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Abstract

Consolidation of Carbon Fiber (CF)/high-performance thermoplastic compos-

ites is much less understood than the one of their thermoset counterparts. It is

usually assumed that the consolidation quality is directly linked to the removal

of voids within the sample during consolidation, leading to mechanical proper-

ties suitable for aerospace applications. A systematic study of the temporal

evolution of CF/polyetherketoneketone (PEKK) samples' microstructure con-

solidated under low pressure in a rheometer is related to the increase in inter-

laminar shear strength. The results show that despite similar void contents

well-below 1 vol%, samples can present significant differences in ILSS values,

from 80 to 95 MPa for cross-ply samples, and from 98 to 112 MPa for unidirec-

tional (UD) ones. A microstructural analysis shows that, for these materials,

consolidation quality is rather related to a reorganization of the inter-ply, a

resin-rich (�70 vol%) region of typical thickness 10 μm which is slowly repo-

pulated in fibers during consolidation.

Highlights

• Microstructure of CF/PEKK composites is characterized over consolida-

tion time

• Contrary to thermosets void content cannot be used to predict mechanical

properties

• ILSS increase over consolidation time is related to inter-ply reorganization

• Inter-ply microstructure and ILSS have a direct correlation

• The repopulation in fibers of the resin-rich inter-ply is a slow process
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1 | INTRODUCTION

High-performance thermoplastic composites, that is,
thermoplastics reinforced by a high volume fraction
(� 60 vol%) of continuous CF, gain interest over more

well-known thermoset-based ones especially for aerospace
applications because of their possibility to be welded or
recycled.1–3 Among other thermoplastics commonly used in
the aerospace industry, glassy polyetherimide (PEI), and
polyethersulfide (PES) or semi-crystalline polyphenilsulfide
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(PES),4 polyaryletherketones (PAEK) are natural candidates
for structural applications due to the wide temperature
range at which they can be used, their (relative) ease of
processability, high chemical, thermomechanical and oxi-
dative resistance as well as good impact properties.3,5,6

Polyetheretherketone (PEEK), whose structure consists
in the repetition of two ether groups and one ketone has
been the most studied and used PAEK so far.3,7 The pres-
ence of ether groups leads to lower melting temperature
(hence make them easier to process than other polymers
of the same family, such as polyetherketone (PEK)).

Processing these materials consist, both in the case of
thermosets and thermoplastics, in stacking prepreg,8 single
plies (called tapes) with typical thicknesses of 200 μm,3

generally using Automated Tape Placement (ATP). The
assembly is then being consolidated in an autoclave or
under a press, with applied pressures of 7–10 bar.9,10 For
economic reasons, in-situ consolidation through ATP or
the use of out-of-autoclave (OOA) devices, such as vacuum
bag only (VBO) with lower pressures applied (� 1 bar)11

are now considered for this last step.12–14 The goal of this
consolidation step is to facilitate flow in the composite,
which lowers the void content of the composite and in turn
increases its mechanical properties.

Thermoset-based composites consolidation in auto-
claves is now well-understood theoretically15,16 and well-
mastered in the industry,17 as the void removal is favored
by the low viscosities2 and high pressures applied. For
these materials, the increase in mechanical properties in
the course of consolidation is generally directly linked to
a decrease in the void content.18–20 To achieve the tar-
geted mechanical properties, sufficient adhesion between
plies in the composite is needed, and can be character-
ized by different methods such as double cantilever beam
(DCB),21 peel tests,22 lap shear strength (LSS)23 or interla-
minar shear strength (ILSS). A linear relationship
between ILSS and void content has for example been evi-
denced long ago24 for CF/epoxy composites. Hence, a val-
idation of the consolidation quality is often obtained
directly through the measurement of the void content for
these thermoset-based composites.

When the pressure is lowered, such as in VBO processes,
consolidation is much more difficult.25,26 This is even more
the case for high-performance thermoplastics, which require
much higher processing temperatures and display viscosities
10 to 100 times higher than thermosets.2 Recent studies have
focused on the void removal in high-performance thermo-
plastic composites27,28 whether in autoclave or out-
of-autoclave processes, and have proposed directions for
optimizing the process or the tape architecture.29

However, it is unclear if void removal in thermoplas-
tic composites is as directly related to the improvement of
mechanical properties as in thermoset ones. Though

approaches have been developed to measure for example
the fracture behavior of continuous fibers reinforced com-
posite laminates,30,31 no systematic study has been con-
ducted yet on these materials to link the improvement of
the mechanical properties with the microstructural evolu-
tion during consolidation.

Hence, we propose an approach where consolidation
is conducted on carbon CF/PEKK samples under a rhe-
ometer, which allows to reproduce consolidation cycles
similar to VBO, as well as to easily perform interrupted tests
(i.e., vary the consolidation time). PEKK has been chosen
because it has gained interest recently over PEEK as a
matrix for composites that can have potential use in the
production of future aerospace primary structures.7,32,33 Its
melting temperature can be lowered without reducing
its service temperature,34 along with a better control of its
crystallinity,35,36 by tuning the ratio between terephtaloyl
(para) and isophtaloyl (meta) isomers (T/I ratio). Systematic
characterizations of the microstructure are then conducted
as a function of consolidation time, not only in terms of
voids content but also of inter-ply morphology. These
microstructural evolutions are finally linked to the varia-
tions of ILSS as a function of the consolidation time, and
discussed in terms of consolidation quality.

2 | EXPERIMENTAL

2.1 | Materials

The UD 200 μm – thick tapes used in this study have
been kindly provided by Hexcel. The matrix used is a PEKK
from Arkema with a 70/30 T/I ratio and a molecular weight
close to 70 kg/mol. It has a glass transition temperature
Tg = 162�C, a melting temperature Tm = 332�C and a
Young's modulus E ≈ 3.8 GPa.37 The fibers are unsized38

continuous Hexcel High strength 7 μm – diameter carbon
fibers AS7 (E ≈ 240 GPa, tensile strength ≈ 5 GPa39). The
tapes have an initial void content and fiber volume fraction
close to 5 and 60 vol% respectively (as given by the supplier,
and verified using the ImageJ (NIH) software).

2.2 | Consolidation model experiment

A total of 16 tapes are first cut in 25 mm – diameter disks
and then assembled manually to form either UD [0]16 or
cross-ply [0/90]4s stackings. A 50 μm – thick polyimide
(PI) film is placed between the composite and the 25 mm
stainless steel rheometer plates to prevent the samples
from sticking to the plates. An Anton Paar MCR
502 rheometer equipped with 25 mm diameter circular
plates is used to apply a consolidation temperature–

2 ARQUIER ET AL.
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pressure–time cycle similar to those found in VBO pro-
cesses (Figure 1A).28,40

A typical cycle is described in Figure 1B. A ramp of
temperature between 250 and 380�C at 15�C/min is con-
ducted under a 1 N force to maintain contact between
plies. Next, the sample is let 5 min at 380�C under 1 N
force to ensure the temperature is homogeneous through-
out the sample. Then a ramp of force is applied during
5 min until 45 N is reached, corresponding to a pressure
of 0.92 bar, similar to the one encountered in VBO.11 For
both UD and cross-ply stackings, the consolidation is
stopped at various times, that is, 0, 5, 20, 60 or 120 min
(corresponding to A, B, C, D, and E respectively in
Figure 1B) before being cooled down at �7�C/min, simi-
lar to VBO cooling rates. All the experiments are con-
ducted under nitrogen flow (N2) to avoid possible
degradation due to oxygen (similar to vacuum in VBO).

The stability of the matrix during the consolidation
has been verified by thermogravimetric analysis (TGA).
No significant thermal degradation has been evidenced
after 3 h at 380�C under N2 (Figure S1) with less than 1%
mass loss mostly occurring during the first 30 min
(mainly due to the evaporation of water absorbed by the
matrix). It has also been verified by DSC that the cooling
cycle used in this study is slow enough to allow full crys-
tallization of the matrix (Figure S2), hence it will be
assumed crystallinity plays no role in the different results
discussed in the following.

2.3 | VBO consolidation

Vacuum bag only consolidation was conducted using a
lab-made set-up. Briefly, the 150 � 150 mm cross-ply
samples are prepared by stacking manually 24 tapes
([0/90]6s) and placed on a flat stainless-steel surface
between anti-adhesive release films. A breather is placed
on top of the sample to ensure homogeneous gas diffu-
sion. The whole system is covered by a vacuum bag and
then installed in an oven able to control the temperature
and pressure in the bag. Once a vacuum below 50 mbar

is achieved, a ramp between room temperature and the
final set temperature (varied between 375 and 390�C) is
performed at 7�C/min. The temperature remains then
constant for a given time (varied between 50 min and
2 h) before a cooling ramp at 7�C/min. For each condi-
tion, 3 samples were tested. The temperature of the sam-
ples can be monitored with thermocouples placed at
different locations (Figure S3).

2.4 | Mechanical characterization

To assess the consolidation quality, Interlaminar Shear
Strength (ILSS) is determined with the short-beam
shear test (SBS). ILSS is a measurement of the composite
resistance under shear parallel to the plies, and can be
viewed as a characterization of the “quality” of the inter-
faces. Note that what is obtained with SBS is actually the
short-beam strength, which is an analogue for ILSS but
not an exact measure, due to the complex state of stress
instead of pure shear. From the consolidated samples
obtained with the previously described experiments, two
bars with dimensions following ASTM D234441 are cut
using a diamond wire saw from Escil, allowing to run
two ILSS measurements for each stacking and consoli-
dation time. SBS is performed using an INSTRON
5581, with a cell force of 50 kN. A compression rate of
1 mm/min is applied on the sample and the maximum
force before rupture FR is extracted to obtain ILSS
value through Equation 1:

ILSS¼ 3FR

4le
ð1Þ

where l and e are the width and thickness of the bars
respectively (see Figure S4a).

Figure S4b shows typical stress-displacement curves
for the cross-ply [0/90]4s composites consolidated at dif-
ferent times where a sharp rupture with low plasticiza-
tion can be observed for all samples, consistent with
ASTM recommendations.41

FIGURE 1 (A) Schematic of the

consolidation experiment with the

rheometer for the UD configuration.

(B) Temperature–pressure–time

consolidation cycles of the study.

ARQUIER ET AL. 3
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2.5 | Microstructural characterization

From the consolidated samples, two small samples
(1 mm width) for each stacking are also cut by a diamond
wire saw from Escil for microscopic observations. For
both the cross-ply and UD composites, the cut is made at
45� toward the fiber direction in order to ease the sam-
ples' preparation and observation. These samples are
then mounted using an Epofix resin from Struers with a
cure time of 12 h at room temperature and polished on
Mecatech 334 from Presi using a polishing cycle consist-
ing of a first step with silicon carbide foils from Struers
with grain sizes from 400 to 2400, followed by the use of
diamond solutions with lubricants (with particle sizes in
suspension from 9 to 0.25 μm).

Void content is characterized by analyzing optical
microscopy images obtained with an Axio microscope
(Zeiss) equipped with a �10 objective (�100 magnifica-
tion). The 8-bit 1388�1088 pixels images are treated with
ImageJ. An optimization of the brightness and contrast is
first realized and an automatic Image J threshold pixel
value is selected to enable the binarization of the image,
with {fibers + matrix} in white (pixel value equals to 1)
and the voids in black (pixel value equals to 0). The void
content (for voids that have typical dimensions bigger
than the pixel size, i.e., > 1 μm) is defined as the ratio
between the selected particles and the total area of the
analyzed image. The obtained values are averaged on
8 images (4 images � 2 samples) per stacking and con-
solidation time. The images are taken randomly
throughout the sample. The error bars in the following
will correspond to the confidence interval at 95%
toward the average, obtained with 8 experimental
values.

In the following, the inter-ply microstructure will also
be characterized since it is well known that a matrix
interlayer is naturally present at the inter-ply for cross-
ply stackings.42 Specifically, the thickness of the inter-ply
as well as its mean fiber content will be evaluated. To do
so, we developed a different protocol than the one previ-
ously described: this time, an automatic Image J thresh-
old is conducted to separate the fibers from {matrix
+ voids}, before binarization of the image, leading to
white fibers and black {matrix + voids}. Then the ratio
between white pixels and the total number of pixels is
calculated for each horizontal pixel (0.9 μm) line. In
other words a mean fiber volume fraction defined as
([fiber content/(fiber content + resin content + void con-
tent)]�100) is calculated for each horizontal pixel line
with the plies stacked vertically (see Supplementary
movie 1). To smoothen the signal, the ratio for each pixel
line is averaged with the one above and below this line.
The analyses are performed on 6 images (containing each

at least 5 inter-plies) per stacking and consolidation time,
meaning an average on more than 30 inter-plies. Mean
values as well as their confidence interval at 95% are then
calculated.

3 | RESULTS AND DISCUSSION

From Equation 1, the ILSS values of the [0]16 and [0/90]4s
consolidated composites at 380�C and 0.92 bar can be
compared at various consolidation times (Figure 2). It is
seen that in both cases ILSS values increase with the con-
solidation time, with similar trends, that is, a sublinear
increase over time. However, the relative increase over 2 h
of consolidation is much more pronounced for the cross-
ply composites (+50%) than for the UD ones (+15%). It is
also seen that while UD samples will reach typical ILSS
values targeted for aerospace applications similar to those
obtained in autoclave consolidation (105 MPa)9,11,43 in less
than 1 h, much longer times (2 h or more) are needed for
cross-ply samples (95 MPa).

3.1 | Void content characterization

Let us first consider, analogous to the case of thermoset
composites, the evolution of the void content for each
stacking and consolidation time in the case of CF/PEKK
composites. Figure 3 shows typical images of the micro-
structural evolution over time for the UD and cross-ply
composites at 0, 20, and 120 min. As expected, the num-
ber and size of voids, shown in red circles in Figure 3,

FIGURE 2 ILSS values for [0]16 and [0/90]4s CF/PEKK

composites at 380�C and 0.92 bar and different consolidation times

(0, 5, 20, 60, and 120 min). The dashed lines represent the typical

target values for cross-ply (95 MPa) and UD composites respectively

(105 MPa).

4 ARQUIER ET AL.
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FIGURE 4 (A) void content as a function of consolidation time for UD and cross-ply composites; (B) ILSS as a function of the void

content. The ILSS value presented here (and in the following figures) for a given condition is the average of the two values shown in

Figure 2. The pale blue and red colors in the upper part of panel (b) highlight the regions fulfilling aerospace criteria for cross-ply and UD

composites respectively (void content below 1%, ILSS higher than 95 MPa for cross-ply composites, higher than 105 MPa for UD ones).

A, B, C, D, and E are samples with different consolidation times as shown in Figure 1 (0, 5, 20, 60 and 120 min respectively).

FIGURE 3 Typical optical

microscopy images of the

microstructure of [0]16 (A, B, C)

and [0/90]4s (D, E, F) CF/PEKK

composites consolidated for

0, 20, and 120 min respectively.

The fibers are in bright gray, the

matrix in gray and the voids in

black (circled in red). Scale bar

is identical for all images.

ARQUIER ET AL. 5
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decreases with the consolidation time. Also, these voids,
even at the beginning of the consolidation (Figure 3A,D),
are almost only located within the plies and not at the
ply-ply interface (black arrows in Figure 3E).

Using these images, a quantitative analysis allows to
follow the void content evolution with the consolidation
time (Figure 4A). The corresponding ILSS as a function
of the void content is then presented in Figure 4B for UD
(in red) and cross-ply (in blue) composites. The void con-
tent decreases rapidly (in a few minutes) to values far
below 1 vol% for both types of composites, a value usually
set as a criterion of consolidation quality in the aerospace
industry for thermosets composites.44 The few remaining
voids are located in between closely packed fibers at the
intra-plies.

Yet, important variations of the ILSS values can still
be observed for void contents well-below this 1% thresh-
old (see Figure 4B). For example, while the samples
show a difference of only 0.1% in void content (from
0.2% to 0.1%), the ILSS values can display differences of
13% for UD composites and more than 20% for cross-ply
ones. Moreover, even for very low void contents (below
0.2%), only a few composites (the ones at longer consoli-
dation times) reach sufficient ILSS values (about
105 MPa for UD and 95 MPa for cross-ply, as stated
earlier).

Hence, contrary to thermosets, the void content does
not seem to be a sufficient criterion to characterize the

consolidation quality of a thermoplastic composite. To go
further, the evolution of the microstructure at the ply-ply
interface will be discussed in the following.

3.2 | Inter-ply characterization

The image analysis proposed in the Materials and
Methods section (see Section 2.4 as well as Supplementary
Movie 1) is used to characterize the inter-ply evolution as
a function of consolidation time for both UD and cross-
ply composites. From these analyses, the mean fiber vol-
ume fraction within the inter-ply as well as its thickness
can be obtained. A typical analysis is presented in
Figure 5. First, it should be noticed that the mean fiber
volume fraction obtained within the images using this
approach is in all cases ≈ 58 vol%, consistent with the
supplier's information, which confirms a posteriori the
validity of the proposed approach. It can also be
noted that the fiber volume fraction is relatively scattered
along the sample's thickness. This can be explained by
the fact that the pixel size (≲ 1 μm) is much smaller than
the fiber size (≈ 7 μm) (see Supplementary Movie 1).
Hence, due to local heterogeneities in the dispersion/
distribution of fibers within the sample, the mean fiber vol-
ume fraction along each pixel line can vary quite substan-
tially. In the following, to distinguish inter-plies from these
local variations, we will subtract to the mean fiber volume

FIGURE 5 Typical

microstructures of the (A) UD [0]16
and (C) cross-ply [0/90]4s CF/PEKK

composites after 20 min of

consolidation, with the

corresponding evolution of the fiber

volume fraction along the depth

(B and D).

6 ARQUIER ET AL.
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fraction the difference between the maximum and the
mean. The inter-plies are then defined by the peaks below
this region (gray area in Figure 5B,D), as shown in
Figure 5D.

It can be seen in Figure 5A,B. that even at short con-
solidation times (20 min), inter-plies can hardly be distin-
guished in [0]16 laminates. This confirms the possibility
of fibers redistribution from one ply to another for these
UD stackings at relatively short times, due to a global
{matrix + fiber} flow transverse to the fibers as pressure
is applied.45 This can then be linked to the high ILSS
values obtained even for the short consolidation times,
with target values reached shortly after 20 min.

Let us now focus on the inter-plies in the [0/90]4s
composites. As can already be seen in both Figure 3E and 5C,
the inter-plies are still visible in these systems after
20 min, and well-defined peaks can be obtained using the
proposed analysis (Figure 5D). The width of the peaks,
which is in other words the thickness of the inter-plies,
can then be extracted from the image, as well as the
mean fiber volume fraction in the inter-plies. It is then
possible to follow the evolution of both of these quanti-
ties (Figure 6A,B respectively) over consolidation time.

There is an increase of the mean fiber volume fraction
of about 15% as the consolidation time varies from 0 to
120 min. The inter-ply enriches in fibers over consolidation
time, that is, as pressure is applied at high temperature, sug-
gesting that though more localized than for UD composites,
a reorganization at the ply-ply interface occurs. Still, it can
be noted that after 2 h of consolidation, the mean fiber vol-
ume fraction in the inter-ply is only slightly higher than
30 vol%, much lower than the mean fiber volume fraction
in the whole composite (58 vol%). In parallel, Figure 6B
shows a clear decrease of the inter-plies thickness with con-
solidation time. After 120 min, the typical size of the inter-

plies is close to the fiber diameter (7 μm). Both observations
are consistent with fiber locking,46,47 occurring when fibers
of different orientations are in close contact, and preventing
from further interfacial reorganization.

Finally, we can look at the ILSS variation as a func-
tion of the ply-ply interface evolution for the cross-ply
composites (Figure 7). Figure 7A shows the evolution of
ILSS as a function of the mean fiber volume fraction in
the inter-plies. A linear trend is observed, with a target
value (95 MPa) reached for a fiber volume fraction of
about 32 vol%. A linear trend is also observed concerning
the increase of ILSS as the inter-plies thickness decrease
(Figure 7B), the target value (95 MPa) being reached for
thicknesses close to 8 μm.

As the time spent by the composite at high temperature
and pressure increases, the fibers progressively rearrange
themselves within the matrix layer at the inter-plies. They
can therefore contribute more and more to the resistance of
the composite to the interlaminar shear generated during
the ILSS tests.

One should note that if the evolution of ILSS with
either the fiber volume fraction in the inter-plies or their
thickness is linear (R2 ≈ 0.89 and 0.95 respectively) and
rather sharp (a 50% increase in ILSS for a fiber volume
fraction at the inter-plies increasing only from 27 to 32%v),
this is not the case with time, as the evolution of these
properties with time is observed to follow a logarithmic
trend in the time range studied (see Figure S5). Hence,
the reorganization of the inter-plies is a slow process, and
a good consolidation quality can only be achieved after
long times for these highly viscous thermoplastic com-
posites.45,48 A detailed modeling of the local flows at the
inter-plies that could account for these trends shall be the
aim of future work but it can be understood qualitatively
that as the resin-rich inter-ply region becomes more

FIGURE 6 (A) Evolution of the mean fiber volume fraction and (B) the thickness of the inter-plies over consolidation time for [0/90]4s
CF/PEKK composites. The dotted line in panel (b) is set at the fiber diameter.

ARQUIER ET AL. 7
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populated with fibers, the viscosity of this interfacial
layer will increase, while its thickness will decrease,
resulting in a local flow that will become slower over
time. The resulting changes in properties shall then, vary
sub-linearly with time, which is consistent with our
experimental observations.

Finally, one can wonder if the behavior observed with
the consolidation under the rheometer effectively
describes what happens during VBO consolidation. To
answer this question, a set of complementary VBO con-
solidation experiments was performed on 150 � 150 mm
[0/90]6 s (24 plies) plates. It is seen in Figure S6a that
VBO consolidations indeed take much longer times
(in terms of consolidation quality) than rheometer
ones, due to the thermal inertia of the VBO process
(see Figure S3b). Despite this shift in consolidation
time, it is also clear that the evolution of ILSS as a
function of time follows the same logarithmic trend
(Figure S6b), indicating similar mechanisms at play in
both consolidations.

4 | CONCLUSION

Consolidation has been conducted on UD [0]16 or
[0/90]4s CF/PEKK composites under a rheometer, with a
pressure of 0.92 bar and a temperature of 380�C, close to
the VBO parameters for these materials. Varying consoli-
dation times up to 2 h have been applied, and ILSS mea-
surements have been linked to the composites'
microstructure characterized by image analysis, both in
terms of void content and inter-ply morphology (thick-
ness and fiber content).

This study demonstrates that, contrary to thermosets
composites, the void content evolution during consolida-
tion cannot be directly related to the ILSS values for
high-performance thermoplastic composites such as
CF/PEKK. Low void contents are rapidly reached
(10–20 min) during consolidation at 1 bar even for
these very viscous materials. Although a sufficiently low
porosity level is necessary to provide good mechanical
properties (criterion fixed at 1% by the aerospace industry
based on thermosets materials), it is seen that important
ILSS variations can still be observed for thermoplastic com-
posites with void contents well-below this criterion. Remain-
ing voids are indeed located within the plies whereas the
ILSS is a measurement of the quality of the ply-ply interface.

The evolution of the {fiber + matrix} repartition at
the inter-plies appears to be the governing parameter to
assess the consolidation quality of high-performance
thermoplastic composites. Concerning UD configuration,
global reorganization of the composite during consolida-
tion leads rapidly to a homogeneous {fiber + matrix}
repartition through the whole sample's thickness, result-
ing in ILSS target values reached after about 30 min of
consolidation. On the contrary, the resin-rich inter-plies
for cross-ply composites remain clearly visible even after
2 h of consolidation. While the mean fiber volume frac-
tion at the inter-plies increase and the thickness of the
inter-plies decreases with the consolidation time, this
reorganization, related to the increase in the ILSS,
is slow.

Optimizing consolidation of high-performance ther-
moplastic composites would then mean designing tapes
with such architecture that this local reorganization of
the inter-plies is facilitated and quicker,49 to reduce the

FIGURE 7 ILSS evolution as a function of (A) the mean fiber volume fraction at the inter-plies and (B) the inter-plies thickness for the

[0/90]4s consolidated composites. Dashed lines are linear fits. A, B, C, D, and E are for samples with different consolidation times as shown

in Figure 1 (0, 5, 20, 60, and 120 min respectively).
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consolidation time, which is an important objective espe-
cially for VBO process.
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