical characterization of random dictatorships by Gibbard (1977) where strategy-proofness is used as a core axiom without referring to an independence condition. In fact, (Gibbard, 1977, Corollary 1) characterizes random dictatorships in terms of strategy-proofness and efficiency. It follows from Gibbard (1977) that uniform random dictatorship is characterized by strategy-proofness, efficiency and anonymity. As anonymity is embedded to our model, our Theorem 1 can be read as a characterization of uniform random dictatorship in terms of independence, efficiency and anonymity. These two observations establish that under efficiency and anonymity, strategy-proofness and independence are equivalent, which calls for further exploring the relation between the two concepts in the general context of probabilistic tops-only social choice.

Theorem 2

 2 Within the class of twice differentiable, efficient, monotonic and neutral PTSs, uniform random dictatorship is the only PTS τ = (β, β) with sgnβ ′′ (r) = sgnβ ′′ (r) ∀r, r ∈ [0, 1]. Proof : It is straightforward to see that the uniform random dictatorship is efficient, monotonic, neutral, twice differentiable and satisfies sgnβ ′′ (r) = 0 ∀r ∈ [0, 1]. Now, take any PTS τ = (β, β) within the class of twice differentiable, efficient, monotonic, neutral PTSs. Condition 2 of Proposition 4 implies β ′′ (r) = -β ′′ (1 -r) ∀r ∈ [0, 1]. Thus, β ′′ (r) > 0 for some r ∈ [0, 1] implies β ′′ (1 -r) < 0. As a result, sgnβ ′′ (r) = sgnβ ′′ (r) ∀r, r ∈ [0, 1] implies β ′′ (r) = 0 ∀r ∈ [0, 1]. Thus, β(r) = ar +c for some a, c ∈ R. As τ is efficient, a = 1 and c = 0, showing that τ is the uniform random dictatorship. ■

See Brandt (2017) for an eloquent survey of the recent probabilistic social choice literature.

Note that the basic mappings of an independent and monotonic PTS must be monotonically increasing.

The rather technical condition that sgnβ ′′ (r) = sgnβ ′′ (r) ∀r, r ∈ [0, 1] is used towards identification of what exactly uniform random dictatorship entails, rather than as a desired property with interpretability.

Note that the second inequality exploits m ≥ 3.

From the first equality, we can derive β(1 -r -q) = 1 -β(r + q). Substituting this into the second inequality, we get β(r) + β(q) = β(r + q) ∀r, q ∈ [0, 1] with r + q ⩽ 1. We first claim and show β(n

The equality holds for n = 1. Take any n ∈ N and assume

showing the claim by induction. As for every n ∈ N and every r ∈ [0, 1], we can write

In the statement of Theorem 1, the domain of a PTS is restricted to rational numbers. This restriction is exploited to establish Cauchy's functional equation used in the proof. When a PTS admits a more general domain with real numbers, Cauchy's functional equation can be established by assuming the continuity of β [START_REF] Cauchy | Cours d'analyse de l'Ecole royale polytechnique[END_REF]. However, continuity of β is not necessary, as certain weaker continuity conditions such as imposing continuity on at least one point in the domain of β would also establish the Cauchy equation [START_REF] Darboux | Sur la composition des forces en statique[END_REF]. Discarding this continuity assumption and allowing β to be nowhere continuous opens room to a PTS that behaves as the uniform random dictatorship at rational values of profiles but not at irrational values.

We close the section by noting that efficiency and independence do not imply each other. The PTS expressed by the basic mapping β x (r) = 1 m ∀r ∈ [0, 1], ∀x ∈ A is independent but not efficient. For a PTS that is efficient but not independent, at each π ∈ Π, write X(π) = {x ∈ A : π(x) > 0} and let τ π (x) = 1 #X(π) ∀x ∈ X(π) and τ π (x) = 0 ∀x ∈ A\X(π).

The case of two alternatives

We start by emphasizing the difference in the strength of independence depending on whether there are at least three alternatives or not. For m ≥ 3, this is a demanding condition failed by many PTSs. In fact, as Theorem 1

shows, conjoined with efficiency, it singles out the uniform random dictatorship. On the other hand, for m = 2, independence becomes vacuous, being