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This paper presents a new strategy to generate synthetic samples containing casting defects. Four samples of Inconel 100 containing casting defects such as shrinkages and pores have been characterized using X-ray tomomgraphy and are used as reference for this application.

Shrinkages are known to be tortuous in shape and more detrimental for the mechanical properties of materials, especially metal fatigue, whereas the pores can be of two types: broken shrinkage pores with arbitrary shapes and gaseous pores of spherical shape. For the generation of synthetic samples, an integrated module of Spatial Point Pattern (SPP) analysis and deep learning techniques such as Generative Adversarial Networks (GANs) and Convolutional Neural Networks (CNNs) are used. The SPP analysis describes the spatial distributions of casting defects in material space whereas GANs and CNNs generate a defect of arbitrary morphology very close to real defects. SPP analysis reveals the existence of two different void nucleation mechanisms during metal solidification associated to shrinkages and pores. Our deep learning model successfully generates casting defects with defect size ranging from 100 µm to 1.5 mm and of very realistic shapes. The whole synthetic microstructure generation process respects the global defect statistics of reference samples and the generated samples are validated by statistically comparing with real samples.

Introduction

Casted materials often carry defects formed during metal solidification. These defects can have a serious impact on the material properties whose magnitude depends on various microstructural and defect characteristics. Some of the defects that can appear in casted materials are shrinkages, pores, oxide films, etc [START_REF] Rotella | Fatigue Limit of a Cast Al-Si-Mg Alloy (A357-T6) with Natural Casting Shrinkages Using ASTM Standard X-Ray Inspection[END_REF][START_REF] Wang | Fatigue Behavior of A356-T6 Aluminum Cast Alloys.Part I. Effect of Casting Defects[END_REF][START_REF] Kunz | Casting defects and high temperature fatigue life of IN 713LC superalloy[END_REF]. Shrinkages are large tortuous cavities formed due to contraction of molten metal during solidification whereas pores and micro-voids are smaller in size and are generally formed due to trapped gases. These cavity defects can degrade material performance drastically by promoting initiation and propagation of crack driven by stress concentration [START_REF] Wang | Oxide Films, Pores and the Fatigue Lives of Cast Aluminum Alloys[END_REF][START_REF] Kunz | High-cycle fatigue of Ni-base superalloy Inconel 713LC[END_REF][START_REF] Murakami | Effects of Defects, Inclusions and Inhomogeneities on Fatigue Strength[END_REF][START_REF] Dezecot | 3D Characterization and Modeling of Low Cycle Fatigue Damage Mechanisms at High Temperature in a Cast Aluminum Alloy[END_REF]. The intensity of this degradation depends on various defect characteristics such as its size, position and morphology [START_REF] Nadot | Fatigue from Defect: Influence of Size, Type, Position, Morphology and Loading[END_REF]: the fatigue life is known to vary inversely with respect to defect size, a relationship demonstrated by Kitagawa-Takahashi diagram [START_REF] Koutiri | Multi-Scale Approach of HCF Taking into Account Plasticity and Damage: Application to LPBF Materials[END_REF][START_REF] Le | Simulation of the Kitagawa-Takahashi Diagram Using a Probabilistic Approach for Cast Al-Si Alloys under Different Multiaxial Loads[END_REF]. It is also known that defect location plays a very prominent role in high cycle fatigue (HCF) [START_REF] Le | Simulation of the Kitagawa-Takahashi Diagram Using a Probabilistic Approach for Cast Al-Si Alloys under Different Multiaxial Loads[END_REF][START_REF] El Khoukhi | Experimental Investigation of the Size Effect in High Cycle Fatigue: Role of the Defect Population in Cast Aluminium Alloys[END_REF]. Cracks initiating from defects that are closer to free surface propagate faster when compared to those initiating from internal defects given the difference in their stress intensity factors (SIF) [START_REF] Rotella | Fatigue Limit of a Cast Al-Si-Mg Alloy (A357-T6) with Natural Casting Shrinkages Using ASTM Standard X-Ray Inspection[END_REF]. Furthermore, a tortuous morphology of defects can drastically increase stress concentration facilitating crack initiations. Some of the independent features that can characterize defect morphologies are sphericity, aspect ratio, etc [START_REF] Nadot | Fatigue from Defect: Influence of Size, Type, Position, Morphology and Loading[END_REF]. Whilst these characteristics can induce a large scatter in fatigue life, the problem gets more complicated in materials containing high porosity levels which results in formation of defect clusters [START_REF] Bellomo | Identifying Critical Defect Sizes From Pore Clusters in Nickel-based Superalloys Using Automated Analysis and Casting Simulation[END_REF]. In clustered defects, apart from the individual features of defects, they are also influenced by the stress gradients of neighbouring defects. These defects can sometimes be found in aeronautical parts like turbine disks and blades, and has received much less attention in mechanical domain. Analysing all the features that might affect fatigue life requires a large number of samples to be tested which can be extremely costly. Therefore, a plausible approach is to generate synthetic microstructures that are very close to reality which can be simulated numerically to create a large database of mechanical response to the presence of defects, their morphology and spatial distribution.

Present work focuses on analysing the effects of defect population in a naturally isotropic material inconel 100 under cyclic loads where the granular characteristics of all tested samples are similar.

In such a case, synthetic microstructures can be generated by distributing the defects in a homogeneous material space according to a pattern similar to real defects. The spatial ordering of defects can be analysed through spatial point pattern theory (SPP) with tools like Ripley's K-function that measures the second order properties of point distribution in space [START_REF] Ripley | Modelling spatial patterns[END_REF]. A similar approach was applied by El Khoukhi et al where numerical microstructures were generated by placing spherical defects in a homogeneous material space [START_REF] Driss | Spatial point pattern methodology for the study of pores 3D patterning in two casting aluminium alloys[END_REF].

Need for synthetic microstructures : Samples containing clustered defects (see figure 1) are known to produce very complex mechanical response under fatigue loading. Although, image based finite element (FE) models can simulate this response and aid in locating the crack-initiation site, it is still very difficult to simplify the process and predict its fatigue life with respect to defect characteristics [START_REF] Raghavendra | Role of defects in fatigue performance of IN100[END_REF]. For an isolated defect, a Kitagawa -Takahashi diagram can be used but the same Linear Elastic Fracture Mechanical (LEFM) approach cannot be applied to clustered defects. Therefore, a better estimation of the parameters influencing material's fatigue life apart from just the defect's size is needed. The additional parameters or features could be the volume fraction of defects, size of the cluster, sphericity, aspect ratio or other morphological parameters. For such an analysis, a large number of samples are needed and generating synthetic microstructures that mimics the real specimens is seemingly an inexpensive approach. Furthermore, these generated microstructures can then be converted to image based FE models and simulated numerically to estimate prominent characteristics or to develop a probabilistic model with an approach similar to Monte-Carlo. X-ray computed tomographic images (XCT) as seen in our previous work [START_REF] Raghavendra | Role of defects in fatigue performance of IN100[END_REF]. The XCT volumes can be used to build image-based FE models of the same. Via numerical simulations, the critical defect that could initiate primary crack during fatigue loads can be determined. The volumes of the studied XCT scans were 300 mm 3 .

As seen in table 1, defects occupy around 0.3 -0.52 % of material volume, among which many of these defects are confined in a small thickness along the axis of the sample forming complicated network of defects as seen in figure 1. The interaction of these clustered defects is too complicated Method to generate synthetic microstructure : Synthetic microstructures can be generated by placing the defects in a fixed material space of a particular geometry similar to that of real specimens. Placing the defects in material space is a stochastic process which requires a prior understanding of spatial distribution of patterns, for eg: via SPP, which is significantly used in the field of astronomy, forestry, cartography etc [START_REF] Diggle | Statistical analysis of spatial and spatio-temporal point patterns[END_REF][START_REF] Gaines | The Effects of Drought on Foraging Habitat Selection of Breeding Wood Storks in Coastal Georgia[END_REF][START_REF] Pillay | Spatial pattern analysis and competition between Acacia karroo trees in humid savannas[END_REF][START_REF] Veen | Case Studies in Spatial Point Process Modeling[END_REF][START_REF] Neyman | Spatial Distribution of GALAXIES-ANALYSIS of the Theory of Fluctuations[END_REF]. With tools like Ripley's K-function, second order properties of point pattern can be measured: the points in our context are centroids of defect volumes [START_REF] Dixon | s K Function in Encyclopedia of Environmetrics[END_REF]. Neither many researchers have considered SPP analysis to estimate the 3D spatial characterization of defects nor to generate numerical microstructures using the same [START_REF] Driss | Spatial point pattern methodology for the study of pores 3D patterning in two casting aluminium alloys[END_REF][START_REF] Wilson | Statistical study of the size and spatial distribution of defects in a cast aluminium alloy for the low fatigue life assessment[END_REF].

In the case of clustered defects, regular shapes cannot be assumed for defects since contributions of various features in degrading material's performance is merely unknown. Hence, a deep learning strategy called Generative Adversarial Networks (GANs) and Convolutional Neural Networks (CNNs) are integrated together to recreate realistic synthetic defects that can be placed via stochastic process defined by SPP in material space. GANs are a very recent development in the field of deep learning that can learn to create data that doesn't exist in the database [START_REF] Goodfellow | Generative adversarial networks[END_REF][START_REF] Creswell | Generative adversarial networks: An overview[END_REF]. Few researchers have attempted to generate microstructures directly using different variants of GANs [START_REF] Chun | Deep learning for synthetic microstructure generation in a materials-by-design framework for heterogeneous energetic materials[END_REF][START_REF] Jangid | 3D Grain Shape Generation in Polycrystals Using Generative Adversarial Networks[END_REF][START_REF] Laloy | Training-Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network[END_REF][START_REF] Hsu | Microstructure Generation via Generative Adversarial Network for Heterogeneous, Topologically Complex 3D Materials[END_REF][START_REF] Yang | Microstructural Materials Design Via Deep Adversarial Learning Methodology[END_REF][START_REF] Shen | Nature-inspired architected materials using unsupervised deep learning[END_REF][START_REF] Nguyen | Synthesizing controlled microstructures of porous media using generative adversarial networks and reinforcement learning[END_REF]. Jangid et al developed a GAN that could generate random grain shapes [START_REF] Jangid | 3D Grain Shape Generation in Polycrystals Using Generative Adversarial Networks[END_REF] which were validated by comparing with real grains. CNNs on the other hand are kernel based neural networks which can learn various receptive kernels to be applied on the image data for classification and regression purposes. Here, CNNs are used as post processing step to determine the size of generated synthetic defects.

The generated defects are placed in material space respecting the global distributions of defect features and also the spatial pattern. The uniqueness of the generated microstructures is maintained by applying a Poisson distribution over the mean number of defects while exploring different K-functions similar to that of real specimens.

Methods

Spatial point pattern

Spatial point pattern (SPP) analysis is a branch of study in stochastics mainly used in the field of astronomy, ecological survey etc. SPP is any point or location in a specified region (defects in material space in our case). These events occur randomly and can be modelled with a specific stochastic process. As discussed by [START_REF] Diggle | Statistical analysis of spatial and spatio-temporal point patterns[END_REF], SPP can be divided into three main categories: a Random or Complete Spatial Randomness (CSR): where the points or events are randomly distributed and can be modelled via Poisson process.

b Clustered: where points or events attract to each other in space forming small groups called clusters.

c Regular: where the points repel each other.

A point pattern analysis (PPA) is mainly concerned with describing and making sense of the process that could have generated these random patterns, for eg:-the occurrence of defects in a material is controlled by various parameters linked to material thermodynamical properties. A PPA can be described with two properties [START_REF] Bailey | Interactive spatial data analysis[END_REF], namely: a First order properties: Are the descriptions on the basis of intensity functions, density of defects at a particular material space for example. b Second order properties: are the descriptions on the basis of interactions between each event or points in their material space.

First order properties are studied over a sub-region for a large number of events or points. Variations in these properties from each sub-region to another can make the point pattern inhomogeneous.

The first order properties are helpful for a global spatial distribution analysis but aren't efficient to distribute the defects spatially in material space. Moreover, global parameters like volume fraction of defects in a specimen has no strong relationship with fatigue life. Hence, patterns of defects in space are studied via second order properties which include: Nearest Neighbor function (NND), Ripley's K-function, etc. Second order properties are those where an occurrence of each event is linked or dependent on one another characterized by the distance between them. Point patterns are statistically compared with complete spatial randomness (CSR) of the null hypothesis for a thorough analysis.

Poisson process

CSR is a state where events or points occur randomly in space with no interactions between each other. CSR forms the continuum of the natural ordering or patterns of events. On the either side of this continuum lies clustered and regular state of point patterns as explained by [33]. CSR can be modelled with just one parameter such as the expected density of points in space. This can be done via Poisson process since any random event follows a Poisson distribution with a mean value or expected value (density of defects in this case) which is given by,

P {N (V ) = k} = (λ) k k! exp -λ (1) 
Where λ is number of points per unit volume, sometimes also called as rate parameter, V is the volume of material space in our case and N is the possible random variable. Equation 1gives the probability of N being equal to k. For n disjoint sets V 1 , . . . , V n the random variables N (V 1 ), . . . , N (V n ) are independent of each other i.e., each point is stochastically independent and there exists no interaction between them which defines CSR. This stochastically independent state of point pattern is therefore often used as reference to evaluate if a point pattern is clustered or dispersed (attracting or repulsing).

Univariate and Bi-variate Ripley's K-function

Ripley's K-function is an effective tool to quantify second order properties of a spatial point pattern. With distance between each pair of events or points as the main parameter, Ripley's kfunction can estimate the probable number of events or points that can be found within a particular distance. K-function can be expressed in multiple variants. When all the points in the study region belongs to one type or class, it is said to be univariate K-function and when the points are divided into two different types or classes, it can be called as bivariate K-function. In general form, Kfunction is given by,

K(d) = λ -1 E[number of events within distance d of a randomly chosen event] (2) 
which is given as,

K(d) = V N N i=1 N i̸ =j I(r ij < d) N I → 1, ifr ij < d 0, otherwise (3) 
Where V is the volume and N is the total number of points in material space. V /N is nothing but λ -1 which is the intensity of events (points) or the number of points in a unit volume and I is the identity operator which equals to one if the distance between point i and j is less than distance d and equals to zero otherwise. The value of K-function is usually compared to the theoretical value of K for CSR or homogenous poisson process. From the null hypothesis for CSR, Ripley's K-function reduces to the volume of the sphere with radius equal to distance d,

K poisson (d) = 4 3 πd 3 (4) 
The deviation of K from the theoretical value can estimate the nature of spatial distribution of events. If K(d) > K poisson (d), the pattern is said to be clustered and vice versa.

In bi-variate K-function, the events or points are classed into two types, for example, Orange trees and apples trees, stars and planets etc. Bivariate functions as a whole can be represented in matrix form where K 11 and K 22 are K-functions of type 1 and type 2 points. The intensities of each type λ 1 and λ 2 are the two variables of the bi-variate K-functions. The interaction between these two processes is measured with cross K-function K 12 . The procedure to measure K 12 remains the same as univariate K-function except that within a sphere or circle, number of other type points are counted. Cross K-function is given as,

K 12 (d) = (λ 1 λ 2 V ) -1 N 1 i=1 N 2 j=1 I(r ij < d) (5) 
Where, λ 1 and λ 2 are the intensities of type 1 and type 2 points, N 1 and N 2 are the number of type 1 and type 2 points or events.

Estimation of parameters for Neyman-Scott process

If a pattern is homogeneous, Poisson process can generate the pattern whilst for inhomogeneous pattern, strategies like Neyman-Scott process, Strauss process or Matern process needs to be used.

The parameters for such processes needs to be estimated in prior [START_REF] Dixon | s K Function in Encyclopedia of Environmetrics[END_REF]. In the current work, Neyman-Scott process is used where the points are classified into two types: parent and children. Parent forms the center around which children points are distributed with a known distribution whilst parent points are distributed homogeneously in space.

To classify the defects into types, a parameter θ was introduced in K-function. This parameter can be called as threshold size parameter with which defects are classified based on their sizes. With the introduction of θ, K and K 12 functions can be expressed as,

K kk (d, θ) = V N k (θ) N k (θ) i=1 N k (θ) i̸ =j I(r ij < d) N k (θ) (6) 
K 12 (d, θ) = (λ 1 λ 2 V ) -1 N 1 (θ) i=1 N 2 (θ) j=1 I(r ij < d) (7) 
where, k = 1, 2 depending on type of defect,

λ 1 = N 1 (θ) V , λ 2 = N 2 (θ) V , N 1 (θ)
and N 2 (θ) are the number of type 1 and type 2 defects.

Data acquisition

For the entire process, 4 reference samples of IN100 were usedwhich were tomographed using

Nikon XT H 450. XCT images of these specimens were processed and the defects were segmented to create binary masks. Each connected defect volumes were labelled separately such that they are identified and accessible in the segmented volumes. The resolution of each voxel was (25 µm) 3 .

For the training of GAN and CNN, the defect volumes were cropped and rigorous augmentation techniques were applied to increase the size of database via random rotation, flip etc. Finally around 1200 pores and 1200 shrinkages were resized to a shape of 32 × 32 × 32 pixels for pores and 64 × 64 × 32 pixels for shrinkages. Pixel values of the dataset were normalized from [0,255] to [0,1]. 

Deep learning networks

min G max D V (D, G) = E x∼p data (x) [log(D(x))] + E z∼p data (z) [log(1 -D(G(z)))] (8) 
where p data is the distributions pertaining to real images and z is the input distributions to generator G.The convergence of the network is reached when the generator successfully fools the discriminator and discriminator fails to predict authenticity of the image. Theoretically, the value function at convergence is 0.5. In the current work, DCGAN inspired architecture has been used with binary cross entropy loss function. CNNs on the other hand are fairly simple to train. The network is trained to predict the actual width, height and depth of the real defects by training on the resized images [START_REF] Nibali | Numerical Coordinate Regression with Convolutional Neural Networks[END_REF][START_REF] Shimobaba | Convolutional Neural Network-Based Regression for Depth Prediction in Digital Holography[END_REF][START_REF] Sateesh Babu | Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life in Database Systems for Advanced Applications[END_REF]. The convergence is achieved by minimizing the mean squared error between the actual and predicted size via stochastic gradient descent.

Network structure: In our model, generator takes in a normally distributed random input vector of size 128. The input layer is connected to a fully dense layer followed by 3 transposed convolutional layers and a convolution layer with kernel size of 4 and a stride of 2. Batch normalization and ReLU activation layers are added in between except in the last convolution layer and finally a sigmoid layer at the end. Discriminator on the other hand is an exact mirror of generator except for the last layer which is one single output. Furtermore, the ReLU layers are replaced with Leaky ReLU activate layers. A gaussian kernel initializer is used to assign initial values of weights and bias with a mean of 0 and standard deviation of 1.

The architecture of CNN contains 4 convolutional layers along with max pooling layers of size 2.

ReLU activation layers are added between each convolutional and max pooling layers followed by a dense fully connected layer and 3 linear output neurons at the end.

Training procedure: For the GANs, a batch size of 16 was used with adaptive moment estimation optimizer (ADAM) [START_REF] Kingma | A method for stochastic optimization[END_REF]. Learning rate for generator was set 2 times that of discriminator with a value of 0.0002. Generally in the Vanilla GAN, the generator is updated once per each update of discriminator. As a result of which the discriminator learns quicker when compared to generator.

Therefore the generator is trained twice for each updated of discriminator. This helps to keep the balance in the training of generator and discriminator. Furthermore, hyperparameters such as learning rate of discriminator and generator, decay parameter of optimizer, number of filters of each layer etc. were tuned via a random search method. Model performance was seen to largely depend on learning rates and the number of filters associated to each layer. Initially, vanishing gradient problems were encountered during the training. However, adding batch normalization layers along with one sided noise smoothing of labels fixed the issue. One sided label smoothing is a method to add a small noise to the labels of discriminator. A random noise of ± 2% was added to labels.

CNNs also use ADAM optimizer with a learning rate of 0.001 and batch size of 32. CNN is converged by minimizing the mean squared error.

3 Results or Neyman-Scott process need to be employed [START_REF] Dixon | s K Function in Encyclopedia of Environmetrics[END_REF].

Spatial point pattern

The Defect size is plotted as a function of sphericity in figure 2b. Defect size is defined by √ Area where Area is the projected area of defect on a plane perpendicular to loading direction [START_REF] Murakami | Effects of Defects, Inclusions and Inhomogeneities on Fatigue Strength[END_REF] while sphericity is a morphological parameter which measures how spherical a defect is: a value of 1 indicates a perfectly spherical defect [START_REF] Raghavendra | Role of defects in fatigue performance of IN100[END_REF]. Sphericity, ϕ is given by π 1/3 Vp Ap where V p is the volume of defect and A p is the surface area. Figure 2b shows a clear inverse relationship between defect size and sphericity (defects get more and more spherical as the size reduces). Indeed, small pores are mostly formed due to trapped gases while larger pores are shrinkages and tend to be much more tortuous as the size increases. From figure 2b, it can be seen that defect size ranges from 100 µm to 1.5 mm. Due to this large variance in defect size, the K-function was modified to assess attraction or repulsion among specific groups of defects (classified based on their size). A defect size threshold θ which is a √ Area value was introduced to classify defects into two groups (see section 2.4), the two groups being shrinkages (larger defects) and pores (smaller defects). By varying θ, it is possible to investigate the existence of two different processes in the formation of voids via bivariate K-functions (see section 2.3). By splitting the defect into two groups as type 1 for defects of size larger than θ and type 2 for defects smaller than θ, it is assumed that defects of type 1 and type 2 are two different processes for which K-functions and cross K-functions are analysed. Defects are initially classified at θ = 1 mm and varied upto θ = 0.1 mm.

Cross K-function is a method to estimate interaction between two processes i.e., the spatial ordering of type 2 defects around type 1 defects [START_REF] Dixon | s K Function in Encyclopedia of Environmetrics[END_REF]. This kind of analysis helps to understand if the smaller defects are aggregated with respect to each other or with the larger defects and furthermore aids to simplify the simulation of in-homogeneous point process. Bivariate K-functions together can be described in the form of a symmetrical matrix given that pattern is stationary where, K 11 and K 22 are K-functions of type 1 and type 2 defects and K 12 is the cross K-function between point process of both type of defects. In other words, K 11 is K-function of all defects larger than θ and K 22 for the defects smaller than θ. As θ reduces, defects from type 2 group are moved to type 1 group. The interaction between two classes of defects with respect to parameter θ can be described with cross K-function K 12 . At a given θ, K 12 function measures if the defects smaller than θ are clustered or dispersed with larger defects. From figure 5b, it is seen that smaller defects are strongly clustered with larger defects upto a value of 0.4 mm and remains almost same upto this value similar to results of K 11 and K 22 functions. However, in some samples K 12 function reduces marginally with respect to θ even for values greater than 0.4 mm. This reduction is attributed to the existence of secondary and tertiary clusters apart from one large primary cluster as depicted in figure 1d. The weak attraction of these subordinate clusters which contains defects larger than 0.4 mm reduces the cross K-function as seen in figure 5a. Similar effect can also be seen in K 11 function of this sample, see figure 3a.

Given the fact that in most scenarios K-functions remains nearly constant upto a θ of 0.4 mm, it is evident that defects above and below this size follow different processes of void formation mechanisms. One of the processes is where the smaller defects are nucleated randomly across the length of the sample while the other where the voids are localised to form clusters i.e., the larger defects whose K-functions shows strong aggregation. These two processes interact with each other causing the smaller defects to be attracted towards larger defects. This can also be seen in 1d where defects smaller than 0.4 mm (colored in blue) are spread across the sample but interacts with larger defects (colored in red) to form clusters. Those larger than 0.4 mm are certainly shrinkages which are tortuous in shape as seen in figure 2b whose formation is linked to thermodynamical processes of solidification whilst the rest are pores formed mostly due to trapped gases. Nevertheless, from figure 4 negligible attraction effect is seen even for pores (K 22 > K poisson ) due to the interaction between two processes. It is however important to note that the clustering effects at all θ < 0.4 mm for K 11 and K 12 functions are not caused by the same effect. In these functions, defects larger that θ are included in the calculations i.e., for example, at a θ of 0.1 mm, K 11 function is measured for all defects larger than 0.1 mm. Therefore, in these functions the clustering effect for lower θ values is induced by the larger defects. Finally, with the knowledge of existence of two processes and the interaction between them as described by bivariate K-functions, Neyman-Scott process can be used to generate such an in-homogenous point pattern. In this process, the parent events or defects are distributed homogeneously in the material space and children defects are distributed around the parent defects [START_REF] Neyman | A theory of the spatial distribution of galaxies[END_REF]. Shrinkages or defects larger than 0.4 mm typically found in the defect cluster are the parent defects whilst the pores are children defects.

However, nucleation of parent defects is in-homogeneous and occur at specific points along the length of the sample defined by a mixed Gaussian distributions as seen in figure 6. Furthermore, it is seen that children defects follow the same distribution along the axis of the sample due to the interaction between the two processes as already invoked. More importantly, presence of multiple clusters is seen in the number of gaussians of this mixed gaussian distribution. Mixed Gaussian distributions or Gaussian mixture models (GMM) are characterised by means µ k , standard deviation σ k and weights π k where k is the number of Gaussians [START_REF] Welsh | Robust Inference[END_REF][START_REF] Hunt | Clustering mixed data[END_REF]. Via expectation maximization algorithm, respective means, standard deviations and weights of each Gaussians can be found. Average standard deviation of the parent defects' Gaussians was found to be approximately 9 pixels or 225 µm whilst the means were found to be coherent with those of children defects as also seen in figure 6. Each Gaussian of parent defects acts as seeds for the nucleation of clustered defects in that zone of the sample.

This preference of clustering along the length of the sample maybe due to solidification processes of cylindrical ingot bars which are used to machine the samples. Furthermore, it can also be due to the choice of location and orientation of samples to be machined from ingot bars: the axis of samples were placed parallel to the axis of the ingot bars during machining. 

Generation of synthetic defects

Morphology of the defects varies with respect to its size in an exponential pattern [START_REF] Raghavendra | Role of defects in fatigue performance of IN100[END_REF][START_REF] Buffière | Experimental Study of Porosity and Its Relation to Fatigue Mechanisms of Model Al-Si7-Mg0.3 Cast Al Alloys[END_REF]. It is difficult to train GANs to reproduce defects that can respect this relationship since all defects will be initially resized to a fixed size for training. Hence GANs were discretized into two parts i.e., two adversarial networks were trained to generate defects: one for shrinkages (defects>0. Since the generated defects are also of fixed size similar to training data, CNNs are used to learn the inverse of the interpolation function used and find the dimensions of defect's 3D slices. Since a relationship is assumed between defect size and morphology, it is fairly an easy and quick process to train the CNNs [START_REF] Nibali | Numerical Coordinate Regression with Convolutional Neural Networks[END_REF][START_REF] Shimobaba | Convolutional Neural Network-Based Regression for Depth Prediction in Digital Holography[END_REF]. The trained generators and CNNs can then be integrated to generate defects of various sizes and morphologies for the synthetic microstructures. Trained generator generates the defect and lets trained CNN to predict its original size. The defect (3D image stack) is then upsampled and filtered to remove disconnected volumes as the final procedure in the generation of defects i.e. the largest volume is retained [START_REF] Wu | Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling[END_REF].

Generated Shrinkages

Evolution of the adversarial and discriminator loss of GAN is shown along with the evolution of generated defects with each discriminator update in figure 7a. The generated defects are validated Figure 9: Representation of procedures for the generation of synthetic microstructures.

by comparing local Gaussian curvatures [START_REF] Richard | Detection of zones of abnormal strains in structures using Gaussian curvature analysis[END_REF] of generated and real defects. Gaussian curvatures are defined as product of principal curvatures (or eigen vectors of local curvatures) at each vertex of the surface mesh. In this work, the gaussian curvatures are measured as per the methods described by [START_REF] Cohen-Steiner | Restricted delaunay triangulations and normal cycle[END_REF] using the python module trimesh [START_REF]trimesh version 3.2.0[END_REF]. Gaussian curvatures measured at all points on a given defect's surface forms a gaussian distribution. For each generated defect, the distance between its gaussian curvature distributions with the mean distribution of real defects is measured via Kullback-Leibler (KL) divergence distance [START_REF] Joyce | International encyclopedia of statistical science[END_REF] which is given by,

log σ R σ G + σ 2 G +(µ G -µ R ) 2 2σ 2 R - 1 
2 where σ G is the standard deviation of gaussian distribution of generated defect, σ R average standard deviation for real defects and µ G and µ R are the respective means. Smaller the value of KL distance, more similar the two distributions are while for identical distributions, the value equals 0. As shown in figure 7b, this distance metric remains low exhibiting similarity with real defects and at the same time, each generated defect is unique as seen in figure 7b and8. The entire procedure of synthetic defect generation via GAN and CNN is summarized in figure 9.

Synthetic microstructures

During the generation of synthetic microstructure, firstly number of defects in the microstructure is defined by Poisson random number with λ = E(N real ) where N real is the number of defects in real specimens. Through statistical estimations (ln-likelihood), generalised extreme value (GEV) was seen to best fit the defect size distribution in this material. Therefore, identified parameters of GEV distribution were used to estimate and generate number of defects for given size ranges discretely via our combined GAN and CNN model that produces unique synthetic defects as explained in previous section. These generated defects are placed in material space using positions defined by Kfunctions. The distribution of defects in real specimens is heterogeneous, therefore Neyman-Scott process is adopted to replicate this heterogeneity [START_REF] Neyman | A theory of the spatial distribution of galaxies[END_REF] via bivariate K-functions. The shrinkages (defects > 0.4 mm) act as parent defects and pores (defects < 0.4 mm) as children events. Contrary to traditional method, a mixed Gaussian distribution defined on the axis of the sample is used to distribute shrinkages (parent defects) in material space. Mixed gaussian distribution is randomly generated with random number of clusters k, mean µ k and variance σ k equal to average variance of reference samples whilst the weights π k are randomly attributed to each Gaussian k such that their sum equals unity. Each Gaussian of this GMM acts as seeds for the nucleation of primary and subordinate clusters. Shrinkages are placed in the material where their planar co-ordinates (radial positions) are randomly chosen whilst their position along the axis is extracted randomly from the mixed Gaussian distribution. The process generates a random K 11 function similar to those of reference sample.

Furthermore, the children defects (pores) are added around the parent defects (shrinkages) conserving the interaction between the two processes via K 12 function and interaction amongst the pores via K 22 functions. Since volume of material space is constant and the number of defects are defined by Poisson random number, expected number of defects within any given distance d can be computed using equations 6 and 7 with respect to maximum and minimum K-functions of reference sample. It is ensured that K 12 function of generated sample is always in between the lowest and the highest value of reference samples. To not over-constrain the addition of generated defects as per K-functions in the material space, a small tolerance value is added to bivariate K-functions such that K-functions of each generated microstructure is similar to real specimens but unique. This way, the entire generation process is randomized and each generated microstructure is a Poisson random output with λ = characteristics of real specimens. During this process, attention is given to avoid overlapping of defects within themselves and with the material boundary. Figure 10a shows the defect size distribution of 5 synthetic microstructures. Total number of defects of each synthetic microstructure is different since it is assumed that total number of defects follows Poisson distribution [START_REF] Rényi | Remarks on the Poisson process[END_REF]. In other words, the number of defects, number of parent and children defects of synthetic microstructures are determined by the Poisson random number with metrics of reference specimens as rate parameter λ i.e., average number of defects in samples.

Furthermore, sphericity of defects in the synthetic microstructures are compared in figure 10, the error bars represent 95 percent variances. Variance bars of generated microstructure's sphericity distribution lies within the distribution of reference samples at almost all instants describing the morphological consistency of generated samples. Some of the morphological features are usually correlated in real specimens for e.g., √ Area and ϕ are negatively correlated [START_REF] Nadot | Fatigue from Defect: Influence of Size, Type, Position, Morphology and Loading[END_REF] as also seen in figure 2b. Defect size on the other hand, can be expressed in various forms like cube root of volume, equivalent radius of a sphere assuming volume of defect is equal to that of this sphere etc. However, √ Area is the one most used to describe fatigue since it allows to capture mode I crack propagation and is empirically linked to fatigue life, stress intensity factors of crack etc. [START_REF] Dezecot | 3D Characterization and Modeling of Low Cycle Fatigue Damage Mechanisms at High Temperature in a Cast Aluminum Alloy[END_REF][START_REF] Nadot | Fatigue from Defect: Influence of Size, Type, Position, Morphology and Loading[END_REF][START_REF] Koutiri | Multi-Scale Approach of HCF Taking into Account Plasticity and Damage: Application to LPBF Materials[END_REF][START_REF] Murakami | Essential structure of S-N curve: Prediction of fatigue life and fatigue limit of defective materials and nature of scatter[END_REF][START_REF] Jiang | The effect of porosity size on the high cycle fatigue life of nickel-based single crystal superalloy at 980°C[END_REF][START_REF] Bortoluci Ormastroni | HCF and VHCF life sensitivity to solution heat treatment of a third-generation Nibased single crystal superalloy[END_REF]. Inter-dependencies of these features are found to have a prominence in fatigue performance of a material. The correlations between each of such features can be measured via pearson correlation coefficient (PCC) [START_REF] Sedgwick | Pearson's correlation coefficient[END_REF][START_REF] Benesty | On the Importance of the Pearson Correlation Coefficient in Noise Reduction[END_REF][START_REF] Benesty | Noise Reduction in Speech Processing 1-4[END_REF][START_REF] Peng | The potency of defects on fatigue of additively manufactured metals[END_REF]. Apart from these features, defect characteristics such as aspect ratio (AR) and distance from free surface (d) plays an important role in fatigue performance of the material too. AR is a ratio of major axis to minor axis of a defect projected on a particular plane (here, a plane perpendicular to loading axis which is the axis of specimen). Figure 11 shows the PCC between each of such features in the form of a matrix. It is seen that the generated microstructure preserves the inter-relationships between prominent defect features given the similarities between PCC of real and synthetic samples. Some of the generated synthetic microstructure are shown in figure 12. With all these global statistics being in good agreement with those of real specimens, it can be said that the method applied for the generation is efficient and can replicate the real specimens in terms of spatial arrangement as well as the morphological and statistical aspects of defects.

Furthermore, the uniqueness of each generated microstructure is conserved by the random number of defects that is defined by Poisson distribution, randomly explored K-functions along with new unique defects generated by Deep Neural Networks (DNNs) for each microstructures.

Discussion

A novel strategy has been developed in this work to generate synthetic microstructure in a more cost-friendly and efficient way by integrating SPP analysis and GAN as illustrated in figure 13. Generating greyscale XCT-like images directly would have been impractical and very computationally demanding given the size of samples [START_REF] Mangalagiri | Toward Generating Synthetic CT Volumes using a 3D-Conditional Generative Adversarial Network in[END_REF][START_REF] Sun | Hierarchical Amortized GAN for 3D High Resolution Medical Image Synthesis[END_REF][START_REF] Uzunova | Memory-efficient GAN-based domain translation of high resolution 3D medical images[END_REF][START_REF] Cirillo | Vox2Vox: 3D-GAN for Brain Tumour Segmentation in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries[END_REF]. In addition, it would not have brought any additional information as ultimately the images would have been thresholded to segment the defects. Also, training such a model would require an enormous number of XCT images as input. In this regard, combined use of SPP and DNNs is very effective.

Bi-variate ripley's K-functions were used to analyse SPP of real reference microstructures and to generate synthetic ones. Ripley's K-function is usually affected by edge effects where the measurement domain of distance d goes out of the study-region. One of the simplest methods to avoid this error is to measure K-function only upto 1/3 rd of the largest possible distance. Hence, K-functions were analysed only until a distance of 2 mm in the above cases. Moreover, mechanical interaction of a pore with any shrinkage that is farther away than 2 mm from itself is nearly negligible given a gauge section diameter of 3.7 mm and maximum possible defect size of approximately 1.5 mm.

Therefore, for all pores beyond 2 mm from any of the parent defects, a Poisson process was assumed to distribute them in material space.

Furthermore, to assess if the process behind the point pattern is different for larger and smaller defects, a defect size threshold parameter θ (which is √ Area value) was introduced to classify defects based on their sizes. K-functions were analysed at different θ values ranging from 1 mm to 0.1 mm.

From our previous work [START_REF] Raghavendra | Role of defects in fatigue performance of IN100[END_REF], defect population was classified into three groups: a) Shrinkages, b) broken shrinkage pores and c) gaseous pores. Statistically, all defects larger than approximately 0.3 -0.4 mm are shrinkages due to their tortuous morphology as seen in figure 2b and matches with the findings of SPP analysis where a θ of 0.4 mm explicitly classifies the void nucleation mechanism into two groups: Shrinkages and pores. The clustering of defects is driven by shrinkages which nucleates at specific zones in material space and the gaseous porosity interacts with this process as shown by cross K-functions.

The shrinkages of reference samples were resized to a cuboid size of 64 × 64 × 32(px 3 ) to train the generator given the unsymmetrical size of shrinkages in three directions. The average radial width of shrinkages (X and Y direction) was found to be around 50 px while the thickness along the axis (Z direction) was found to be 29 pixels. This difference might be linked to gradient of cooling rate along the radial axis of the ingot bars [START_REF] Ge | Four-Phase Dendritic Model for the Prediction of Macrosegregation, Shrinkage Cavity, and Porosity in a 55-Ton Ingot[END_REF][START_REF] Wu | A four phase model for the macrosegregation and shrinkage cavity during solidification of steel ingot[END_REF][START_REF] Piwonka | Pore formation in solidification[END_REF]. Furthermore, the current approach to generate defects can be further developed by various means given the increasing popularity of deep learning techniques in materials science [START_REF] Choudhary | Recent advances and applications of deep learning methods in materials science[END_REF][START_REF] Stuckner | Microstructure segmentation with deep learning encoders pre-trained on a large microscopy dataset[END_REF]. For example, GAN can be conditioned to generate a defect of particular characteristics which would reduce the generation time for synthetic microstructure and give further control to the user [START_REF] Han | Synthesizing Diverse Lung Nodules Wherever Massively: 3D Multi-Conditional GAN-Based CT Image Augmentation for Object Detection in[END_REF]. Furthermore, a Deep convolution GAN inspired architeture was used in the current work which can be replaced with more advanced GAN networks such as Wasserstein GANs, Style GAN, Spatial GANs etc [START_REF] Hsu | Microstructure Generation via Generative Adversarial Network for Heterogeneous, Topologically Complex 3D Materials[END_REF][START_REF] Jetchev | Texture Synthesis with Spatial Generative Adversarial Networks[END_REF][START_REF] Arjovsky | [END_REF]. It might also be possible to integrate the generation of grains into this existing model to also capture the effects of grains, slip plane etc Assuming a similarity in granular characteristics in all samples, grains were not considered in the current approach. However, the approach is also compatible if such granular microstructure needs to be taken into account assuming that there is no correlation between grain size and defects.

This can be easily done by generating grains by Voronoi tessellation as demonstrated by Quey et al [START_REF] Quey | Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing[END_REF] and performing a boolean operation between the granular microstructure and microstructure containing defects for example.

With regards to further usage of this strategy, one immediate application would be to analyse the influence of each feature of defect on the number of cycles to failure in fatigue loading via fracture mechanics. Particularly in the case of clustered defects, such an analysis should aid in finding an approximate function that can better predict the fatigue life of samples taking into account inter-defect interactions. Furthermore, similar to approach of El Khoukhi et al [START_REF] El Khoukhi | Probabilistic Modeling of the Size Effect and Scatter in High Cycle Fatigue Using a Monte-Carlo Approach: Role of the Defect Population in Cast Aluminum Alloys[END_REF], a monte-carlo like approach can be implemented to estimate fatigue life in a probabilistic fashion. The results of all these extended works with the aid of synthetic microstructure will be presented in our future articles. 

Figure 1 :

 1 Figure 1: Image-based FE models from X-ray computed tomography (XCT) for reference sample a) A b) B c) C d) D along with a close up view of the clustered defects in sampled D colored as large defects (red) and small defects (blue). Samples are 40 mm long with gauge diameter of 3.7 mm.

Figure 2 :

 2 Figure 2: a) K-functions of samples comprising all defects showing the aggregation and dispersion effects (see text for more details) b) Defect size vs sphericity displaying the evolution of morphology along the defect size with shrinkages being very tortuous while pores more spherical in shape.
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 34 Figure 3: K 11 functions for a) sample D b) sample B for different values of θ.
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 5 Figure 5: K 12 functions for a) sample D b) sample B for different values of θ.

Figure 6 :

 6 Figure 6: Distribution of defects along the length of sample a) D b) C showing the existence of multiple clusters.

Figure 7 :

 7 Figure 7: a) Evolution of loss of GAN and generated defect along the training period with iterations being each update of discriminator b) KL divergence value between gaussian curvature of generated shrinkage and mean gaussian curvature of real shrinkage showing that generated shrinkages are similar to real defects.

Figure 8 :

 8 Figure 8: Examples of few generated shrinkages along with real shrinkages.

Figure 10 :

 10 Figure 10: a) Defect size distribution of 5 generated samples showing that each generated microstructure is unique in terms of total number of defects, parent and children defects and maximum defect size b) comparison of probability densities of Sphericity displaying the morphological consistency of generated microstructures with real microstructures.

Figure 11 :

 11 Figure 11: Comparison of global inter relationships between defect features via PCC a) Real microstructure b) Synthetic microstructure, displaying the statistical coherency between synthetic and real microstructure in terms of inter-relationships between the defect characteristics.

Figure 12 :

 12 Figure 12: Examples of few generated samples.

Figure 13 :

 13 Figure 13: Illustration of the strategy to generate synthetic microstructures.

  

Table

  

AUTHOR CONTRIBUTIONS

A.K.M.R developed the methods and trained the machine learning models presented in this paper.

L.L contributed in the development of codes and methods related to statistical analysis. L.M, V.M and H.P designed the project. H.P supervised the whole project. A.K.M.R wrote the manuscript.

All authors contributed in the refinement of manuscript and have given approval for the final version of manuscript.

COMPETING INTERESTS

The authors declare no Competing Financial or Non-Financial Interests.

DATA AVAILABILITY

X-ray Tomographic datasets of reference samples as well as the codes (machine learning and synthetic microstructure generation module) are available upon reasonable request from the corresponding author.