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Discussion on the Correction of Classical

Electromagnetic Wave Theory through

Transmission Lines

Shuang-ren Zhao

2023 年 9 月 6 日

摘要

In recent years, the author has made appropriate revisions to Maxwell’s

classical electromagnetic field theory. This correction includes consider-

ing that the receiving antenna radiates advanced waves; The law that

radiation does not overflow the universe; The law of localized energy con-

servation and the theorem of mutual energy flow are valid. The Poynting

vector of far field of a antenna transmits reactive power. The electric and

magnetic fields that radiate the far field maintain a 90 degree phase differ-

ence instead of being in phase. In the author’s revised electric field theory,

the Maxwell equation still holds, but its solution has been reinterpreted.

This article applies the author’s theory to transmission line problems.

Transmission line problems are often solved using circuit methods. The

voltage and current propagate along the transmission line in phase. Our

textbooks often believe that there is only one type of electric field on a

transmission line, which is in phase with the voltage and therefore with

the current. Some scholars have also calculated the electric and magnetic

fields based on Maxwell’s electromagnetic theory, and obtained results

consistent with the circuit method. There is only one type of electric

field on the transmission line. According to the author’s electromagnetic

theory, there are two types of electric fields on transmission lines: electro-

static fields and induced electric fields. The electrostatic field is in phase

with the voltage on the transmission line. The phase of the induced elec-

tric field lags 90 degrees behind the current. This is consistent with a

simple circuit. Therefore, for transmission lines, the author’s theory con-

tradicts the conclusions of our existing textbooks. Therefore, transmission
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1 INTRODUCTION 2

lines are a good example, which can be used to distinguish between two

theories. The author also proposed a method for experimental verifica-

tion.

Maxwell’s equation, Poynting, retarded wave, advanced wave, re-

tarded potential, advanced potential, antenna, transformer, electromag-

netic wave, electromagnetic field, energy flow, quasi-static state, trans-

mission line

1 Introduction

1.1 Maxwell’s Electromagnetic Theory

The author found that Maxwell’s electric field theory is a theory of

retarded potential, and its key is that the vector potential in the frequency

domain is,

A(x, ω) ≡ µ0

4π

ˆ
V

J(x′)

r
dV (1)

A(r)(x, ω) ≡ µ0

4π

ˆ
V

J(x′) exp(−jkr)
r

dV (2)

The superscript (r) indicates retardation. A(r)(x, ω) is a vector potential

with retardation, while A(x, ω) is a vector potential without considering

retardation. Electric and magnetic fields are defined as,

E = −∇φ(r) − ∂

∂t
A(r) (3)

B = ∇×A(r) (4)

The above φ(r) is determined by the Lorenz gauge condition.

∇ ·A(r) = −jωµ0ε0φ
(r) (5)

Here we assume that all quantities have a time factor exp(jωt). We

omitted this factor. The key to this theory is to ensure that the follow-

ing generalizations have been made when transitioning from quasi-static

electromagnetic field theory or magnetic quasi-static electromagnetic field

theory to radiation electromagnetic field theory considering retardation,

A(x, ω)→ A(r)(x, ω) (6)
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This promotion ensures that

lim
kr→0

A(r)(x, ω) = A(x, ω) (7)

kr → 0 (8)

i.e.,
2π

λ
r → 0 (9)

r � λ (10)

r = ||x− x′|| (11)

Is the distance from the field point to the origin. If this distance is much

smaller than the wavelength λ, the retarded potential A(r) degenerates into

a non retarded vector potential A. The Maxwell equation is completely

equivalent to the retarded potential theory above. The theory of retarded

potential was first completed by Lorentz in 1867 [?], and the theory of

Lorenz retarded potential was only 5 years later than the Maxwell equa-

tion (completed in 1861-2). Maxwell did not solve the Maxwell equation,

but Lorenz’s theory is not only equivalent to Maxwell’s equation, but also

provides a general form of solution.

The author found that this condition is too simplistic for electromag-

netic theory. There are other conditions that should be considered when

transitioning from retarded potential theory to non retarded electromag-

netic theory.

1.2 The author’s electromagnetic theory

The author’s electromagnetic theory has made revisions to Maxwell’s

classical electromagnetic field theory. This correction is based on the fol-

lowing considerations:,

1.Not only the retarded potential (wave), but also the advanced poten-

tial (wave).

2. Radiation does not overflow the universe, where Γ is a sphere with

an infinite radius, assuming that the source of the electromagnetic field is
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the current J near the center of the sphere.

ˆ ∞
t=−∞

dt

"
Γ

(E ×H) · n̂dΓ = 0 (12)

No matter should overflow the universe, including electromagnetic waves. It

is wrong for classical electromagnetic theory to allow electromagnetic waves

to overflow the universe.

3. Ensure that the law of conservation of energy holds

N∑
i=1

N∑
j=i,j 6=i

ˆ ∞
t=−∞

dt

ˆ
V

(Ei · J j)dV = 0 (13)

This law tells us that if there are only two currents J1 , J2 . Current

J1 give a portion of the energy to the current J2 . So current J1 is a

primary coil, current J2 is a secondary coil. The energy loss of J1 is exactly

equal to the energy obtained by the current J2 . The algebraic sum of the

energy lost by the two coils together is 0. This indicates the conservation of

energy. We cannot derive this law of energy conservation from our classical

electromagnetic theory today. We can only take a step back and prove this

self proclaimed energy law as the energy theorem or reciprocity theorem.

4.The current generates half retarded and half advanvced waves. There-

fore, when the retarded wave and advanced wave degenerate into a non

retarded and non advanced electromagnetic field, this electromagnetic field

must be superimposed, that is, the superposition of the electric field and the

magnetic field is also superimposed. No offsetting can occur. Our classical

electromagnetic theory today does not meet this requirement

5.For discrete systems, such as systems composed of primary and sec-

ondary transformers, the energy of the system composed of transmitting

and receiving antennas is transmitted by mutual energy flow

The first of the five above is the characteristic of the author’s electro-

magnetic field theory. This theory is an electromagnetic field theory that

includes advanced waves. The theory of advanced waves, also known as the

absorber theory, was first proposed by Wheeler Feynman in 1945[?, ?].This

theory also applies the principle of action at a distance [?, ?, ?]. In addi-

tion, Stephenson also conducted in-depth research on the theory of advanced
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waves around 1980 [?]. Cramer further developed this theory into a transac-

tional interpretation of quantum mechanics in 1986 [?, ?]. Welch proposed

the electromagnetic field reciprocity theorem including advanced waves in

1960 [?].

Classical electromagnetic field theory cannot be directly applied to form

a theory that includes advanced waves, which can be obtained by advanced

potentials

A(a)(x, ω) ≡ µ0

4π

ˆ
V

J(x′) exp(+jkr)

r
dV (14)

E = −∇φ− ∂

∂t
A(a) (15)

B = ∇×A(a) (16)

The electromagnetic field obtained in this way cannot be directly used,

as the original Maxwell electric field theory is difficult to reconcile with after

the introduction of advanced waves. The conservation of energy theorem is

the first challenge encountered. Because once there is an advanced wave,

the retarded wave radiates energy, and the advanced wave also radiates

energy (this energy is negative). However, the author found that there is

also an interaction between the retarded wave and the advanced wave at

this time. This interaction also transfers energy. The energy transferred by

this interaction is exactly the energy from the source to the sink. Here, the

source refers to the source of electromagnetic waves, including transmitting

antennas, primary coils of transformers, light sources, etc. A sink is a

device that receives electromagnetic waves, including a receiving antenna,

a secondary coil of a transformer, a screen for receiving light, and so on.

Since the energy flow of interaction, also known as the mutual en-

ergy flow, can transfer energy from the source to the sink. So the energy

transmitted by the advanced and retarded waves themselves is redundant.

Wheeler and Feynman also attempted to solve this contradiction in the

absorber theory. Their viewpoint is that the current radiates half of the

retarded wave and half of the advanced wave. The retarded wave carries

positive radiation energy, while the advanced wave radiates negative energy.

Therefore, current does not radiate energy in average. The author agrees
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with Wheeler Feynman’s viewpoint of half retarded wave and half advanced

wave, but does not agree that the energy of the retarded and advanced

waves emitted by the current can be offset. The author proposed the con-

cept of time reversal wave in 2017 [?]. Time reversal waves can cause both

retarded and advanced waves to collapse in the opposite direction. The re-

verse collapse cancels out the energy flow of the original retarded wave and

advanced wave. This leaves only the mutual energy flow to transfer energy.

The law of conservation of energy is guaranteed. That is to say, Article 2

has been guaranteed.

But time reversal waves require adding new electromagnetic fields to

the Maxwell’s equations, which makes the problem more complex. And

it cannot solve all the problems. Since 2017, the author has attempted to

apply the theory proposed by the author in many examples. These examples

include electromagnetic waves of double infinite plane currents. The energy

flow problem from the primary to secondary of the transformer. The energy

flow problem from the dipole transmitting antenna to the dipole receiving

antenna. In these specific problems, the author found that if Maxwell’s

electromagnetic theory is used to calculate the electric and magnetic fields,

and then the mutual energy flow is calculated, the mutual energy flow is

often an imaginary number, so it transfers reactive power, that is, it does

not transfer energy. Therefore, time reversal waves cannot truly solve the

problem and complicate it.

The author proposes the concept that both retaded wave and advanced

wave are reactive power waves, and reactive power waves are waves that

maintain a 90 degree phase difference between the electric and magnetic

fields. On average, the energy transmitted by this wave is 0. Therefore, it is

no longer transmitting energy. If both the retarded wave and the advanced

wave are reactive power waves, they themselves will not transmit energy.

Time reversal waves are no longer needed. The reactive power wave can

completely replace the original retarded wave and advanced wave, and also

includes the time reversal wave of retarded wave and advanced wave. The

author found that if the retarded wave and advanced wave are reactive

power, the mutual energy flow formed by them happens to be active power.
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The 1-5 items mentioned earlier have been perfectly implemented.

According to Maxwell’s electromagnetic field theory, the far-field elec-

tric and magnetic fields of the antenna remain in phase, therefore they

are not reactive power waves. However, the author found that Maxwell’s

electromagnetic field theory is actually a retarded potential theory, which

can ensure that the electric field is a retarded field, but cannot guaran-

tee that the magnetic field is also a retarded field. Therefore, the author

made corrections to the magnetic field obtained from Maxwell’s classical

electromagnetic theory [?, ?, ?][?, ?, ?, ?, ?, ?][?, ?, ?, ?, ?].

Here we summarize the conclusions from these literature as follows.

Assuming we calculate the magnetic field HMaxwell according to retarded

potential of the electromagnetic field theory, the magnetic field corrected

by the author is

E
(r)
i = E

(r)
iMaxwell (17)

H(r) = (−j)H(r)
Maxwell (18)

H is the true magnetic field of the system. The above correction is for the

electromagnetic wave part, that is, for the far-field correction. No correction

is needed for near field. The above correction factor (−j) holds for the

retarded wave. If it is a advanced wave, the factor is (j).

E
(a)
i = E

(a)
iMaxwell (19)

H(a) = (j)H
(a)
Maxwell (20)

Above, we are correcting the magnetic field. Sometimes, the correct mag-

netic field is already known, and it is necessary to correct the induced elec-

tric field. At this time, we also add a phase factor to the above correction

formula, such as adding (j) to the retarded wave

E
(r)
i = jE

(r)
iMaxwell (21)

H(r) = j(−j)H(r)
Maxwell = H

(r)
Maxwell (22)

For advanced waves, the correction factor is (−j),
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E
(a)
i = −jE(a)

iMaxwell (23)

H(a) = −j(j)H(a)
Maxwell = H

(a)
Maxwell (24)

Note that the superscript (r) means retarded wave, the superscript (a)

means advanced wave, and the subscript i means induced electric field. The

subscript Maxwell refers to the meaning calculated according to Maxwell’s

equation.

The author’s theory has achieved the following results:

1. for the independent systems, such as simple circuit, transmit energy

through the self energy flow corresponding to the Poynting vector. For the

discrete systems, such as the primary and secondary coils of transformers,

transmitting and receiving antennas, and the energy flow from the light

source to the light sink are mutual energy flows.

2. The law of conservation of energy and the theorem of mutual energy

flow hold:

−
ˆ
V1

E1 · J∗2dV = (ξ1, ξ2) =

ˆ
V1

E∗2 · J1dV (25)

(ξ1, ξ2) =

"
Γ

(E1 ×H∗2 + E∗2 ×H1) · n̂dΓ (26)

The author has verified the above laws for systems with dual planar trans-

formers, a system with planar transmitting antenna and a planar receiving

antenna, and a system with a dipole transmitting antenna and a dipole re-

ceiving antenna. Note that the above theorem is actually the law of conser-

vation of energy, and it is a localized law of conservation of energy. (Please

note that the above law of conservation of energy is not valid in Maxwell’s

electromagnetic theory. As mentioned earlier, the mutual energy flow calcu-

lated based on Maxwell’s equations for electric and magnetic fields is often

a pure imaginary number and therefore does not transfer energy. The above

mutual energy flow theorem is valid in the author’s revised electromagnetic

theory.)

3. The mutual energy flow is generated at the source and annihilated

at the sink, thus possessing the properties of photons. Therefore, the author

believes that photons are mutual energy flows. The mutual energy flow is
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composed of retarded waves and advanced waves, which have the properties

of waves. The mutual energy flow has the properties of particles, especially

at the light source and light sink, where it gathers into a point and carries

energy and momentum. Therefore, like particles. The mutual energy flow

itself is both a retarded wave and an advanced wave, therefore it is also a

wave. This explains the problem of wave particle duality.

4. The author’s electromagnetic field theory further supports Cramer’s

quantum mechanical trading interpretation [?, ?]. Therefore, the interpre-

tation of quantum mechanics through transactional interpretation is also

applied to the author’s electromagnetic theory.

1.3 The focus of this article is on transmission lines

This article studies the transmission line problem. The transmission

line problem is a very simple problem. The electromagnetic waves inside

the transmission line are TEM waves, which should be easily solved by

Maxwell’s classical electromagnetic theory. However, we have discovered a

strange phenomenon. Few people use Maxwell’s equations to solve trans-

mission line problems, usually using circuit methods. The author reviews

circuit methods for solving transmission line problems. Review the plane

wave problem. Review simple electromagnetic field transmission problems

in transmission lines. The dilemma of using Maxwell’s classical electromag-

netic theory to solve transmission line problems is studied. Then, using the

electromagnetic field theory proposed by the author to calculate the trans-

mission line problem, the author found that the results are consistent with

the circuit method.

The author’s revision of Maxwell’s electromagnetic theory has not been

widely accepted, although several papers have been published. If the trans-

mission line problem can be perfectly solved according to the author’s the-

ory, but there are difficulties in solving the classical electromagnetic theory

using Maxwell’s equations, this itself supports the author’s electromagnetic

field theory. On the other hand, any measurement within the transmission

line is very easy to perform. If experimental verification is required, it can

also be done very easily on the transmission line.
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2 Plane waves

2.1 Solving plane waves according to Maxwell’s equation

Solving plane waves according to Maxwell’s equation

∇ ·E = 0 (27)

∇ ·B = 0 (28)

∇×E = −jωµ0H (29)

∇×H = jωε0E (30)

The above formula is the Maxwell’ equations without sources.

2.2 Wave equation

∇×∇×E = −jωµ0∇×H = −jωµ0(jωε0E) (31)

∇×∇×E = ω2µ0ε0E (32)

∇(∇ ·E)−∇2E = ω2µ0ε0E (33)

Considering ∇ ·E = 0,

∇2E + ω2µ0ε0E = 0 (34)

∇2E + k2E = 0 (35)

wherein

k2 = ω2µ0ε0 (36)

2.3 Wave equation solving

E = E0 exp(−jk · x) (37)

Consider ∇ ·E = 0, there is,

−jk ·E = 0 (38)
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or

k ·E = 0 (39)

therefore,

E ⊥ k (40)

To simplify the problem, we can assume that,

k = kx̂ (41)

This indicates that the wave propagates along the x-axis direction, so

there is,

E = E0 exp(−jkx) (42)

wherein

E0 = E0(−ẑ) (43)

E = E0 exp(−jkx)(−ẑ) (44)

We calculate the magnetic field using Faraday’s law (29)

H =
1

−jωµ0

∇×E

=
1

−jωµ0

∇× (E0 exp(−jkx)(−ẑ))

=
1

−jωµ0

(−jkx̂)× (E0 exp(−jkx)(−ẑ))

=
k

ωµ0

x̂× (E0 exp(−jkx)(−ẑ))

=
k

ωµ0

E0 exp(−jkx)ŷ

=
1

η0

E0 exp(−jkx)ŷ (45)

η0 =
ωµ0

k
=

µ0

ω
√
µ0ε0

=

√
µ0

ε0
(46)

In this way, we obtain a plane invariant solution, which is the solution

of the retarded wave. Therefore, we add a superscript (r) to them,
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E(r) = E0 exp(−jkx)(−ẑ) (47)

H(r) =
1

η0

E0 exp(−jkx)ŷ (48)

Based on Maxwell’s theory, the electric and magnetic fields of retarded

waves were obtained.

2.4 Advanced wave

The above is the retarded wave. Considering the electric field of the

advanced wave,

E = E0 exp(+jkx)(−ẑ) (49)

H =
1

−jωµ0

∇×E

=
1

−jωµ0

∇× (E0 exp(+jkx)(−ẑ))

=
1

−jωµ0

jkx̂× (E0 exp(+jkx)(−ẑ))

= − 1

ωµ0

kx̂× (E0 exp(+jkx)(−ẑ))

= − 1

η0

E0 exp(+jkx)ŷ (50)

Therefore, we obtain the advanced wave solution,

E(a) = E0 exp(+jkx)(−ẑ) (51)

H(a) = − 1

η0

E0 exp(+jkx)ŷ (52)

We obtain the electric and magnetic fields of the advanced wave based

on Maxwell’s electromagnetic theory

2.5 Sources of plane waves

Assuming there is a constant AC current, this current is on an infinite

flat plate. This current is

J(t) = J0 exp(jωt)ẑ = J(t)ẑ (53)
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x

r

R

O

P

A

图 1: Plane electromagnetic waves are generated by an infinite flat plate

current.

Considering the retarded vector potential,

A =
µ0

4π

ˆ
σ

J

r
exp(−jkr)dσẑ (54)

Consider that the flat plate current is a circle with a radius of R.

R =
√
y2 + z2 (55)

Consider,

r =
√
x2 +R2 (56)

A(t, x) =
µ0

4π
J

ˆ 2π

o

dθ

ˆ R

o

1√
x2 +R2

exp(−jk
√
x2 +R2)RdR (57)

=
µ0

4π
2πJ

ˆ R

o

1√
x2 +R2

exp(−jk
√
x2 +R2)

1

2
dR2 (58)

Consider,

d
√
x2 +R2 = (x2 +R2)−

1
2

1

2
dR2 (59)

A(t, x) =
µ0

4π
2πJ

ˆ R

o

exp(−jk
√
x2 +R2)d

√
x2 +R2

=
µ0

2

J

−jk

ˆ R

o

d exp(−jk
√
x2 +R2)
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=
µ0

2

J

−jk
exp(−jk

√
x2 +R2)|R0

=
µ0

2

J

−jk
(exp(−jk

√
x2 +R2 − exp(−jk

√
x2))

=
1

jk

µ0J

2
(exp(−jkx)− exp(−jk

√
x2 +R2)) (60)

From this, the electric field can be calculated

E = − ∂

∂t
A = −jωA =

= −jω 1

jk

µ0J

2
(exp(−jkx)− exp(−jk

√
x2 +R2))ẑ

= −ωµ0

k

J

2
(exp(−jkx)− exp(−jk

√
x2 +R2))ẑ (61)

ωµ0

k
=

ωµ0

ω
√
µ0ε0

=

√
µ0

ε0
= η0 (62)

therefore

E = −η0
J

2
(exp(−jkx)− exp(−jk

√
x2 +R2))ẑ (63)

Consider,

E∞ = lim
R→∞

E

E∞ = lim
R→∞

(−η0
J

2
(exp(−jkx)− exp(−jk

√
x2 +R2)))ẑ (64)

The latter term in the above equation diverges, but the average value

of the latter term is 0. Therefore, it can also be considered as 0

this way

E∞ = η0
J

2
exp(−jkx)(−ẑ) (65)

From this, the magnetic field can be calculated,

H =
1

µ0

∇×A(t, x) (66)

H =
1

µ0

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

 =
1

µ0

 x̂ ŷ ẑ
∂
∂x

0 0

0 0 Az

 = − 1

µ0

∂

∂x
Az ŷ

= − 1

µ0

∂

∂x
(

1

jk

µ0

2
J(exp(−jkx)− exp(−jk

√
x2 +R2)))ŷ
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= − 1

µ0

(
1

jk

µ0

2
J(−jk exp(−jkx)− (−jk)

R√
x2 +R2

exp(−jk
√
x2 +R2)))ŷ

= (
J

2
(exp(−jkx)− R√

x2 +R2
exp(−jk

√
x2 +R2)))ŷ (67)

H∞ = lim
R→∞

H =
J

2
(exp(−jkx))ŷ (68)

We can also calculate the electric field from the magnetic field,

∂

∂t
ε0E

∞ = ∇×H∞

=

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

H∞x H∞y H∞z

 =

 x̂ ŷ ẑ
∂
∂x

0 0

0 H∞y 0

 = ẑ
∂

∂x
H∞y

= ẑ
∂

∂x

J

2
exp(−jkx) = −jkẑ J

2
exp(−jkx) (69)

Or

jωε0E
∞ = −jkẑ J

2
exp(−jkx) (70)

E∞ = − k

ωε0

J

2
exp(−jkx)ẑ (71)

k

ωε0
=
ω
√
µ0ε0

ωε0
=

√
µ0

ε0
= η0 (72)

E∞ = −η0
J

2
exp(−jkx)ẑ (73)

Considering that we are calculating the retarded potential,

Er∞ = η0
J

2
exp(−jkx)(−ẑ) (74)

Hr∞ = lim
R→∞

H =
J

2
(exp(−jkx))ŷ (75)

The superscript r represents retardation, while the superscript∞ represents

the electromagnetic field of an infinite plate current. The above calculation

results (74,75) are consistent with the previous formulas (47,48). Just con-

sider,

E0 = η0
J

2
(76)
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It is worth mentioning that in the above calculation, if the magnetic field

is calculated first, and then the electric field is calculated by the magnetic

field, the divergence problem encountered in calculating the electric field

can be avoided. However, the results are consistent with our direct neglect

of divergent items with an average of 0.

2.6 Advanced potential

Considering the advanced potential,

Aa =
µ0

4π

ˆ
σ

J

r
exp(jkr)dσẑ (77)

Similar to the previous method, the advanced potential can be ob-

tained,

Aa(t, x) = − 1

jk

µ0J

2
(exp(+jkx)− exp(+jk

√
x2 +R2)) (78)

Ea = −jωAa(t, x) (79)

Ea∞ = lim
R→0

Ea∞ (80)

The second term diverges, but it averages 0. Ignore the second term

with an average of zero,

Ea∞ = +η0
J

2
exp(+jkx)ẑ (81)

（29）Strictly speaking, divergent terms cannot be ignored. But it is

also possible to handle it this way in engineering. Consider Faraday’s law

(29)

H =
1

−jωµ0

∇×E =
1

−jωµ0

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez


1

−jωµ0

 x̂ ŷ ẑ
∂
∂x

0 0

0 0 Ez

 =
1

−jωµ0

ŷ(− ∂

∂x
Ez) =

1

jωµ0

ŷ
∂

∂x
Ez

So,
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Ha∞ = lim
R→∞

H =
1

jωµ0

ŷ
∂

∂x
Ea∞
z =

1

jωµ0

ŷ(jk)Ea∞
z

=
k

ωµ0

ŷEa∞
z =

1

η0

ŷEa∞
z

=
J

2
(exp(+jkx))ŷ (82)

2.7 Superposition of retarded and advanced waves

According to the viewpoint of Wheeler Feynman absorber theory [?, ?],

current radiates half the retarded wave and half the advanced wave. The

author agrees with this viewpoint, that is,

E∞ =
1

2
(Er∞ + Ea∞) (83)

H∞ =
1

2
(Hr∞ + Ha∞) (84)

When the wavelength is very large, i.e

kr =
2π

λ
r → 0 (85)

there is,

lim
kr→0

E∞ = lim
kr→0

1

2
(−η0

J

2
exp(−jkx)ẑ + η0

J

2
exp(+jkx)ẑ)

=
1

2
(−η0

J

2
+ η0

J

2
)ẑ = 0 (86)

lim
kr→0

H∞ = lim
kr→0

1

2
(
J

2
(exp(−jkx))ŷ +

J

2
(exp(+jkx))ŷ)

=
1

2
(
J

2
+
J

2
)ŷ =

J

2
ŷ (87)

From above, we can see that the electric field is completely cancelled and the

magnetic field is superimposed. This seems to be a bit problematic. This

makes the half retarded and half advanced scheme proposed by Wheeler

Feynman cannot be relaized when

r � λ (88)

The condition we proposed 1.2 cannot be met.
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2.8 Correction of magnetic field

The previous calculations Er∞, Hr∞ are the retarded electric and mag-

netic fields of infinite plate currents calculated according to Maxwell’s elec-

tromagnetic field theory. This electric field and magnetic field are in phase.

Such calculations can be found in FeynmanLectures on Physics [?]. Feyn-

man specifically brought up this issue for discussion, and it seems that it is

very entangled with this issue. According to Maxwell’s theory,

Er∞ = −η0
J

2
exp(−jkx)ẑ (89)

Hr∞ = lim
R→∞

H =
J

2
(exp(−jkx))ŷ (90)

Due to the fact that the plane wave generated by the flat plate current is

itself a far-field, radiating electromagnetic field. According to the author’s

theory, a correction should be made to the magnetic field,

Ecr∞ = Er∞ = −η0
J

2
exp(−jkx)ẑ (91)

Hcr∞ = (−j)Hr∞ = (−j)J
2

(exp(−jkx))ŷ (92)

The superscript c represents corrected, the superscript r represents

retarded, the superscript a represents advanced, and the superscript∞ rep-

resents the electric and magnetic fields generated by infinite plate currents.

We calculate the electric and magnetic fields in the x-direction of the flat

plate current.

Eca∞ = Ea∞ = −η0
J

2
exp(+jkx)ẑ (93)

Ha∞ = −J
2

(exp(+jkx))ŷ (94)

For the advanced wave correction factor, it is not (−j) but (j), therefore

there is,

Hca∞ = (j)Hca∞ = −j J
2

(exp(+jkx))ŷ (95)

This way,
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Ec∞ =
1

2
(Ecr∞ + Eca∞) (96)

Hc∞ =
1

2
(Hcr∞ + Hca∞) (97)

Ec∞ =
1

2
(−η0

J

2
exp(−jkx)ẑ − η0

J

2
exp(+jkx)ẑ) (98)

Hc∞ =
1

2
(−j J

2
exp(−jkx)ŷ − j J

2
exp(+jkx)ŷ) (99)

lim
kr→0

Ec∞ = −η0
J

2
ẑ (100)

lim
kr→0

Hc∞ = −j J
2

(101)

Consider that we can modify a phase factor for both the electric and

magnetic fields above, such as

exp(jψ) = j (102)

After this correction, the phase difference between the electric and magnetic

fields of the plane wave will not change. What we really care about is the

phase difference between the magnetic and electromagnetic fields. So we

can also write it as,

lim
kr→0

Ec∞ = jη0
J

2
(−ẑ) (103)

lim
kr→0

Hc∞ = j(−j)J
2

=
J

2
(104)

We can see that according to the author’s revised plane wave, the re-

tarded electric field and the advanced electric field remain superimposed at

kr → 0, and the retarded magnetic field and the advanced magnetic field

also overlap, rather than cancel. In this way, we have implemented the

theory of half retarded and half advanced proposed by Wheeler Feynman

[?, ?].

In addition, according to the author’s electromagnetic theory, the elec-

tric and magnetic fields of plane waves maintain a 90 degree phase difference.

This is consistent with the quasi-static situation. Under quasi-static con-

ditions, electromagnetism also lags behind the magnetic field by a phase

of j = exp(j π
2
). In this way, half retarded waves and half advanced waves

can degenerate into quasi-static electromagnetic fields when the condition

r � λ is met.



3 SIMPLE CIRCUIT 20

+

-

R

U

I

emf

图 2: Simple circuit. It is composed of a power supply and a resistor,

connected by a wide wire as shown in the figure. Line width Ly , line height

Lz , with current I0. The voltage drop on the line is U .

3 Simple circuit

The following figure 2 is a simple circuit, for which we can consider the

problem under magnetic quasi-static conditions.

Consider a simple circuit composed of a power supply and a resistor,

for this circuit. Obviously, we are considering that the voltage between the

two wires is U So the electrostatic field is

Es =
U

Lz
(−ẑ) = −ẑ U

Lz
(105)

That is to say, the electric field should be calculated based on voltage.

Alternatively, the electric field is calculated by the electric potential φ. We

are applying

Es = −∇φ (106)

U = φup − φdown (107)

The above is the electric field. The magnetic field is calculated by the anpere

circuital theorem. For upper current conductors,

Hup '
J

2
ŷ (108)

Hdown '
J

2
ŷ (109)

The symbol “'” in the above equation is because the width of the wire

is finite, so the approximate value obtained above is.
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H = Hup + Hdown (110)

H ' 2
J

2
ŷ = Jŷ =

I

Ly
ŷ (111)

So the wire power

W = UI∗

W =
UU∗

R
(112)

On the other hand, Poynting vector,

S = E ×H∗ = −ẑ U
Lz
× I∗

Ly
ŷ = x̂

UI∗

LzLy
(113)

We can calculate the power based on the Poynting vector, and the

output power is,

W =

¨
σ

S · x̂dσ

=

¨
σ

UI∗

LzLy
dσ =

UI∗

LzLy
LzLy = UI∗ (114)

The two methods for calculating power are consistent. From the above

simple circuit method, we can see that the magnetic field of the circuit

should be calculated according to the current through the ampere circuital

law. The electrostatic field is calculated based on the potential −∇φ. Our

question is, does this circuit have an induced electric field? Of course, if we

assume that the current is alternating current. So the magnetic field will

induce an induced electric field. We know,

˛
C

Ei · dl = −jωµ0

"
Γ

H · n̂dΓ ∼ −jI (115)

It can be seen that the induced electric field near the power source is

Ei ∼ −jIẑ = jI(−ẑ)

The Poynting vector can be calculated from the induced electric field,

which is

Ei ×H∗ ∼ j (116)

The Poynting vector of an induced electric field is a pure imaginary

number and does not transfer energy. We will calculate the transmission
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line later. Transmission lines are very similar to simple circuit. The trans-

mission line should consider the transmission of waves. But there are some

properties that should be preserved. For example, a magnetic field can be

calculated from current. The Poynting vector composed of induced elec-

tric and magnetic fields is a pure imaginary number. Energy should be

transmitted through the Poynting vector composed of a static electric field

and a magnetic field. That is to say, the transmission line should meet the

conditions in the wave field (88) and can degenerate to the simple circuit

mentioned above.

4 Review of Using Circuit Methods to Study

Transmission Line Problems

Few people use Maxwell’s equations to solve transmission line problems.

In most cases, the circuit method is used. This chapter reviews this method.

We are considering a small section of the transmission line, ∆x. Assuming

the impedance per unit length of this circuit is

Z = R+ jωL (117)

The conductivity per unit length is,

Y = g + jωC (118)

Further consider the input voltage and current as,

Uin = U(x) (119)

Iin = I(x) (120)

The output voltage is

Uout = U(x+ ∆x) (121)

Iout = I(x+ ∆x) (122)

Using the Kirchhoff voltage theorem,
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Z

Y
U(x)

U(x+Delta x)

Delta x

I(x) I(x+Delta x)

图 3: The voltage drop on the transmission line is U(x), and the current is

I(x)

U(x) = IZ∆x+ U(x+ ∆x) (123)

or

−IZ∆x = U(x+ ∆x)− U(x) (124)

or

−IZ =
U(x+ ∆x)− U(x)

∆x
(125)

or

−IZ =
∂

∂x
U(x) (126)

According to Kirchhoff’s current theorem,

I(x)− I(x+ ∆x) = U(x)Y∆x (127)

or
I(x+ ∆x)− I(x)

∆x
= −U(x)Y (128)

or
∂

∂x
I = −U(x)Y (129)

Consider (125) Consider

I = − 1

Z

∂

∂x
U(x) (130)
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Substitution (129)

∂

∂x
(− 1

Z1

∂

∂x
U(x)) = −U(x)Y (131)

or
∂2

∂x2
U(x) = ZY U(x) (132)

If R and g are both small quantities, they can be ignored,

ZY = (R+ jωL)(g + jωC) ' jωLjωC = −ω2LC (133)

Hence,
∂2

∂x2
U(x) = −ω2LCU(x) (134)

or

k = ω2LC (135)

∂2

∂x2
U(x) + k2U(x) (136)

The solution is

U(x) = U0 exp(−jkx) (137)

Similarly, it can be concluded that,

I(x) = I0 exp(−jkx) (138)

Consider,

I(x) = − 1

Z

∂

∂x
U(x)

= − 1

Z
(−jk)U(x)

= − 1

jωL
(−jk)U(x)

=
1

ωL
kU(x)

=
1

ωL
ω
√
LCU(x)

=

√
C

L
U(x) (139)



5 USING THE ELECTROMAGNETIC FIELD THEORY IN TODAY’S TEXTBOOKTOCALCULATE PARALLEL TRANSMISSION LINES25

or

I(x) =

√
C

L
U(x) (140)

U(x) =

√
L

C
I(x) (141)

It can be seen that U(x) and I(x) are in phase.

Z0 =

√
L

C
(142)

The characteristic impedance of a transmission line. Where C is the ca-

pacitance per unit length. L is the inductance per unit length. Consider a

special case where the radius of the wire is assumed to be a. The distance

between two wires is d, so the capacitance per unit length is

C =
2πε0

ln d
a

(143)

The inductance per unit length is,

L =
µ0

2π
ln
d

a
(144)

The characteristic impedance is

Z0 =

√√√√ µ0

2π
ln d

a
2πε0
ln d

a

=
ln d

a

2π

√
µ0

ε0
(145)

5 Using the electromagnetic field theory in

today’s textbook to calculate parallel

transmission lines

The transmission line consists of an upper conductor and a lower con-

ductor, forming a waveguide device. This device can confine waves within

the transmission line. At the transmission line x=0, there is a current J

in the direction of the current along the z-axis. This current generates a

magnetic vector potential A.
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z

y

x

E

H

J

A

图 4: Parallel transmission line, line width Ly , line height Lz , with current

I0. The voltage drop on the line is U .

5.1 Parallel transmission lines in electromagnetic theory

textbooks

Our textbooks generally approach transmission line problems by con-

sidering TEM waves, where the electric field follows the z-axis direction and

the magnetic field follows the y-axis direction,

E = Ez(x, t)ẑ (146)

H = Hy(x, t)ŷ (147)

Satisfy Maxwell’s equations

∇×E = − ∂

∂t
µ0H (148)

∇×H = +
∂

∂t
ε0E (149)

The above equation assumes that J and ρ are both 0. Therefore, φ is

0.

∇×E =

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

 =

 x̂ ŷ ẑ
∂
∂x

0 0

0 0 Ez


= −ŷ(

∂

∂x
Ez) (150)
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∇×H =

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Hx Hy Hz

 =

 x̂ ŷ ẑ
∂
∂x

0 0

0 Hy 0


= ẑ

∂

∂x
Hy (151)

The Maxwell equation is transformed into (148,149),

∂

∂x
Ez =

∂

∂t
µ0Hy (152)

∂

∂x
Hy =

∂

∂t
ε0Ez (153)

Or

∂2

∂x2
Ez =

∂

∂t
µ0

∂

∂x
Hy = µ0ε0

∂2

∂t2
Ez (154)

Or
∂2

∂x2
Ez = µ0ε0

∂2

∂t2
Ez (155)

Or
∂2

∂x2
Ez = µ0ε0(jω)2Ez (156)

Or
∂2

∂x2
Ez + k2Ez = 0 (157)

wherein

k2 = µ0ε0ω
2

The above equation is the Helmholtz equation, and its solution is,

Ez = E0 exp(−jkx) (158)

Similarly, for magnetic fields,

Hy = H0 exp(−jkx) (159)

Consider (152),
∂

∂x
Ez =

∂

∂t
µ0Hy (160)



5 USING THE ELECTROMAGNETIC FIELD THEORY IN TODAY’S TEXTBOOKTOCALCULATE PARALLEL TRANSMISSION LINES28

Or

−jkEz = jωµ0Hy (161)

Or

−kEz = ωµ0Hy (162)

Or

−Ez =
ωµ0

k
Hy =

ωµ0

ω
√
ε0µ0

Hy =

√
µ0

ε0
Hy = η0Hy (163)

Ez = −η0Hy (164)

This indicates that the electric field and magnetic field are in phase.

We assume that,

H = H0 exp(−jkx) (165)

Obtain,

E = −η0H0 exp(−jkx) (166)

The reference literature for solving transmission line problems using

the field method can be seen from [?], and Liang Changhong particularly

compared the circuit method with the field method,[
∂
∂x

(−U(x)) = jωLI
∂
∂x
I = jωC(−U(x))

]
vs

[
∂
∂x
Ez = jωµ0Hy

∂
∂x
Hy = jωε0Ez

]
(167)

If we take a double wire transmission line as an example, assuming the

radius of the wire is a and the distance between the two wires is d, the

capacitance of the wire is

C =
2πε0

ln d
a

(168)

Inductance is

L =
µ0

2π
ln
d

a
(169)

Hence,

[
∂
∂x

(−U(x)) = jωLI
∂
∂x
I = jωC(−U(x))

]
=

[
∂
∂x

(−U(x)) = jω µ0

2π
ln d

a
I

∂
∂x
I = jω 2πε0

ln d
a

(−U(x))

]
(170)
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or
∂2

∂x2
(−U(x)) = jω

µ0

2π
ln
d

a

∂

∂x
I

= jω
µ0

2π
ln
d

a
(jω

2πε0

ln d
a

(−U(x))) = −ω2µ0ε0(−U(x)) (171)

or

∂2

∂x2
U(x) + ω2µ0ε0U(x) = 0 (172)

lets,

k2 = ω2µ0ε0

we obtain,

U(x) = U0 exp(−jkx) (173)

This indicates that the field method can obtain the same results as the

circuit method. If considering the following changes

I,−U(x), L, C ↔ Hy, Ez, µ0, ε0 (174)

The left and right sides of the formula (167) are equivalent.

5.2 Problems with Methods in Parallel Transmission Line

Textbooks

This method seems to have no problem calculating the electric and

magnetic fields according to Maxwell’s equations. Actually, it is an incor-

rect algorithm (the author believes it is incorrect). For transmission lines,

the electric field consists of two parts: the static electric field and the in-

duced electric field. This is already evident in the previous chapter 3. The

transmission line should be able to degenerate into a simple circuit. Be-

cause there is voltage between the upper and lower wires. This voltage will

generate an static electric field, which is generated by electric potential and

is also in the same phase as the current, that is,

Es = −∇φ (175)
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Additionally, at wire x = 0, there is a power source, or equivalent power

source. This power supply has current. This current should contribute to

the magnetic vector potential

J = J0ẑ (176)

We should calculate the induced electric field based on the magnetic

vector potential A. This method is exactly the same as the one we use

to solve antenna problems. Otherwise, one method is used for solving the

antenna, and another method is used for calculating the transmission line.

That is in correct.

The author believes that electrostatic fields

Esz = −(φup − φdown)

Lz
= − U

Lz
(177)

Es It’s an electrostatic field. φup is the potential of the upper wire.

φdown is the potential of the lower wire.

U ≡ φup − φdown

U = U0 exp(−jkx) (178)

U0 is the initial voltage, which is a constant.

Esz = − 1

Lz
U0 exp(−jkx) (179)

Es =
1

Lz
U0 exp(−jkx)(−ẑ) = Es0 exp(−jkx)(−ẑ) (180)

wherein,

Es0 =
1

Lz
U0 (181)

At this point, we will find that the curl of this electrostatic field is not

zero

∇×Es = −ŷ(
∂

∂x
Ez) = −ŷ ∂

∂x
(Es0 exp(−jkx)(−1))

= ŷ
∂

∂x
(Es0 exp(−jkx)

= −jkEs0 exp(−jkx)ŷ (182)
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The author believes that this part of the electrostatic field cannot follow

the Faraday formula

∇×Es = −jω ∂
∂t

B (183)

Contribute to the magnetic field. Therefore, the above formula cannot be

used to calculate the magnetic field. This is because Maxwell’s original

equation was

E = −∇φ− ∂

∂t
A (184)

In this equation, we can only use −∇φ to find the electrostatic field Es

.

Es = −∇φ (185)

We can only use vector potential A to calculate the induced electric

field

Ei = − ∂

∂t
A (186)

This formula is equivalent to Faraday’s law

∇×Ei = − ∂

∂t
B = −jωB (187)

Therefore, we can only using the curl of induced electric field Ei to

calculate the magnetic field B. Alternatively, use the curl of vector potential

A to find the magnetic field B

B = ∇×A (188)

The curl of the electrostatic field in formula (182) is not 0, which is a

very special case. In this case, write again

∇×E = − ∂

∂t
B (189)

It’s not correct because the above equation means,

∇×Ei +∇×Es = − ∂

∂t
B (190)

And at this point

∇×Es 6= 0 (191)
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The equation (184) is the Faraday’s law in Maxwell’s own Maxwell equation,

while the equation (189) is a modified Maxwell’s equation by Maxwell’s

descendants. At this point, it can be seen that Maxwell’s own Maxwell’s

equation is more advanced than that of Maxwell’s descendants.

5.3 Revise the above theory

The equation (146,147) actually means,

Ei = Ezi(x, t)ẑ (192)

H = Hy(x, t)ŷ (193)

The subscript (i) means the induced electric field Ei instead of the electric

field E. The induced electric field and magnetic field satisfy the following

relationship,

∇×Ei = − ∂

∂t
µ0H (194)

∇×H = +
∂

∂t
ε0Ei (195)

Comparing the above equation with (148,149) shows the difference between

the two. The solution of the above equation

Hy = H0 exp(−jkx) (196)

Eiz = −η0H0 exp(−jkx) (197)

The above two formulas are the solution obtained based on the retarded

wave that satisfies the Maxwell’s equations. If written completely, it should

be

H
(r)
yMaxwell = H0 exp(−jkx) (198)

E
(r)
izMaxwell = −η0H0 exp(−jkx) (199)

The superscript (r) represents retarded, and the subscript i represents in-

duced. The subscript Maxwell represents the value calculated according to

Maxwell’s electromagnetic theory. The magnetic field in the above equation
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is already correct, so we need to modify the induced electric field according

to (21,22)

E
(r)
i = jE

(r)
iMaxwell = jη0H0 exp(−jkx)(−ẑ) (200)

H(r) = H
(r)
Maxwell = H0 exp(−jkx)ŷ (201)

In this way, we obtain a magnetic field and an induced electric field.

We noticed that after the correction, the phase of the induced electric field

is consistent with that of a simple circuit, as described in chapter 3.

The Poynting vector is calculated from electrostatic and magnetic fields,

S = Es ×H∗ = Es0 exp(−jkx)(−ẑ)× (H0 exp(−jkx)ŷ)∗

= Es0H
∗
0 x̂ ∼ x̂ (202)

In the above equation,

Es ∼ U ∼ I ∼H (203)

That is to say, electrostatic field Es The phase of is consistent with the phase

of the voltage and the phase of the current, therefore it is also consistent

with the phase of the magnetic field H. The above equation (202) is a real

number, so this Poynting vector transmits active power. If we calculate

based on the induced electric field,

Ei ×H∗ = jη0H0 exp(−jkx)(−ẑ)×H0 exp(−jkx)ŷ

= jη0H0H
∗
0 x̂ ∼ jx̂ (204)

The above equation is a pure imaginary number, indicating that reactive

power does not transfer energy. Therefore, the power corresponding to

the induced electric field is reactive power. That is to say, the author

believes that there is still an induced electric field within the transmission

line. Comparing to the electrostatic field Es, the phase of the induced

electric field Ei lag by j = exp(j π
2
).
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6 Calculate the electric and magnetic fields

according to the circuit method

We hope to solve this problem in multiple ways. Firstly, we consider

that the voltage and current have been solved according to the circuit prob-

lem in Chapter 4. Assuming we have already calculated,

I = I0 exp(−jkx) (205)

U = U0 exp(−jkx) (206)

Now we need to calculate the electric and magnetic fields. among

U0

I0

= Z =

√
L

C
(207)

is the impedance of the transmission line. Here we assume that there

is no reflection.

6.1 Calculation of electrostatic field

Es = − U
Lz
ẑ (208)

So the electrostatic field is,

Es =
U

Lz
(−ẑ) =

U0 exp(−jkx)

Lz
(−ẑ) (209)

Lz It is the height of the transmission line.

6.2 Calculation of magnetic field

Considering the contribution of the above current to the magnetic field,

due to the infinite length of the wire, the vector potential is infinite. Con-

sider parallel transmission lines being relatively wide. Ly Compared to Lz

Much larger, so we can approximately obtain

Jx =
I

Ly
(210)

H =
1

2
Jxŷ =

1

2

I

Ly
ŷ (211)
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We know that the contribution of the lower wire to the magnetic field is the

same as that of the upper wire, so the total magnetic field is,

H =
I

Ly
ŷ =

1

Ly
I0 exp(−jkx)ŷ (212)

6.3 Calculating Power

The average power is

P = UI∗ = U0 exp(−jkx)(I0 exp(−jkx))∗ = U0I
∗
0 = U2

0Z (213)

We will calculate the power based on the electric and magnetic fields

Es ×H∗ =
U0 exp(−jkx)

Lz
(−ẑ)× (

1

Ly
I0 exp(−jkx)ŷ)∗ (214)

So

S = Es ×H∗ =
U0I

∗
0

LzLy
x̂ (215)

P =

"
Γ

S · n̂ = LzLy
U0I

∗
0

LzLy
x̂ · x̂ = U0I

∗
0 (216)

Therefore, the power calculated using Poynting vector is consistent with the

power directly calculated using voltage and current.

6.4 Calculation of induced electric field

Now we know that magnetic fields and induced electric fields can be

calculated according to Faraday’s law in Maxwell’s equation,

∇×Ei = −jωµ0H (217)

∇×Ei =

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Eix Eiy Eiz

 =

 x̂ ŷ ẑ
∂
∂x

0 0

0 0 Eiz


= −ŷ(

∂

∂x
Eiz) (218)

−(
∂

∂x
Eiz) = −jωµ0Hy (219)
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−(−jkEiz) = −jωµ0Hy (220)

−(kEiz) = ωµ0Hy (221)

Eiz = −ωµ0

k
Hy = −η0Hy (222)

This means that

E
(r)
izMaxwell = −η0H

(r)
yMaxwell (223)

wherein,

H
(r)
yMaxwell =

1

Ly
I0 exp(−jkx) (224)

E
(r)
izMaxwell = −η0

1

Ly
I0 exp(−jkx) (225)

We know that the above magnetic field calculation is correct, so we

need to make corrections to the induced electric field (21,22)

E
(r)
iz = jE

(r)
izMaxwell = −jη0

1

Ly
I0 exp(−jkx) (226)

H(r)
y = H

(r)
yMaxwell =

1

Ly
I0 exp(−jkx) (227)

So we see that if we calculate the Poynting vector,

S = E
(r)
iz ẑ ×H(r)

y ŷ = (−jη0
1

Ly
I0 exp(−jkx))(

1

Ly
I0 exp(−jkx))∗(−x̂)

= jη0
1

Ly

1

Ly
I0I
∗
0 x̂ (228)

The Poynting vector composed of induced electric and magnetic fields is a

pure imaginary number. It is reactive power and does not transfer energy.

These results are consistent with the 5.3 section of the previous chapter.

Here, we calculate the magnetic field from the current and the induced

electric field from the magnetic field, and the calculated induced electric

field must be corrected. At this point, the induced electric field is corrected.
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7 Calculate the transmission line based on

the curl of the magnetic vector

In this chapter, we do not consider the contribution of the upper and

lower wires to the magnetic vector potential. Two wires act as waveguides to

confine waves in one-dimensional space. Electromagnetic waves propagate

along the x-axis. It can be considered that the magnetic vector potential

propagates along x.

7.1 Calculating vector potential

The transmission line problem is a one-dimensional problem, where

electromagnetic waves can only propagate in the x direction. The vector

potential generated by this problem should be consistent with the vector

potential generated by an infinite plate. The vector potential of an infinite

plate current is,

A ∼
ˆ
V

J

r
exp(−jkx)dV (229)

A ∼ J0ẑ exp(−jkx) (230)

Now we consider the magnetic vector potential of the current extending

along the z-axis at the source x = 0, where the current is I0, the surface

current density is,

J0 =
I0

Ly
(231)

Hence,

J = J0ẑ (232)

Consider that the magnetic vector potential should propagate along the

x-axis without decay. Therefore, the magnetic vector is,

A ∼ A0 exp(−jkx)ẑ = J0ẑ exp(−jkx) (233)
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7.2 Calculation of induced electric field

The induced electric field is,

Ei = − ∂

∂t
A ∼ −jωA0ẑ exp(−jkx) = jωA0 exp(−jkx)(−ẑ) (234)

The induced electric field calculated from the magnetic vector potential does

not need to be corrected.

7.3 Calculation of magnetic field from vector potential

The magnetic field can have the curl calculation of vector potential,

H ∼ 1

µ0

∇×A =
1

µ0

∇× (A0ẑ exp(−jkx)) (235)

=
1

µ0

∇ exp(−jkx)×A0ẑ (236)

=
1

µ0

exp(−jkx)(−jkx̂)×A0ẑ (237)

= jk
1

µ0

A0 exp(−jkx)ŷ (238)

assume,

k
1

µ0

A0 = H0

So, according to Maxwell’s electromagnetic theory

H ∼ jH0 exp(−jkx)ŷ (239)

We know that the induced electric field can be obtained from the Maxwell

equation Ei in the (−ẑ) direction, the magnitude includes a spatial impedance

η0. phase that is completely consistent with H, that is,

Ei = jη0H0 exp(−jkx)(−ẑ) (240)

The above equation is based on Maxwell’s electromagnetic theory to obtain

the induced electric field, which is in phase with the magnetic field. Nu-

merically, there is an additional impedance factor η0. Our research is only

interested in phase, and the above equation is consistent with the formula

(234).
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7.4 Calculation of static electric field

There is a current on the transmission line and a voltage U between

two wires. This voltage can of course form an electrostatic field, which is

consistent with the previous calculation.

U = U0 exp(−jkx) (241)

Es =
−U
Lz

ẑ =
U0

Lz
exp(−jkx)(−ẑ) (242)

7.5 Correction of magnetic field

Since we calculate the induced electric field based on the magnetic

vector A, the phase of the induced electric field calculated is correct, and

the phase of the magnetic field calculated from the induced electric field

must be corrected,

Hreal = (−j)HMaxwell (243)

HMaxwell = jJ0 exp(−jkx)ŷ (244)

Hreal = (−j)jJ0 exp(−jkx)ŷ = J0 exp(−jkx)ŷ (245)

Hreal is the true magnetic field, which is also the magnetic field obtained

after correction according to the author’s electromagnetic field theory. It

can be seen that the corrected magnetic field and current are in phase.

7.6 Discussion

According to classic electromagnetic field theory textbooks such as lit-

erature [?, ?], the electromagnetic field satisfies the Maxwell equation,

∇×E = − ∂

∂t
µ0H (246)

∇×H = +
∂

∂t
ε0E (247)
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The Maxwell equation above ignores the current J and charge density

ρ. Due to ignoring ρ. Therefore, the electrostatic field generated by charges

has also been ignored

Es = −∇φ (248)

In fact, the transmission line is composed of two conductors, and there

is an electrostatic field between them, which is generated by −∇φ. This

part of the field is in the same phase as the voltage and current on the

transmission line. such as

φ = z
U

Lz
exp(−jkx) (249)

This indicates that the electric potential varies linearly with the variable

z.

Ezs = − ∂

∂z
φ = − ∂

∂z
(z
U

Lz
exp(−jkx)) = − U

Lz
exp(−jkx) (250)

from (240) we can obtain,

Ei = − ∂

∂t
A

∼ jη0J0 exp(−jkx)(−ẑ) (251)

Therefore, according to the author’s theory, there are actually two types

of electric fields within the transmission line, the electrostatic field Es and

induced electric field Ei. According to general textbooks, there is only one

type of electric field within the transmission line, whether it is an induced

electric field or an electrostatic field. The induced electric field calculated

by the author has a phase factor j. The induced electric field in general

textbooks [?, ?] does not have this phase factor. Therefore, both methods

can be verified through experiments.

Since the induced electric field can be regarded as a circuital field, we

can measure it using a coil. When measuring with a coil, it is impossible

for the electrostatic field to enter the measurement system.
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8 Experiments and Measurements

Assuming we use an electromagnetic signal with a wavelength of 1

meter, the frequency of this meter wave is

f =
c

λ
=

3 ∗ 108

1
= 300MHz (252)

A transmission line of 5 meters is sufficient. It is already 5 times the wave-

length, which can be considered long enough. For the convenience of mea-

surement, double parallel wire transmission lines are selected. Assuming

the radius of two wires a is one millimeter,

a = 0.001Metre (253)

Assuming the distance d between the wires is one centimeter,

d = 0.01Metre (254)

Calculate capacitance per unit length,

C =
2πε0

ln d
a

=
2π

ln 10
8.854187817× 10−12 = 2.416 ∗ 10−11

= 24.16× 10−12 = 24.16pF (255)

Calculate the inductance per unit length,

L =
µ0

2π
ln
d

a
=

4π×10−7

2π
ln 10 = 2×10−7 ∗ ln 10 = 4.60517 ∗ 10−7

= 0.460517 ∗ 10−6 = 0.460517µH (256)

The characteristic impedance of the transmission line is,

Z =

√
L

C
=

√
0.460517 ∗ 10−6

2.416 ∗ 10−11
= 136.06Ω (257)

Therefore, a 136 Ω resistor should be connected at the end of the

transmission line.
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8.1 Measurement of magnetic field

Magnetic field is the easiest to measure, using traditional current mea-

surement equipment that actually uses Hall elements to measure the mag-

netic field around wires. Therefore, this device precisely provides the phase

of the magnetic field. This phase is the phase of the current on the wire

and also the phase of the magnetic field.

8.2 Measurement of electrostatic field

The phase of the electrostatic field can be obtained by measuring the

voltage between two wires. This phase should be the same as the previously

measured magnetic field phase.

8.3 Measurement of induced electric field

The induced electric field can be measured using coil type magnetic field

measurement equipment. Because this method of measuring magnetic field

actually calculates the magnetic field by measuring the induced electric field

(induced electromotive force). Therefore, we can use it to directly measure

the phase of the induced electric field. Compare the phase of the induced

electric field with the phase of the current.

According to classical electromagnetic field theory, this part of the in-

duced electric field is generally ignored in textbooks. Or do not mention

this part of the induced electric field at all. Alternatively, it can be con-

sidered that induced electric fields and static electric fields are the same

thing, which is an electric field. The author believes that there is a phase

lag between the induced electric field and the magnetic field, which is the

factor of (j). Therefore, induced electric fields and electrostatic fields are

completely different. This is reflected in a simple circuit. The author be-

lieves that the transmission line problem must be able to degenerate into a

simple circuit. Therefore, the induced electric field should lag behind the

current by j = exp(j π
2
).
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8.4 Direct measurement of induced electric field using an

electric field near field measuring pen

The electric field near-field measurement pen can be used to measure

the electric field. This measurement should include both electrostatic and

induced electric fields, which are the sum of electrostatic and induced electric

fields. According to classical electromagnetic theory, there is only one type

of electric field on a transmission line, which is in phase with the current.

According to the author’s theory, there are electrostatic fields and induced

electric fields on the transmission line, and the phase of the induced electric

field is 90 degrees more than that of the magnetic field. Since the values of

the two electric fields are basically the same, the phase factor will become

45 degrees. Namely

E = Es + Ei (258)

E = ηH0ŷ + jηH0ŷ

= ηH0(1 + j) = ηH0 exp(j
π

4
) (259)

Therefore, according to the author’s method, it is calculated that the

total electric field measured by the near-field measurement pen should have

a phase lag of exp(j π
4
). According to classical electromagnetic theory, this

phase is 0.

9 Conclusion

The author has made revisions to the classical electromagnetic field

theory, which includes incorporating advanced waves into the theory. In

order to ensure that the electromagnetic theory including advanced and

retarded waves remains self consistent. The author has made corrections

to the solution of the Maxwell equation, mainly by correcting the phase

of the far-field magnetic field. The Poynting vector of the antenna in the

far field after correction is reactive power. At the same time, the mutual

energy flow becomes active power. This revised theory is difficult to be
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verified through measurement. For example, for transmitting and receiving

antennas, it is necessary to measure the far-field of the transmitting antenna.

However, the far-field magnetic field of the transmitting antenna is very

weak and difficult to measure. Both electric and magnetic fields are easy

to measure on transmission lines. Therefore, this article chooses to further

calculate the transmission line using the author’s electromagnetic theory.

The author also reviewed the calculation of transmission lines based on

classical electromagnetic theory. Comparing the calculation results of the

two, according to the author’s electromagnetic theory, there is not only

an electrostatic field but also an induced electric field on the transmission

line. If we discover an induced electric field through measurement and the

induced electric field lags behind the current by a factor j = exp(j π
2
), it

indicates that the author’s electromagnetic theory is correct. The author is

preparing to complete this experiment in the next step. This experiment is

relatively easy, and the author encourages readers to do it themselves too.
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