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Abstract3

This paper presents a new strategy to generate synthetic samples containing casting de-4

fects. Four samples of Inconel 100 containing casting defects such as shrinkages and pores have5

been characterized using X-ray tomomgraphy and are used as reference for this application.6

Shrinkages are known to be tortuous in shape and more detrimental for the mechanical prop-7

erties of materials, especially metal fatigue, whereas the pores can be of two types: broken8

shrinkage pores with arbitrary shapes and gaseous pores of spherical shape. For the generation9

of synthetic samples, an integrated module of Spatial Point Pattern (SPP) analysis and deep10

learning techniques such as Generative Adversarial Networks (GANs) and Convolutional Neu-11

ral Networks (CNNs) are used. The SPP analysis describes the spatial distributions of casting12

defects in material space whereas GANs and CNNs generate a defect of arbitrary morphology13

very close to real defects. SPP analysis reveals the existence of two different void nucleation14

mechanisms during metal solidification associated to shrinkages and pores. Our deep learning15

model successfully generates casting defects with defect size ranging from 100 µm to 1.5 mm16

and of very realistic shapes. The whole synthetic microstructure generation process respects17

the global defect statistics of reference samples and the generated samples are validated by18

statistically comparing with real samples.19

20
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1 Introduction24

Casted materials often carry defects formed during metal solidification. These defects can have a25

serious impact on the material properties whose magnitude depends on various microstructural and26

defect characteristics. Some of the defects that can appear in casted materials are shrinkages, pores,27

oxide films, etc [1–3]. Shrinkages are large tortuous cavities formed due to contraction of molten28

metal during solidification whereas pores and micro-voids are smaller in size and are generally29

formed due to trapped gases. These cavity defects can degrade material performance drastically by30

promoting initiation and propagation of crack driven by stress concentration [4–7]. The intensity of31

this degradation depends on various defect characteristics such as its size, position and morphology32
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[8]: the fatigue life is known to vary inversely with respect to defect size, a relationship demon-33

strated by Kitagawa-Takahashi diagram [9, 10]. It is also known that defect location plays a very34

prominent role in high cycle fatigue (HCF) [10, 11]. Cracks initiating from defects that are closer35

to free surface propagate faster when compared to those initiating from internal defects given the36

difference in their stress intensity factors (SIF) [1]. Furthermore, a tortuous morphology of defects37

can drastically increase stress concentration facilitating crack initiations. Some of the independent38

features that can characterize defect morphologies are sphericity, aspect ratio, etc [8]. Whilst these39

characteristics can induce a large scatter in fatigue life, the problem gets more complicated in ma-40

terials containing high porosity levels which results in formation of defect clusters [12]. In clustered41

defects, apart from the individual features of defects, they are also influenced by the stress gradients42

of neighbouring defects. These defects can sometimes be found in aeronautical parts like turbine43

disks and blades, and has received much less attention in mechanical domain. Analysing all the44

features that might affect fatigue life requires a large number of samples to be tested which can be45

extremely costly. Therefore, a plausible approach is to generate synthetic microstructures that are46

very close to reality which can be simulated numerically to create a large database of mechanical47

response to the presence of defects, their morphology and spatial distribution.48

Present work focuses on analysing the effects of defect population in a naturally isotropic material49

inconel 100 under cyclic loads where the granular characteristics of all tested samples are similar.50

In such a case, synthetic microstructures can be generated by distributing the defects in a homoge-51

neous material space according to a pattern similar to real defects. The spatial ordering of defects52

can be analysed through spatial point pattern theory (SPP) with tools like Ripley’s K-function that53

measures the second order properties of point distribution in space [13]. A similar approach was54

applied by El Khoukhi et al where numerical microstructures were generated by placing spherical55

defects in a homogeneous material space [14].56

57

Need for synthetic microstructures : Samples containing clustered defects (see figure 1)58

are known to produce very complex mechanical response under fatigue loading. Although, image59

based finite element (FE) models can simulate this response and aid in locating the crack-initiation60

site, it is still very difficult to simplify the process and predict its fatigue life with respect to defect61

characteristics [15]. For an isolated defect, a Kitagawa – Takahashi diagram can be used but the62

same Linear Elastic Fracture Mechanical (LEFM) approach cannot be applied to clustered defects.63

Therefore, a better estimation of the parameters influencing material’s fatigue life apart from just64

the defect’s size is needed. The additional parameters or features could be the volume fraction of65

defects, size of the cluster, sphericity, aspect ratio or other morphological parameters. For such66

an analysis, a large number of samples are needed and generating synthetic microstructures that67

mimics the real specimens is seemingly an inexpensive approach. Furthermore, these generated68

microstructures can then be converted to image based FE models and simulated numerically to69

estimate prominent characteristics or to develop a probabilistic model with an approach similar to70

Monte-Carlo.71

72
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(a) (b) (c) (d)

Figure 1: Image-based FE models from X-ray computed tomography (XCT) for reference sample
a) A b) B c) C d) D along with a close up view of the clustered defects in sampled D colored as
large defects (red) and small defects (blue). Samples are 40 mm long with gauge diameter of 3.7

mm.

Reference samples : Four as-cast Inconel 100 (IN100) cylindrical samples machined from73

cast ingot bars are used to generate synthetic microstructures. The samples are 40 mm long with74

a gauge diameter of 3.7 mm and contains clustered defects whose characteristics are assessed via75

X-ray computed tomographic images (XCT) as seen in our previous work [15]. The XCT volumes76

can be used to build image-based FE models of the same. Via numerical simulations, the critical77

defect that could initiate primary crack during fatigue loads can be determined. The volumes of78

the studied XCT scans were 300 mm3.79

As seen in table 1, defects occupy around 0.3 - 0.52 % of material volume, among which many80

of these defects are confined in a small thickness along the axis of the sample forming complicated81

network of defects as seen in figure 1. The interaction of these clustered defects is too complicated82

Table 1: Global defect statistics in IN100 samples

Sample A B C D

Total no. defects 215 295 346 434
Total defects volume (mm3) 0.935 0.84 1.36 1.58
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and requires a profound analysis.83

84

Method to generate synthetic microstructure : Synthetic microstructures can be gener-85

ated by placing the defects in a fixed material space of a particular geometry similar to that of86

real specimens. Placing the defects in material space is a stochastic process which requires a prior87

understanding of spatial distribution of patterns, for eg: via SPP, which is significantly used in the88

field of astronomy, forestry, cartography etc [16–20]. With tools like Ripley’s K-function, second89

order properties of point pattern can be measured: the points in our context are centroids of defect90

volumes [21]. Neither many researchers have considered SPP analysis to estimate the 3D spatial91

characterization of defects nor to generate numerical microstructures using the same [14, 22].92

In the case of clustered defects, regular shapes cannot be assumed for defects since contributions93

of various features in degrading material’s performance is merely unknown. Hence, a deep learn-94

ing strategy called Generative Adversarial Networks (GANs) and Convolutional Neural Networks95

(CNNs) are integrated together to recreate realistic synthetic defects that can be placed via stochas-96

tic process defined by SPP in material space. GANs are a very recent development in the field of97

deep learning that can learn to create data that doesn’t exist in the database [23, 24]. Few re-98

searchers have attempted to generate microstructures directly using different variants of GANs99

[25–31]. Jangid et al developed a GAN that could generate random grain shapes [26] which were100

validated by comparing with real grains. CNNs on the other hand are kernel based neural networks101

which can learn various receptive kernels to be applied on the image data for classification and re-102

gression purposes. Here, CNNs are used as post processing step to determine the size of generated103

synthetic defects.104

The generated defects are placed in material space respecting the global distributions of defect105

features and also the spatial pattern. The uniqueness of the generated microstructures is main-106

tained by applying a Poisson distribution over the mean number of defects while exploring different107

K-functions similar to that of real specimens.108

109

2 Methods110

111

2.1 Spatial point pattern112

Spatial point pattern (SPP) analysis is a branch of study in stochastics mainly used in the field113

of astronomy, ecological survey etc. SPP is any point or location in a specified region (defects in114

material space in our case). These events occur randomly and can be modelled with a specific115

stochastic process. As discussed by [16], SPP can be divided into three main categories:116

a Random or Complete Spatial Randomness (CSR): where the points or events are117

randomly distributed and can be modelled via Poisson process.118

b Clustered: where points or events attract to each other in space forming small groups called119

clusters.120

c Regular: where the points repel each other.121

A point pattern analysis (PPA) is mainly concerned with describing and making sense of the122

process that could have generated these random patterns, for eg:- the occurrence of defects in a123
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material is controlled by various parameters linked to material thermodynamical properties. A PPA124

can be described with two properties [32], namely:125

a First order properties: Are the descriptions on the basis of intensity functions, density of126

defects at a particular material space for example.127

b Second order properties: are the descriptions on the basis of interactions between each128

event or points in their material space.129

First order properties are studied over a sub-region for a large number of events or points. Variations130

in these properties from each sub-region to another can make the point pattern inhomogeneous.131

The first order properties are helpful for a global spatial distribution analysis but aren’t efficient to132

distribute the defects spatially in material space. Moreover, global parameters like volume fraction133

of defects in a specimen has no strong relationship with fatigue life. Hence, patterns of defects in134

space are studied via second order properties which include: Nearest Neighbor function (NND),135

Ripley’s K-function, etc. Second order properties are those where an occurrence of each event is136

linked or dependent on one another characterized by the distance between them. Point patterns137

are statistically compared with complete spatial randomness (CSR) of the null hypothesis for a138

thorough analysis.139

140

2.2 Poisson process141

CSR is a state where events or points occur randomly in space with no interactions between142

each other. CSR forms the continuum of the natural ordering or patterns of events. On the either143

side of this continuum lies clustered and regular state of point patterns as explained by [33]. CSR144

can be modelled with just one parameter such as the expected density of points in space. This can145

be done via Poisson process since any random event follows a Poisson distribution with a mean146

value or expected value (density of defects in this case) which is given by,147

P{N(V ) = k} =
(λ)k

k!
exp−λ (1)

Where λ is number of points per unit volume, sometimes also called as rate parameter, V is148

the volume of material space in our case and N is the possible random variable. Equation 1149

gives the probability of N being equal to k. For n disjoint sets V1, . . . , Vn the random variables150

N(V1), . . . , N(Vn) are independent of each other i.e., each point is stochastically independent and151

there exists no interaction between them which defines CSR. This stochastically independent state152

of point pattern is therefore often used as reference to evaluate if a point pattern is clustered or153

dispersed (attracting or repulsing).154

155

2.3 Univariate and Bi-variate Ripley’s K-function156

Ripley’s K-function is an effective tool to quantify second order properties of a spatial point157

pattern. With distance between each pair of events or points as the main parameter, Ripley’s k-158

function can estimate the probable number of events or points that can be found within a particular159

distance. K-function can be expressed in multiple variants. When all the points in the study region160

belongs to one type or class, it is said to be univariate K-function and when the points are divided161
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into two different types or classes, it can be called as bivariate K-function. In general form, K-162

function is given by,163

K(d) = λ−1E[number of events within distance d of a randomly chosen event] (2)

which is given as,164

K(d) =
V

N

N∑
i=1

N∑
i ̸=j

I(rij < d)

N
I →

{
1, ifrij < d
0, otherwise

(3)

Where V is the volume and N is the total number of points in material space. V/N is nothing but165

λ−1 which is the intensity of events (points) or the number of points in a unit volume and I is the166

identity operator which equals to one if the distance between point i and j is less than distance167

d and equals to zero otherwise. The value of K-function is usually compared to the theoretical168

value of K for CSR or homogenous poisson process. From the null hypothesis for CSR, Ripley’s169

K-function reduces to the volume of the sphere with radius equal to distance d,170

Kpoisson(d) =
4

3
πd3 (4)

The deviation of K from the theoretical value can estimate the nature of spatial distribution of171

events. If K(d) > Kpoisson(d), the pattern is said to be clustered and vice versa.172

In bi-variate K-function, the events or points are classed into two types, for example, Orange trees173

and apples trees, stars and planets etc. Bivariate functions as a whole can be represented in matrix174

form where K11 and K22 are K-functions of type 1 and type 2 points. The intensities of each type175

λ1 and λ2 are the two variables of the bi-variate K-functions. The interaction between these two176

processes is measured with cross K-function K12. The procedure to measure K12 remains the same177

as univariate K-function except that within a sphere or circle, number of other type points are178

counted. Cross K-function is given as,179

K12(d) = (λ1λ2V )−1

N1∑
i=1

N2∑
j=1

I(rij < d) (5)

Where, λ1 and λ2 are the intensities of type 1 and type 2 points, N1 and N2 are the number of type180

1 and type 2 points or events.181

182

2.4 Estimation of parameters for Neyman-Scott process183

If a pattern is homogeneous, Poisson process can generate the pattern whilst for inhomogeneous184

pattern, strategies like Neyman-Scott process, Strauss process or Matern process needs to be used.185

The parameters for such processes needs to be estimated in prior [21]. In the current work, Neyman-186

Scott process is used where the points are classified into two types: parent and children. Parent187

forms the center around which children points are distributed with a known distribution whilst188

parent points are distributed homogeneously in space.189

To classify the defects into types, a parameter θ was introduced in K-function. This parameter can190

be called as threshold size parameter with which defects are classified based on their sizes. With191

the introduction of θ, K and K12 functions can be expressed as,192

Kkk(d, θ) =
V

Nk(θ)

Nk(θ)∑
i=1

Nk(θ)∑
i ̸=j

I(rij < d)

Nk(θ)
(6)
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193

K12(d, θ) = (λ1λ2V )−1

N1(θ)∑
i=1

N2(θ)∑
j=1

I(rij < d) (7)

where, k = 1, 2 depending on type of defect, λ1 =
N1(θ)
V

, λ2 =
N2(θ)
V

, N1(θ) and N2(θ) are the number194

of type 1 and type 2 defects.195

196

2.5 Data acquisition197

For the entire process, 4 reference samples of IN100 were usedwhich were tomographed using198

Nikon XT H 450. XCT images of these specimens were processed and the defects were segmented199

to create binary masks. Each connected defect volumes were labelled separately such that they200

are identified and accessible in the segmented volumes. The resolution of each voxel was (25 µm)3.201

For the training of GAN and CNN, the defect volumes were cropped and rigorous augmentation202

techniques were applied to increase the size of database via random rotation, flip etc. Finally203

around 1200 pores and 1200 shrinkages were resized to a shape of 32× 32× 32 pixels for pores and204

64× 64× 32 pixels for shrinkages. Pixel values of the dataset were normalized from [0,255] to [0,1].205

206

2.6 Deep learning networks207

Two Deep learning neural networks are integrated together in this work to generate defect: GAN208

and CNN. GANs are a generative model which usually contains two blocks of networks namely,209

generator and discriminator. The generator G takes in random 1D vector z and generates a 3D210

image of defect volumes while discriminator G is trained with both real D(x) and generated image211

G(x) to predict if the image is real or fake. The generator tries to minimize the value function of212

discriminator whilst the discriminator tries to maximize it. Hence, approach of GANs are sometimes213

also referred to as minmax game:214

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pdata(z)[log(1−D(G(z)))] (8)

where pdata is the distributions pertaining to real images and z is the input distributions to generator215

G.The convergence of the network is reached when the generator successfully fools the discriminator216

and discriminator fails to predict authenticity of the image. Theoretically, the value function at217

convergence is 0.5. In the current work, DCGAN inspired architecture has been used with binary218

cross entropy loss function. CNNs on the other hand are fairly simple to train. The network is219

trained to predict the actual width, height and depth of the real defects by training on the resized220

images [34–36]. The convergence is achieved by minimizing the mean squared error between the221

actual and predicted size via stochastic gradient descent.222

223

Network structure: In our model, generator takes in a normally distributed random input224

vector of size 128. The input layer is connected to a fully dense layer followed by 3 transposed con-225

volutional layers and a convolution layer with kernel size of 4 and a stride of 2. Batch normalization226

and ReLU activation layers are added in between except in the last convolution layer and finally a227

sigmoid layer at the end. Discriminator on the other hand is an exact mirror of generator except228

for the last layer which is one single output. Furtermore, the ReLU layers are replaced with Leaky229

ReLU activate layers. A gaussian kernel initializer is used to assign initial values of weights and230

bias with a mean of 0 and standard deviation of 1.231

The architecture of CNN contains 4 convolutional layers along with max pooling layers of size 2.232

7



ReLU activation layers are added between each convolutional and max pooling layers followed by233

a dense fully connected layer and 3 linear output neurons at the end.234

235

Training procedure: For the GANs, a batch size of 16 was used with adaptive moment236

estimation optimizer (ADAM) [37]. Learning rate for generator was set 2 times that of discriminator237

with a value of 0.0002. Generally in the Vanilla GAN, the generator is updated once per each update238

of discriminator. As a result of which the discriminator learns quicker when compared to generator.239

Therefore the generator is trained twice for each updated of discriminator. This helps to keep240

the balance in the training of generator and discriminator. Furthermore, hyperparameters such as241

learning rate of discriminator and generator, decay parameter of optimizer, number of filters of each242

layer etc. were tuned via a random search method. Model performance was seen to largely depend243

on learning rates and the number of filters associated to each layer. Initially, vanishing gradient244

problems were encountered during the training. However, adding batch normalization layers along245

with one sided noise smoothing of labels fixed the issue. One sided label smoothing is a method to246

add a small noise to the labels of discriminator. A random noise of ± 2% was added to labels.247

CNNs also use ADAM optimizer with a learning rate of 0.001 and batch size of 32. CNN is converged248

by minimizing the mean squared error.249

3 Results250

3.1 Spatial point pattern251

(a) (b)

Figure 2: a) K-functions of samples comprising all defects showing the aggregation and dispersion
effects (see text for more details) b) Defect size vs sphericity displaying the evolution of morphology
along the defect size with shrinkages being very tortuous while pores more spherical in shape.

Spatial point patterns of defect distribution in 4 reference microstructures of IN100 were analysed252

via Ripley’s K-function [14, 21]. K-functions are compared to the theoretical value of K for com-253

plete spatial randomness (CSR) or homogeneous Poisson process [38, 39]. Any deviations from254

Poisson process indicates the nature of spatial pattern i.e., if K(d) > Kpoisson(d), the points are said255

to be attracting or clustered and vice versa. From figure 2a, strong clustering effects are seen in256
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short distance ranges (K(d) > Kpoisson(d)) and dispersion in large ranges (K(d) < Kpoisson(d)). To257

simulate such an in-homogeneous pattern, different strategies like Strauss process, Matern process258

or Neyman-Scott process need to be employed [21].259

260

The Defect size is plotted as a function of sphericity in figure 2b. Defect size is defined by261 √
Area where Area is the projected area of defect on a plane perpendicular to loading direction [6]262

while sphericity is a morphological parameter which measures how spherical a defect is: a value of 1263

indicates a perfectly spherical defect [15]. Sphericity, ϕ is given by π1/3Vp

Ap
where Vp is the volume of264

defect and Ap is the surface area. Figure 2b shows a clear inverse relationship between defect size265

and sphericity (defects get more and more spherical as the size reduces). Indeed, small pores are266

mostly formed due to trapped gases while larger pores are shrinkages and tend to be much more267

tortuous as the size increases. From figure 2b, it can be seen that defect size ranges from 100 µm to268

1.5 mm. Due to this large variance in defect size, the K-function was modified to assess attraction269

or repulsion among specific groups of defects (classified based on their size). A defect size threshold270

θ which is a
√
Area value was introduced to classify defects into two groups (see section 2.4), the271

two groups being shrinkages (larger defects) and pores (smaller defects). By varying θ, it is pos-272

sible to investigate the existence of two different processes in the formation of voids via bivariate273

K-functions (see section 2.3). By splitting the defect into two groups as type 1 for defects of size274

larger than θ and type 2 for defects smaller than θ, it is assumed that defects of type 1 and type 2275

are two different processes for which K-functions and cross K-functions are analysed. Defects are276

initially classified at θ = 1 mm and varied upto θ = 0.1 mm.277

Cross K-function is a method to estimate interaction between two processes i.e., the spatial ordering278

of type 2 defects around type 1 defects [21]. This kind of analysis helps to understand if the smaller279

defects are aggregated with respect to each other or with the larger defects and furthermore aids280

to simplify the simulation of in-homogeneous point process. Bivariate K-functions together can be281

described in the form of a symmetrical matrix given that pattern is stationary where, K11 and K22282

are K-functions of type 1 and type 2 defects and K12 is the cross K-function between point process283

of both type of defects. In other words, K11 is K-function of all defects larger than θ and K22 for284

the defects smaller than θ. As θ reduces, defects from type 2 group are moved to type 1 group.285

286
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(a) (b)

Figure 3: K11 functions for a) sample D b) sample B for different values of θ.

(a) (b)

Figure 4: K22 functions for a) sample D b) sample B for different values of θ.

Results from K11, K22 and K12 functions of two reference samples are shown in figures 3, 4 and287

5. From figure 3, strong aggregation can be seen among defects larger than approximately 0.4 mm288

(θ values above 0.4) but as the smaller defects are considered, the clustering effect reduces (with289

respect to θ). This reduction is due to the fact that smaller defects which are necessarily pores290

are spread across the length of the sample. Similar effect can be seen for K22 functions where the291

function remains more or less same for θ values between 1 - 0.4 mm and reduces thereafter signifying292

that clustering is driven by defects larger than 0.4 mm.293

294
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(a) (b)

Figure 5: K12 functions for a) sample D b) sample B for different values of θ.

The interaction between two classes of defects with respect to parameter θ can be described295

with cross K-function K12. At a given θ, K12 function measures if the defects smaller than θ are296

clustered or dispersed with larger defects. From figure 5b, it is seen that smaller defects are strongly297

clustered with larger defects upto a value of 0.4 mm and remains almost same upto this value similar298

to results of K11 and K22 functions. However, in some samples K12 function reduces marginally299

with respect to θ even for values greater than 0.4 mm. This reduction is attributed to the existence300

of secondary and tertiary clusters apart from one large primary cluster as depicted in figure 1d. The301

weak attraction of these subordinate clusters which contains defects larger than 0.4 mm reduces the302

cross K-function as seen in figure 5a. Similar effect can also be seen in K11 function of this sample,303

see figure 3a.304

305

Given the fact that in most scenarios K-functions remains nearly constant upto a θ of 0.4 mm,306

it is evident that defects above and below this size follow different processes of void formation307

mechanisms. One of the processes is where the smaller defects are nucleated randomly across the308

length of the sample while the other where the voids are localised to form clusters i.e., the larger309

defects whose K-functions shows strong aggregation. These two processes interact with each other310

causing the smaller defects to be attracted towards larger defects. This can also be seen in 1d where311

defects smaller than 0.4 mm (colored in blue) are spread across the sample but interacts with larger312

defects (colored in red) to form clusters. Those larger than 0.4 mm are certainly shrinkages which313

are tortuous in shape as seen in figure 2b whose formation is linked to thermodynamical processes314

of solidification whilst the rest are pores formed mostly due to trapped gases. Nevertheless, from315

figure 4 negligible attraction effect is seen even for pores (K22 > Kpoisson) due to the interaction316

between two processes. It is however important to note that the clustering effects at all θ < 0.4 mm317

for K11 and K12 functions are not caused by the same effect. In these functions, defects larger that318

θ are included in the calculations i.e., for example, at a θ of 0.1 mm, K11 function is measured for319

all defects larger than 0.1 mm. Therefore, in these functions the clustering effect for lower θ values320

is induced by the larger defects. Finally, with the knowledge of existence of two processes and the321

interaction between them as described by bivariate K-functions, Neyman-Scott process can be used322

to generate such an in-homogenous point pattern. In this process, the parent events or defects are323

distributed homogeneously in the material space and children defects are distributed around the324
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parent defects [40]. Shrinkages or defects larger than 0.4 mm typically found in the defect cluster325

are the parent defects whilst the pores are children defects.326

However, nucleation of parent defects is in-homogeneous and occur at specific points along the length327

of the sample defined by a mixed Gaussian distributions as seen in figure 6. Furthermore, it is seen328

that children defects follow the same distribution along the axis of the sample due to the interaction329

between the two processes as already invoked. More importantly, presence of multiple clusters is330

seen in the number of gaussians of this mixed gaussian distribution. Mixed Gaussian distributions or331

Gaussian mixture models (GMM) are characterised by means µk, standard deviation σk and weights332

πk where k is the number of Gaussians [41, 42]. Via expectation maximization algorithm, respective333

means, standard deviations and weights of each Gaussians can be found. Average standard deviation334

of the parent defects’ Gaussians was found to be approximately 9 pixels or 225 µm whilst the means335

were found to be coherent with those of children defects as also seen in figure 6. Each Gaussian336

of parent defects acts as seeds for the nucleation of clustered defects in that zone of the sample.337

This preference of clustering along the length of the sample maybe due to solidification processes338

of cylindrical ingot bars which are used to machine the samples. Furthermore, it can also be due339

to the choice of location and orientation of samples to be machined from ingot bars: the axis of340

samples were placed parallel to the axis of the ingot bars during machining.341

(a) (b)

Figure 6: Distribution of defects along the length of sample a) D b) C showing the existence of
multiple clusters.

3.2 Generation of synthetic defects342

Morphology of the defects varies with respect to its size in an exponential pattern [15, 43]. It is343

difficult to train GANs to reproduce defects that can respect this relationship since all defects will344

be initially resized to a fixed size for training. Hence GANs were discretized into two parts i.e., two345

adversarial networks were trained to generate defects: one for shrinkages (defects>0.4 mm) and346

the other for pores (defects< θ =0.4 mm). θ here is the threshold parameter as determined via347

SPP analysis. Since the number of shrinkages and pores were insufficient to train the network, a348

rigorous data augmentation step was carried out to increase the database size. The individual defect349

volumes were randomly rotated in 3D with angle bounds of −45 deg to +45 deg, flipped and inverted350

in the data augmentation step. All defects are then resized to a fixed size of 64 × 64 × 32 voxels351
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(a) (b)

Figure 7: a) Evolution of loss of GAN and generated defect along the training period with
iterations being each update of discriminator b) KL divergence value between gaussian curvature
of generated shrinkage and mean gaussian curvature of real shrinkage showing that generated

shrinkages are similar to real defects.

Generated Shrinkages

Real Shrinkages

Figure 8: Examples of few generated shrinkages along with real shrinkages.

for shrinkages and 32× 32× 32 voxels for the pores before training the adversarial networks. The352

resizing of images is done by applying a zero order interpolation function Imageresized = D(Image)353

where D is the interpolation function. To maintain the balance between generator and discriminator354

networks, the generator is updated twice per each update of discriminator. Furthermore, adding355

a small noise to the labels of discriminator has shown to improve the training of the adversarial356

network. The adversarial and discriminator loss balance out after as less as 5 epochs and the model357

would be trained within 60 epochs.358

Since the generated defects are also of fixed size similar to training data, CNNs are used to learn359

the inverse of the interpolation function used and find the dimensions of defect’s 3D slices. Since a360

relationship is assumed between defect size and morphology, it is fairly an easy and quick process to361

train the CNNs [34, 35]. The trained generators and CNNs can then be integrated to generate defects362
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of various sizes and morphologies for the synthetic microstructures. Trained generator generates363

the defect and lets trained CNN to predict its original size. The defect (3D image stack) is then364

upsampled and filtered to remove disconnected volumes as the final procedure in the generation of365

defects i.e. the largest volume is retained [44].366

Evolution of the adversarial and discriminator loss of GAN is shown along with the evolution of367

generated defects with each discriminator update in figure 7a. The generated defects are validated

Figure 9: Representation of procedures for the generation of synthetic microstructures.

368

by comparing local Gaussian curvatures [45] of generated and real defects. Gaussian curvatures are369

defined as product of principal curvatures (or eigen vectors of local curvatures) at each vertex of the370

surface mesh. In this work, the gaussian curvatures are measured as per the methods described by371

[46] using the python module trimesh [47]. Gaussian curvatures measured at all points on a given372

defect’s surface forms a gaussian distribution. For each generated defect, the distance between its373

gaussian curvature distributions with the mean distribution of real defects is measured via Kullback-374

Leibler (KL) divergence distance [48] which is given by, log σR

σG
+

σ2
G+(µG−µR)2

2σ2
R

− 1
2
where σG is the375

standard deviation of gaussian distribution of generated defect, σR average standard deviation for376

real defects and µG and µR are the respective means. Smaller the value of KL distance, more similar377

the two distributions are while for identical distributions, the value equals 0. As shown in figure378

7b, this distance metric remains low exhibiting similarity with real defects and at the same time,379

each generated defect is unique as seen in figure 7b and 8. The entire procedure of synthetic defect380

generation via GAN and CNN is summarized in figure 9.381

3.3 Synthetic microstructures382

During the generation of synthetic microstructure, firstly number of defects in the microstructure is383

defined by Poisson random number with λ = E(Nreal) where Nreal is the number of defects in real384

specimens. Through statistical estimations (ln-likelihood), generalised extreme value (GEV) was385

seen to best fit the defect size distribution in this material. Therefore, identified parameters of GEV386

distribution were used to estimate and generate number of defects for given size ranges discretely387

via our combined GAN and CNN model that produces unique synthetic defects as explained in388
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previous section. These generated defects are placed in material space using positions defined by K-389

functions. The distribution of defects in real specimens is heterogeneous, therefore Neyman-Scott390

process is adopted to replicate this heterogeneity [40] via bivariate K-functions. The shrinkages391

(defects > 0.4 mm) act as parent defects and pores (defects < 0.4 mm) as children events. Contrary392

to traditional method, a mixed Gaussian distribution defined on the axis of the sample is used to393

distribute shrinkages (parent defects) in material space. Mixed gaussian distribution is randomly394

generated with random number of clusters k, mean µk and variance σk equal to average variance395

of reference samples whilst the weights πk are randomly attributed to each Gaussian k such that396

their sum equals unity. Each Gaussian of this GMM acts as seeds for the nucleation of primary397

and subordinate clusters. Shrinkages are placed in the material where their planar co-ordinates398

(radial positions) are randomly chosen whilst their position along the axis is extracted randomly399

from the mixed Gaussian distribution. The process generates a random K11 function similar to400

those of reference sample.401

Furthermore, the children defects (pores) are added around the parent defects (shrinkages) con-402

serving the interaction between the two processes via K12 function and interaction amongst the403

pores via K22 functions. Since volume of material space is constant and the number of defects404

are defined by Poisson random number, expected number of defects within any given distance d405

can be computed using equations 6 and 7 with respect to maximum and minimum K-functions of406

reference sample. It is ensured that K12 function of generated sample is always in between the407

lowest and the highest value of reference samples. To not over-constrain the addition of gener-408

ated defects as per K-functions in the material space, a small tolerance value is added to bivariate409

K-functions such that K-functions of each generated microstructure is similar to real specimens410

but unique. This way, the entire generation process is randomized and each generated microstruc-411

ture is a Poisson random output with λ = characteristics of real specimens. During this process,412

attention is given to avoid overlapping of defects within themselves and with the material boundary.413

414

(a) (b)

Figure 10: a) Defect size distribution of 5 generated samples showing that each generated
microstructure is unique in terms of total number of defects, parent and children defects and

maximum defect size b) comparison of probability densities of Sphericity displaying the
morphological consistency of generated microstructures with real microstructures.

Figure 10a shows the defect size distribution of 5 synthetic microstructures. Total number of415
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defects of each synthetic microstructure is different since it is assumed that total number of defects416

follows Poisson distribution [49]. In other words, the number of defects, number of parent and417

children defects of synthetic microstructures are determined by the Poisson random number with418

metrics of reference specimens as rate parameter λ i.e., average number of defects in samples.419

Furthermore, sphericity of defects in the synthetic microstructures are compared in figure 10, the420

error bars represent 95 percent variances. Variance bars of generated microstructure’s sphericity421

distribution lies within the distribution of reference samples at almost all instants describing the422

morphological consistency of generated samples.423

424

Some of the morphological features are usually correlated in real specimens for e.g.,
√
Area and425

ϕ are negatively correlated [8] as also seen in figure 2b. Defect size on the other hand, can be426

expressed in various forms like cube root of volume, equivalent radius of a sphere assuming volume427

of defect is equal to that of this sphere etc. However,
√
Area is the one most used to describe fatigue428

since it allows to capture mode I crack propagation and is empirically linked to fatigue life, stress429

intensity factors of crack etc. [7–9, 50–52]. Inter-dependencies of these features are found to have a430

prominence in fatigue performance of a material. The correlations between each of such features can431

be measured via pearson correlation coefficient (PCC) [53–56]. Apart from these features, defect432

characteristics such as aspect ratio (AR) and distance from free surface (d) plays an important role433

in fatigue performance of the material too. AR is a ratio of major axis to minor axis of a defect434

projected on a particular plane (here, a plane perpendicular to loading axis which is the axis of435

specimen). Figure 11 shows the PCC between each of such features in the form of a matrix. It is436

seen that the generated microstructure preserves the inter-relationships between prominent defect437

features given the similarities between PCC of real and synthetic samples. Some of the generated438

synthetic microstructure are shown in figure 12.439

440

(a) (b)

Figure 11: Comparison of global inter relationships between defect features via PCC a) Real
microstructure b) Synthetic microstructure, displaying the statistical coherency between synthetic

and real microstructure in terms of inter-relationships between the defect characteristics.

With all these global statistics being in good agreement with those of real specimens, it can be441

said that the method applied for the generation is efficient and can replicate the real specimens442
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in terms of spatial arrangement as well as the morphological and statistical aspects of defects.443

Furthermore, the uniqueness of each generated microstructure is conserved by the random number444

of defects that is defined by Poisson distribution, randomly explored K-functions along with new445

unique defects generated by Deep Neural Networks (DNNs) for each microstructures.446

4 Discussion447

A novel strategy has been developed in this work to generate synthetic microstructure in a more448

cost-friendly and efficient way by integrating SPP analysis and GAN as illustrated in figure 13. Gen-449

erating greyscale XCT-like images directly would have been impractical and very computationally450

demanding given the size of samples [57–60]. In addition, it would not have brought any additional451

information as ultimately the images would have been thresholded to segment the defects. Also,452

training such a model would require an enormous number of XCT images as input. In this regard,453

combined use of SPP and DNNs is very effective.454

455

Bi-variate ripley’s K-functions were used to analyse SPP of real reference microstructures and to456

generate synthetic ones. Ripley’s K-function is usually affected by edge effects where the measure-457

ment domain of distance d goes out of the study-region. One of the simplest methods to avoid this458

error is to measure K-function only upto 1/3rd of the largest possible distance. Hence, K-functions459

were analysed only until a distance of 2 mm in the above cases. Moreover, mechanical interaction460

of a pore with any shrinkage that is farther away than 2 mm from itself is nearly negligible given461

a gauge section diameter of 3.7 mm and maximum possible defect size of approximately 1.5 mm.462

Therefore, for all pores beyond 2 mm from any of the parent defects, a Poisson process was assumed463

to distribute them in material space.464

Furthermore, to assess if the process behind the point pattern is different for larger and smaller de-465

fects, a defect size threshold parameter θ (which is
√
Area value) was introduced to classify defects466

based on their sizes. K-functions were analysed at different θ values ranging from 1 mm to 0.1 mm.467

From our previous work [15], defect population was classified into three groups: a) Shrinkages, b)468

broken shrinkage pores and c) gaseous pores. Statistically, all defects larger than approximately 0.3469

- 0.4 mm are shrinkages due to their tortuous morphology as seen in figure 2b and matches with470

the findings of SPP analysis where a θ of 0.4 mm explicitly classifies the void nucleation mechanism471

into two groups: Shrinkages and pores. The clustering of defects is driven by shrinkages which472

nucleates at specific zones in material space and the gaseous porosity interacts with this process as473

shown by cross K-functions.474

475

The shrinkages of reference samples were resized to a cuboid size of 64× 64× 32(px3) to train476

the generator given the unsymmetrical size of shrinkages in three directions. The average radial477

width of shrinkages (X and Y direction) was found to be around 50 px while the thickness along the478

axis (Z direction) was found to be 29 pixels. This difference might be linked to gradient of cooling479

rate along the radial axis of the ingot bars [61–63]. Furthermore, the current approach to generate480

defects can be further developed by various means given the increasing popularity of deep learning481

techniques in materials science [64, 65]. For example, GAN can be conditioned to generate a defect482

of particular characteristics which would reduce the generation time for synthetic microstructure483

and give further control to the user [66]. Furthermore, a Deep convolution GAN inspired architeture484

was used in the current work which can be replaced with more advanced GAN networks such as485

Wasserstein GANs, Style GAN, Spatial GANs etc [28, 67, 68]. It might also be possible to integrate486

the generation of grains into this existing model to also capture the effects of grains, slip plane etc487
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(a) (b) (c) (d) (e)

Figure 12: Examples of few generated samples.

on material’s performance. In the current approach, CNN’s predict the X, Y and Z dimension of488

the generated defect which is later upscaled by interpolation. This can be replaced by bottle-neck489

architectures like U-nets to directly upscale the defect which should probably remove the filtering490

step in the model.491

492

Assuming a similarity in granular characteristics in all samples, grains were not considered in493

the current approach. However, the approach is also compatible if such granular microstructure494

needs to be taken into account assuming that there is no correlation between grain size and defects.495

This can be easily done by generating grains by Voronoi tessellation as demonstrated by Quey et al496

[69] and performing a boolean operation between the granular microstructure and microstructure497

containing defects for example.498

499

With regards to further usage of this strategy, one immediate application would be to analyse the500

influence of each feature of defect on the number of cycles to failure in fatigue loading via fracture501

mechanics. Particularly in the case of clustered defects, such an analysis should aid in finding502
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an approximate function that can better predict the fatigue life of samples taking into account503

inter-defect interactions. Furthermore, similar to approach of El Khoukhi et al [70], a monte-carlo504

like approach can be implemented to estimate fatigue life in a probabilistic fashion. The results of505

all these extended works with the aid of synthetic microstructure will be presented in our future506

articles.507

  

Defect size distribution Generated Parent defects Generated Children defects

Cluster seeds Centroids of parent defects K11 function

K22 functionK12 function Centroids of all defects

Deep Neural Networks – Defect Database

Parent defects

Children defects

Synthetic sample

Figure 13: Illustration of the strategy to generate synthetic microstructures.
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