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Abstract

Mok and Moeglin-Renard have defined Arthur packets for unitary groups. Their definitions
follow Arthur’s work on classical groups and rely on harmonic analysis. For real groups there
is an alternative definition of Arthur packets, due to Adams-Barbasch-Vogan. It relies on
sheaf-theoretic techniques instead of harmonic analysis. We prove that these two definitions
of Arthur packets are equivalent in the case of real unitary groups.
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1 Introduction

In an effort to characterize the automorphic spectrum of a connected reductive group, Arthur
introduced a set of parameters together with a collection of conjectures concerning them ([A1],
[A2]). The parameters are commonly called Arthur-parameters or simply A-parameters. These
automorphic A-parameters are global objects. Conjecturally, each global A-parameter gives rise to
a local A-parameter for every valuation of the underlying field.

In the present work, we study local A-parameters only for a real valuation and only for unitary
groups. Moreover, our first main theorem concerns real quasisplit unitary groups. A real quasisplit
unitary group is a real form of a general linear group, which we denote here as G(R). An A-
parameter for G is a group homomorphism

ψG :WR × SL2 →
∨GΓ (1)

in which, Γ = Gal(C/R), ∨GΓ = ∨G⋊Γ is the Galois form of the L-group of G, and WR is the real
Weil group. In addition, ψG |WR

is a tempered L-parameter and ψG |SL2
is algebraic (see [B] for

the definitions). Arthur conjectured the existence of a stable virtual character ηψG of G(R) with
several properties. The set of irreducible characters appearing in ηψG with non-zero multiplicity are,
by definition, the Arthur-packet (or A-packet) ΠψG . Arthur conjectured the irreducible characters
in ΠψG to be characters of irreducible unitary representations.

In this limited scope, Arthur’s conjectures have been proven to a great extent. However, there
have been two disparate methods employed, and it has been unknown whether the two methods
lead to the same conclusions. The first method relies on global harmonic analysis ([R], [A3],
[KMSW], [M3]). We denote the stable virtual character defined by Mok in [M3] by ηMok

ψG
. The

second method is local and relies on sheaf theory ([ABV]). We denote the stable virtual character
defined by Adams, Barbasch and Vogan in [ABV] by ηABV

ψG
. Our main theorem for quasisplit

unitary groups is
ηMok
ψG = ηABV

ψG (2)

(Theorem 9.3). An immediate consequence of this theorem is that the sets of irreducible characters
appearing in each of the virtual characters are the same, that is

ΠMok
ψG = ΠABV

ψG .

The irreducible characters in ΠMok
ψG

are all unitary ([M3, Theorem 3.2.1 (b)]), whereas this was not

known for ΠABV
ψG

. These identities have consequences for all real forms of unitary groups, not just
the quasisplit forms. To explain why this is so requires some background which is also present
in the proof of (2). For this reason we first provide an overview of the proof of (2) for quasisplit
forms, and return to the remaining real forms thereafter.

The principal difficulty in proving (2) lies in the disparate manner in which the two virtual
characters are defined. Let us examine the definitions beginning with the virtual character ηMok

ψG
.

The main idea here is to express the unitary group G as a twisted endoscopic group of a pair
(RC/RGLN , ϑ). In this pair RC/RGLN is the algebraic group obtained from the general linear
group GLN by restriction of scalars from C to R ([S7, Proposition 11.4.22], [B, I.5]). It may be
regarded as GLN ×GLN together with a real structure whose real points determine the real form
GLN (C). The other member of the pair is an automorphism ϑ of RC/RGLN . It is defined by

ϑ(g1, g2) = (J̃(g−1
2 )⊺J̃−1, J̃(g−1

1 )⊺J̃−1), g1, g2 ∈ GLN , (3)

where J̃ is the anti-diagonal matrix

J̃ =











0 1
−1

. .
.

(−1)N−1 0











.

Clearly, ϑ is an automorphism of order two, and as a real form, the semidirect product GLN (C)⋊〈ϑ〉
is a disconnected algebraic group. The group G is attached to the pair (RC/RGLN , ϑ) in that ∨G
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is isomorphic to the identity component of the fixed-point set (∨RC/RGLN )ϑ. This furnishes an
inclusion

ǫ : ∨GΓ →֒ ∨RC/RGLΓ
N

which allows us to define the A-parameter

ψ = ǫ ◦ ψG (4)

for RC/RGLN using (1). Since the real form GLN (C) is particularly well-understood, there is an

obvious choice of stable virtual character ηMok
ψ . It is in fact a single irreducible character

ηMok
ψ = πψ

of GLN (C). Furthermore, as a representation, πψ is stable under composition with ϑ. This allows
one to extend πψ to a representation π∼

ψ of the disconnected group GLN (C) ⋊ 〈ϑ〉. At this stage
some care must be taken, as the extension is only unique up to a sign. If we ignore this wrinkle for
the time being, then we obtain the twisted character of π∼

ψ as the restriction of the character of π∼

ψ

to the non-identity component GLN(C)⋊ ϑ. If we identify π∼

ψ with its twisted character then the

stable virtual character ηMok
ψG

is uniquely determined by the twisted endoscopic transfer identity

π∼

ψ = Trans
GLN (C)⋊ϑ
G(R) (ηMok

ψG ) (5)

([M3, Proposition 8.2.1]). The twisted endoscopic transfer map Trans
GLN (C)⋊ϑ
G(R) is defined on the

space of stable virtual characters of G(R). It is defined for real reductive groups in [S5], [M1] and
[M2].

Turning now to the definition of ηABV
ψG

, we come upon completely different methods. A re-
markable innovation of Adams, Barbasch and Vogan is their introduction of a complex variety
X(∨GΓ), together with a ∨G-action, such that the ∨G-orbits are in bijection with the equivalence
classes of L-parameters ([ABV, Section 6]). The orbits stratify the variety. Thus, one may consider
∨G-equivariant local systems on the orbits, and ∨G-equivariant constructible sheaves or perverse
sheaves on X(∨G). We define a complete geometric parameter to be a pair

ξ = (S,V) (6)

consisting of an orbit S ⊂ X(∨GΓ), together with a ∨G-equivariant local system V on S ([ABV,
Definition 7.6]). The set of complete geometric parameters is denoted by Ξ(∨GΓ). This definition
ignores the more general local systems in [ABV], which are equivariant for an algebraic cover of
∨G. By [ABV, Theorem 10.11] there is a canonical bijection

Ξ(∨GΓ)←→ Π(G/R) (7)

which may be regarded as a more precise version of the local Langlands correspondence. The set on
the right is the set of (equivalence classes of) irreducible admissible representations of pure forms
of G. The pure forms include the quasisplit form G(R). We write bijection (7) as

ξ 7→ π(ξ). (8)

Let KΠ(G/R) be the Grothendieck group of the finite-length admissible representations of pure
forms of G. This Grothendieck group has {π(ξ)} as a Z-basis. It contains the virtual characters of
G(R) as a subgroup.

There is a similar picture for sheaves when considering the dual group ∨G. Suppose ξ = (S,V) ∈
Ξ(∨GΓ). The local system V is a ∨G-equivariant sheaf on S ⊂ X(∨GΓ). Applying the functor of
intermediate extension to the closure of S, and then taking the direct image to X(∨G) produces
an irreducible ∨G-equivariant perverse sheaf P (ξ), and a bijection

ξ 7→ P (ξ)

([ABV, Section 7]). Let KX(∨GΓ) be the Grothendieck group of the category of ∨G-equivariant
perverse sheaves on X(∨GΓ). It has {P (ξ)} as a Z-basis.
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There is a perfect pairing

〈·, ·〉G : KΠ(G/R)×KX(∨GΓ)→ Z (9)

which satisfies
〈π(ξ), P (ξ′)〉G = e(ξ) (−1)d(ξ) δξ,ξ′ , ξ, ξ′ ∈ Ξ(∨GΓ) (10)

([ABV, Theorem 1.24]). Here, d(ξ) is the dimension of the orbit S in ξ = (S,V), e(ξ) is the
Kottwitz sign ([ABV, Definition 15.8]), and δξ,ξ′ is the Kronecker delta.

Using pairing (9), we identify virtual characters as Z-valued linear functionals on KX(∨GΓ).
The theory of microlocal geometry provides a family of linear functionals

χmic
S : KX(∨GΓ)→ Z (11)

parameterized by the ∨G-orbits S ⊂ X(∨GΓ). These microlocal multiplicity maps appear in
the theory of characteristic cycles ([ABV, Chapter 19], [BGK+]), and are associated with ∨G-
equivariant local systems on a conormal bundle over X(∨GΓ) ([ABV, Section 24], [GM]). The
virtual characters associated by the pairing to these linear functionals are stable ([ABV, Theorems
1.29 and 1.31]).

The stable virtual character ηABV
ψG

is defined from (11) as follows. There is an L-parameter φψG
associated to ψG ([ABV, Definition 22.4]). Let SψG ⊂ X(∨GΓ) be the unique ∨G-orbit associated
to φψG , and η

mic
ψG

be the unique virtual character satisfying

〈ηmic
ψG , µ〉G = χmic

SψG
(µ), µ ∈ KX(∨GΓ).

As a distribution, the stable virtual character ηmic
ψG

is supported on real forms of G which include
the quasisplit form G(R). For the purpose of proving (2), it suffices to consider the restriction to
the quasisplit form. We therefore define

ηABV
ψG = ηmic

ψG |G(R). (12)

Recall that the definition of ηMok
ψG

in (5) relies on the theory of twisted endoscopy. One might

hope to find a bridge between ηMok
ψG

and ηABV
ψG

by working in a theory of twisted endoscopy for

ηABV
ψG

. Fortunately, the theory of standard endoscopy already appears in [ABV] and is extended
to the twisted setting in [CM]. There are two main tasks in this extension.

The first task is the definition of a meaningful pairing between the Z-modules of twisted char-
acters KΠ(GLN (C), ϑ) and twisted sheaves KX(∨RC/RGLΓ

N , ϑ) ([LV, Section 2.3])

〈·, ·〉 : KΠ(GLN (C), ϑ) ×KX(∨GLΓ
N , ϑ)→ Z. (13)

This is a serious task to which we shall return later in the introduction.
The second task is to define a twisted endoscopic lifting map

Lift0 : KΠ(G(R))st → K(GLN (C), ϑ) (14)

from stable virtual characters to twisted characters, i.e. the counterpart of Trans
GLN (C)⋊ϑ
G(R) in (5).

This is not that serious, for there is an inverse image functor on sheaves

ǫ∗ : KX(∨RC/RGLΓ
N , ϑ)→ KX(∨GΓ) (15)

which allows us to define Lift0 by the identity

〈Lift0(η), µ〉 = 〈η, ǫ
∗(µ)〉G, µ ∈ KX(∨RC/RGLΓ

N , ϑ). (16)

In this identity both pairings (13) and (9) are used.
The equality between ηMok

ψG
and ηABV

ψG
may then be established by returning to (5), proving

Lift0 = Trans
GLN (C)⋊ϑ
G(R) , (17)

4



and
Lift0(η

ABV
ψG ) = π∼

ψ . (18)

Equation (17) ends up being a simple consequence of the definition of Lift0 and [AMR1, (1.0.3)].
Equation (18) is to a large extent proven in [ABV, Theorem 26.25]. From these two equations it
follows that

Lift0(η
Mok
ψG ) = Lift0(η

ABV
ψG )

and then an injectivity result yields the main theorem (2).
The proof we have sketched follows [AAM] entirely. The classical groups in [AAM] are twisted

endoscopic groups of GLN . In the present work the classical groups are replaced by unitary groups,
and GLN is replaced by RC/RGLN . The good properties of GLN which were harnessed in [AAM]
(e.g. connected centralizers) are also properties of RC/RGLN . In truth, both the structure and the
representation theory of GLN (C) = RC/RGLN (R) are simpler than for GLN (R). We have made
efforts to highlight the simplifications. Where we have not been able to improve on preliminary
material, we have copied passages from [AAM].

Thus far, we have discussed identity (2) which pertains only to quasisplit unitary groups. We
have indicated how the theory of twisted endoscopy plays a crucial role in the proof of the identity.
In the final two sections of this paper, we explore two variants on the proof of (2). The first variant
still concerns a quasisplit unitary group G(R), but now for standard (non-twisted) endoscopy. In
this setting, G′(R) is a quasisplit endoscopic group of G(R). The relationship between RC/RGLN
and G(R) in the twisted setting is replaced by the relationship between G(R) and G′(R) in the
standard setting. One may choose G′(R) to be a product of smaller unitary groups so that identity
(2) holds for G′(R). One may then examine the standard endoscopic lifts of the stable virtual
characters appearing in (2) for G′(R). Explicit formulae for these lifts are given in both [M3] and
[ABV]. A detailed comparison of these formulae is presented in Section 10.

In the second variant, we again consider standard endoscopy. However, in this variant the
quasisplit unitary group G(R) is the endoscopic group of a (pure) form G(R, δ) = U(p, q). Moeglin
and Renard define a stable virtual character ηMR

ψG
on G(R, δ) as the standard endoscopic lift of

ηMok
ψG

([MR1], [MR2]). The irreducible characters appearing in ηMR
ψG

form a packet ΠMR
ψG

(G(R, δ))
of unitary representations. Analogues for these objects, ηABV

ψG
(δ) and ΠABV

ψG
(G(R, δ)), appear in

[ABV]. In Section 11, we prove our second main theorem, namely that

e(δ) ηMR
ψG = ηABV

ψG (δ)

where e(δ) = ±1 is a Kottwitz invariant. It is then immediate that

ΠMR
ψG (G(R, δ)) = ΠABV

ψG (G(R, δ)).

In fact, these identities are a special case of Theorem 11.1, which expresses identities for all stan-
dard endoscopic groups of G(R, δ). An immediate consequence of the identity of packets is that
ΠABV
ψG

(G(R, δ)) consists of unitary representations. This extends the unitarity results for special
unipotent representations of unitary groups in [BMSZ]. We expect that the methods used in the
proof of Theorem 11.1 should carry over to pure inner forms of special orthogonal groups–a work
in progress.

We have just given a synopsis of the last two sections. We now give synopses of the remaining
sections. Section 2.1 is a review of the preliminary material of [ABV]. Two important objects
appearing here are the extended group GΓ which mirrors the L-group ∨GΓ and the complex variety
X(∨O, ∨GΓ) ⊂ X(∨GΓ). The term ∨O is a semisimple ∨G-orbit in the complex Lie algebra ∨g,
and is to be thought of as an infinitesimal character. This infinitesimal character accompanies all
of the arguments in the sequel and for the most part is assumed to be regular. The notions of pure
inner form and pure strong involution are also introduced and compared. The section culminates
with a description of the revised local Langlands correspondence (7).

In Section 2.2 the specifics of some of this preliminary material are given for quasisplit unitary
groups and RC/RGLN . In particular it is proven that RC/RGLN has only one pure strong involution
which corresponds to the sole inner form, namely GLN (C).

Section 2.3 presents an alternative set of parameters to the complete geometric parameters (6).
They are the parameters introduced in [AdC] and [AV], and so we call them Atlas parameters. The
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Atlas parameters are more convenient for the computations appearing in later sections. The Atlas
parameters also have an easily discernible involution which pertains to Vogan duality, a tool used
later as well.

A third advantage to the Atlas parameters is that they may be extended to provide a parame-
terization for the irreducible representations of GLN (C) ⋊ 〈ϑ〉. This is the subject of Section 2.4.
One of the favourable features of the Atlas parameters in this special context is the existence of
a preferred extension π(ξ)+ to GLN (C) ⋊ 〈ϑ〉 of any ϑ-stable irreducible representation π(ξ) of
GLN (C). We refer to this preferred extension as the Atlas extension of π(ξ).

Section 2.5 lays out the notation for the Grothendieck group of admissible representations
and provides the construction for the related concept of the Z-module of twisted characters of
GLN (C)⋊ 〈ϑ〉.

Section 3 is devoted to the pairings, (9) and (13), and the definitions of the virtual characters,
ηABV
ψG

and ηABV
ψ , which are defined through them. The values of the ordinary pairing (9) were

given in (10) for irreducible representations and perverse sheaves. It is equally important to
understand the values of this pairing on standard representations and irreducible constructible
sheaves. Before saying why, we recall that any irreducible representation π(ξ) in (8) is the unique
Langlands quotient of a standard representation, which we denote by M(ξ). If the parameter ξ
is ϑ-stable then there is an Atlas extension M(ξ)+ which contains π(ξ)+ as a quotient. On the
other hand, if one replaces the intermediate extension with extension by zero in the construction
of P (ξ) above, then one arrives at an irreducible ∨G-equivariant constructible sheaf µ(ξ). The
Grothendieck group of the ∨G-equivariant constructible sheaves on X(∨O, ∨GΓ) is isomorphic to
the Grothendieck group KX(∨O, ∨GΓ) for the perverse sheaves ([ABV, Lemma 7.8]). It therefore
makes sense to evaluate the pairing on these two objects. As a matter of fact pairing (9) is defined
by

〈M(ξ), µ(ξ′)〉 = e(ξ) δξ,ξ′ , ξ, ξ′ ∈ Ξ(∨O, ∨GΓ)

and the content of [ABV, Theorem 1.24] is (10). It is important to know the values of the pairing
on these objects, since there is a well-known basis for the stable virtual characters (cf. (14)) given
in terms of standard representations ([S3]). In addition, the inverse image functor (15) is computed
relative to constructible sheaves.

Much of the technical work in this paper is spent on defining the twisted pairing (13) and proving
that its values on standard representations and constructible sheaves are related to its values on
irreducible representations and perverse sheaves as in the ordinary case. The first undertaking is
to define preferred (∨RC/RGLN ⋊ 〈ϑ〉)-equivariant sheaves µ(ξ)+ and P (ξ)+ which restrict to µ(ξ)
and P (ξ) respectively as ∨RC/RGLN -equivariant sheaves. These are the twisted sheaves mentioned
above. We define a Z-module K(X(∨O, ∨RC/RGLN ), ϑ) of twisted sheaves akin to the module of
twisted characters KΠ((∨O,GLNC), ϑ). We then define the twisted pairing (13) by setting

〈M(ξ)+, µ(ξ′)+〉 = (−1)l
I(ξ)−lIϑ(ξ) δξ,ξ′ (19)

The definition of the signs on the right appears in (60) and (61). As we shall see, these signs
are crucial in making comparisons with other extensions M(ξ)∼ and π(ξ)∼. The principal result
pertaining to the twisted pairing is

〈π(ξ)+, P (ξ′)+〉 = (−1)d(ξ) (−1)l
I(ξ)−lIϑ(ξ) δξ,ξ′ (20)

(Theorem 3.5).
The sole objective of Section 4 is to prove (20). Our proof in this twisted setting is an adap-

tation of the proof in the ordinary setting ([ABV, Sections 16-17]) using the tools of [AV]. Hecke
operators are among these tools. There is a difference between [ABV] and [AV] in the objects
upon which the Hecke operators act. In [ABV] Hecke operators are defined on both characters and
sheaves. By contrast, the Hecke operators of [AV, Section 7] are defined only on (twisted) charac-
ters. The links between characters and sheaves in the Hecke actions are the Riemann-Hilbert and
Beilinson-Bernstein correspondences ([ABV, Theorems 7.9 and 8.3]). In Section 4.1 we describe
these correspondences as a bijection

P (ξ)←→ π(∨ξ), ξ ∈ Ξ(∨O, ∨GΓ),
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where π(∨ξ) is the Vogan dual of π(ξ) (as the equivalence class of a Harish-Chandra module) (6.1
[AV]). For RC/RGLN the correspondence is extended to

P (ξ)+ ←→ π(∨ξ)+

for ϑ-fixed complete geometric parameters ξ. Once sheaves are aligned with characters in this
manner, the rest of the proof of (20) follows [ABV] and [AAM, Section 4].

In Section 5 we describe the theory of endoscopy, both standard and twisted, for RC/RGLN .
The standard theory of endoscopy is included to motivate the twisted theory and is also used in
Section 6. The twisted theory of endoscopy in Section 5.2 is a specialization of [CM, Section 5.4].
We compute the values of the twisted endoscopic lifting map Lift0 on a basis of the stable virtual
characters. This is instrumental in proving (17) and in proving that Lift0 is injective. The value
Lift0(η

ABV
ψG

) is described as an element ηABV+
ψ ∈ KΠ(∨O,GLN (C), ϑ), which may be regarded as

an extension of ηABV
ψ .

In Section 6 we prove that for any A-parameter ψ of RC/RGLN (not necessarily of the form (4))
ηABV
ψ = πψ. The proof begins under the assumption that ψ is an A-parameter studied by Adams
and Johnson ([AJ]). Adams and Johnson defined A-packets for these parameters, and it is easily
shown that their packets are singletons for RC/RGLN . The equality of the Adams-Johnson packets
with the ABV-packets is proven in [AR]. The proof that ABV-packets are singletons follows from
a decomposition of ψ in terms of Adams-Johnson A-parameters of smaller general linear groups,
and an application of standard endoscopic lifting from the direct product of these smaller general
linear groups (Proposition 6.3).

In section 7 we describe another extension π(ξ)∼ of the ϑ-stable irreducible representations
π(ξ) of GLN (C)–the so-called Whittaker extension. Regarded as a twisted character π(ξ)∼ differs
from the Atlas extension π(ξ)+ by at most a sign. For special complete geometric parameters ξ it
is shown that the Whittaker extension agrees with the Atlas extension. The key to determining
the sign for other complete geometric parameters is to compute the sign when π(ξ) is generic,
i.e. has a Whittaker model. Indeed, the Whittaker extensions are built from extensions of generic
representations and irreducible generic representations occur as subrepresentations of any standard
representation. If one knows the (signed) multiplicity with which an irreducible twisted generic
representation π(ξ0)

+ appears in the decomposition of a twisted standard representation M(ξ)+,
then one can use this knowledge together with the agreement at the special complete geometric
parameters to prove that

π(ξ)+ = (−1)l
I(ξ)−lIϑ(ξ) π(ξ)∼.

Observe that the sign on the right appears on the right of (19) and (20). Replacing π(ξ)+ with

(−1)l
I(ξ)−lIϑ(ξ) π(ξ)∼ yields a cosmetic simplification to the pairing. More importantly, it is the

Whittaker extension which appears in (5). With the substitution of the Whittaker extensions into
the computed values of Lift0, the identities (17) and (18) are established.

These last observations are spelled out in Section 8. This short section assembles the essential
ingredients already outlined in the introduction in proving the main theorem (2). However, it works
under the assumption that the infinitesimal character is regular in ∨RC/RGLN . This assumption
is removed in Section 9 by applying Jantzen-Zuckerman translation. There is nothing novel in this
approach and the ideas are all present in [ABV, Section 16].

In closing, let us briefly mention a different approach to obtaining the equality between the
A-packets (2). Moeglin and Renard give an explicit description of the representations in ΠMok

ψG
.

More precisely, by [MR2, Equation (5.1)], ψ in (4) decomposes as ψ = ψ0 ⊕ ψ1, where

ψi : WR × SL2 −→
∨RC/RGLΓ

Ni , i = 0, 1, N0 +N1 = N.

The A-parameter ψ0 corresponds to an irreducible unitary representation π0 of GLN0(C). In
addition, the A-parameter ψ1 factors to an A-parameter ψG1 of a smaller rank unitary group G1

ψ1 : WR × SL2
ψG1−−−→ ∨GΓ

1 →֒
∨RC/RGLΓ

N1
.

According to ([MR2, Proposition 5.2]), every irreducible representation in ΠMok
ψG

is parabolically
induced from a representation in

{

π0 ⊗ π1 : π1 ∈ ΠMok
ψG1

}

.
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Furthermore, each π1 ∈ ΠMok
ψG1

is cohomologically induced from a character of an inner form of G1

determined by ψG1 ([MR2, Theorem 4.1]). One should also be able to prove that each representation

in ΠABV
ψG

is parabolically induced from a representation in
{

π0 ⊗ π1 : π1 ∈ ΠABV
ψG1

}

by imitating

Proposition 5.1. This would reduce the proof of the equality of A-packets (2) to showing that
ΠABV
ψG1

= ΠMok
ψG1

. The proof of this last equality should follow the proof of [AR, Theorem 4.16], which

asserts the equality of ABV-packets and packets defined by Adams-Johnson ([AJ]). Although to
do this, one must first extend the framework in [AR] to include unitary groups and A-parameters
with singular infinitesimal character.

2 The local Langlands correspondence

Unless otherwise stated, the group G in this section may be taken to be an arbitrary connected
complex reductive algebraic group. Our goal is to review the local Langlands correspondence as
developed in [ABV]. Our review differs in two ways from [ABV]. First, we replace the notion
of strong real form with the equivalent notion of strong involution ([AdC]). Second, we limit the
theory to the set of pure strong involutions (or equivalently pure strong real forms). This limitation
simplifies the review, while retaining the necessary information for quasisplit forms of G.

2.1 Extended groups and complete geometric parameters

The L-group of G is an essential feature of the local Langlands correspondence. The dual group
∨G is an index two subgroup of (the Galois form of) the L-group of G. One of the innovations in
the local Langlands correspondence of [ABV] is the introduction of an extended group for G, which
mirrors the L-group in that G, not ∨G, appears as an index two subgroup.

We begin the definition of an extended group for G by fixing a pinning

(B,H, {Xα})

in which B ⊂ G is a Borel subgroup, H ⊂ B is a maximal torus and {Xα} is a set of simple
root vectors relative to the positive root system R+(G,H) = R(B,H) of R(G,H). We fix an
inner class of real forms for G, or equivalently, an algebraic involution δ0 of G fixing the pinning
([ABV, Proposition 2.12], [AV, (5)]). The (weak) extended group defined by the inner class is

GΓ = G⋊ 〈δ0〉

([AdC, Definition 5.1], cf. [ABV, Definition 2.13]).
A strong involution is an element δ ∈ GΓ−G such that δ2 ∈ Z(G) is central and has finite order

([AdC, Definition 5.5]). Two strong involutions are equivalent if they are G-conjugate. There is a
surjective map

δ 7→ G(R, δ) (21)

from (equivalence classes of) strong involutions to (isomorphism classes of) real inner forms of
G ([AdC, Lemma 5.7]). There is a well-known bijection between the real inner forms of G and
H1(R, G/Z(G)) ([S7, 12.3.7]). Using this bijection one may also think of (21) as a surjection onto
H1(R, G/Z(G)). It is natural to juxtapose this surjection with the the quotient map

H1(R, G)→ H1(R, G/Z(G)). (22)

The cohomology set H1(R, G) is known as the set of pure inner forms ([V5, Section 2]). The
pure inner forms may be realized as strong involutions in the following fashion. Let σ ∈ Γ be the
nontrivial element of the Galois group. Set

∨ρ =
1

2

∑

α∈R+(G,H)

∨α.

Any 1-cocycle z ∈ Z1(R, G) is equivalent to a 1-cocycle taking values in H under the δ0-action
([AT, Proposition 7.4]). After replacing z with such an equivalent cocycle, z(σ) ∈ H and

z(σ) exp(πi ∨ρ)δ0 ∈ G
Γ (23)
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is seen to be a strong involution. (exp(πi ∨ρ)δ0 is the large involution in [AV, (11f)-(11h)]). This
assignment sends classes in H1(R, G) to equivalence classes of strong involutions. The (equivalence
classes of) pure strong involutions are defined as the image of this map.

The quasisplit real form corresponds to the trivial cocycle of H1(R, G/Z(G)). It lies in the
image of (22) as the image of the trivial cocycle in H1(R, G). Equivalently, the quasisplit real form
is the image under (21) of the pure strong involution

δq = exp(πi ∨ρ)δ0. (24)

Given a strong involution δ we set
K = Kδ ⊂ G (25)

to be the fixed-point subgroup of Int(δ). The real form G(R, δ) contains

K(R) = G(R, δ) ∩K

as a maximal compact subgroup and is determined by K ([AV, (5f)-(5g)]). By a representation of
G(R, δ) we usually mean an admissible (g,K)-module, although we will need veritable admissible
group representations ([V3, Definition 1.1.5]) in Section 7. A representation of a strong involution
is a pair (π, δ) in which δ is a strong involution and π is an admissible (g,K)-module. We let
Π(G(R, δ)) be the set of equivalence classes of irreducible representations (π′, δ′) of strong involu-
tions in which δ′ is equivalent to δ. Let

Π(G/R) =
∐

δ

Π(G(R, δ)) (26)

be the disjoint union over the (equivalence classes of) pure strong involutions δ.1

Returning to the more familiar territory of L-groups, we fix a pinning

(∨B, ∨H, {X∨α})

of ∨G. The previous two pinnings and the involution δ0 fix an involution ∨δ0 of ∨G as prescribed
in [AV, (12)]. The group

∨GΓ = ∨G⋊ 〈∨δ0〉

is the L-group of our inner class.
Suppose λ is a semisimple element of the complex Lie algebra ∨g. After conjugating by ∨G we

may assume λ ∈ ∨h. Using the canonical isomorphism ∨h ≃ h∗ we identify λ with an element of
h∗, and hence via the Harish-Chandra homomorphism, with an infinitesimal character for G. This
construction depends only on the ∨G-orbit of λ. We refer to a semisimple element λ ∈ ∨g, or a
∨G-orbit ∨O ⊂ ∨g of semisimple elements, as an infinitesimal character for G. Let

Π(∨O, G/R) ⊂ Π(G/R)

be the representations (of pure strong involutions) with infinitesimal character ∨O.
Let P

(

∨GΓ
)

be the set of quasiadmissible homomorphisms φ : WR →
∨GΓ ([ABV, Definition

5.2]). There is an infinitesimal character associated to φ ∈ P (∨GΓ) ([ABV, Proposition 5.6]). Let

P
(

∨O, ∨GΓ
)

(27)

be the set of quasiadmissible homomorphisms with infinitesimal character ∨O. The group ∨G acts
on P

(

∨O, ∨GΓ
)

by conjugation. It is to the set of ∨G-orbits

P (∨O, ∨GΓ)/∨G (28)

that the Langlands correspondence, in its original form, assigns L-packets of representations.
Another great innovation of [ABV] is the introduction of the complex variety X(∨O, ∨GΓ) of

geometric parameters, which lies between (27) and (28) ([ABV, Definition 6.9]). It may be regarded

1Warning! Identical notation is used in [ABV] in which δ runs over all, not necessarily pure, involutions.
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as a set of equivalence classes in P (∨O, ∨GΓ) upon which ∨G still acts by conjugation with finitely
many orbits ([AAM, Section 2.2], [ABV, Proposition 6.16]). Furthermore, the quotient map

P (∨O, ∨GΓ)→ X(∨O, ∨GΓ) (29)

passes to a bijection at the level of ∨G-orbits ([ABV, Proposition 6.17]).
Let S ⊂ X(∨O, ∨GΓ) be a ∨G-orbit, and for p ∈ S let ∨Gp = Stab∨G(p). A pure complete

geometric parameter for X(∨O, ∨GΓ) is a pair (S, τS) where τS is (an equivalence class of) an
irreducible representation of the component group ∨Gp/(

∨Gp)
0 ([ABV, Definitions 7.1 and 7.6]).

We denote the set of pure complete geometric parameters for X(∨O, ∨GΓ) by Ξ(∨O, ∨GΓ).
A special case of the local Langlands correspondence as stated in [ABV, Theorem 10.11] is a

bijection
Π (∨O, G/R)←→ Ξ

(

∨O, ∨GΓ
)

(30)

between representations of pure strong involutions and pure complete geometric parameters. It is
important to bear in mind that the left-hand side of (30) contains the subset Π(∨O, G(R, δq)) of
representations of the quasisplit form of G.

2.2 Extended groups for unitary groups and the complex general linear

group

We specialize the discussion of the previous section to two groups, each with a fixed inner class. The
first group is GLN . When N is even we fix the inner class whose quasisplit form is the indefinite
unitary group U(N/2, N/2). When N is odd we fix the inner class to contain the quasisplit form
U((N − 1)/2, (N + 1)/2). The second group is

RC/RGLN = GLN ×GLN

together with the inner class whose quasisplit form is GLN(C).
Let us begin with the unitary groups. Fix the usual pinning for GLN in which B is the upper-

triangular Borel subgroup, H is the diagonal subgroup, and Xα is the matrix with 1 in the entry
corresponding to the simple root α and zeroes elsewhere. Regardless of whether N is even or odd
the specified inner classes contain the compact real form U(N) = U(N, 0). This implies that δ0
acts as the trivial automorphism on GLN ([AV, (5)]). Consequently, the extended group for the
inner class of unitary groups is

GLΓ
N = GLN × 〈δ0〉 ∼= GLN × Z/2Z.

It follows from [AV, (12c)] that the involution ∨δ0 acts on ∨GLN as

∨δ0(g) = J̃ (g−1)⊺ J̃−1, g ∈ ∨GLN .

The corresponding L-group is
∨GLΓ

N = ∨GLN ⋊ 〈∨δ0〉. (31)

The strong involutions and pure strong involutions of real unitary groups are presented in [A,
Section 9].

For the group RC/RGLN and the inner class containing GLN (C), we shall follow [M3, Section
2.1] and begin with the L-group first. The L-group is defined as

∨RC/RGLΓ
N = ∨(GLN ×GLN )Γ = (∨GLN ×

∨GLN)⋊ 〈
∨δ0〉, (32)

where the involution ∨δ0 is now defined by

∨δ0(g1, g2) = (g2, g1), g1, g2 ∈
∨GLN .

Let us now fix the pinning (B,H, {Xα}) for GLN × GLN (and its dual) by taking B to be
the direct product of the upper-triangular subgroups, H to be the direct product of the diagonal
subgroups and {Xα} to be the union of simple root vectors for each of the two factors in the direct
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product. Then, by the prescription [AV, (12c)], the involution δ0 on RC/RGLN = GLN ×GLN is
defined by

δ0(g1, g2) = (J̃(g−1
2 )⊺J̃−1, J̃(g−1

1 )⊺J̃−1), g1, g2 ∈ GLN , (33)

and the extended group of RC/RGLN is

RC/RGLΓ
N = (GLN ×GLN )Γ = (GLN ×GLN )⋊ 〈δ0〉. (34)

It is coincidental that δ0 defines the same automorphism as ϑ (3). The real form σ associated to
δ0 is given by composing δ0 with the compact real form ([AV, (5)]). This turns out to be

σ(g1, g2) = (J̃ ḡ2J̃
−1, J̃ ḡ1J̃

−1), g1, g2 ∈ GLN . (35)

The group RC/RGLN (R, δ0) from (21) is by definition the fixed-point subgroup of σ,

RC/RGLN (R, δ0) = {(g, J̃ḡJ̃
−1) : g ∈ GLN} ∼= GLN (C).

In what follows we will reserve the notation GLN (C) for this particular real form, and reserve the
notation GLN for the absolute theory of reductive groups.

Lemma 2.1. The Galois cohomology sets

H1(R,RC/RGLN ) and H1(R,RC/RGLN/Z(RC/RGLN ))

are both trivial. In particular, GLN (C) is the only real form in its inner class, there is only one
equivalence class of pure strong involutions, and this equivalence class corresponds to GLN (C) via
(22).

Proof. We begin with a cocycle z ∈ Z1(R,RC/RGLN ). Here, the implicit action of the non-trivial
element σ ∈ Γ on RC/RGLN is given by (35). Suppose z(σ) = (g1, g2). Then by definition,

(1, 1) = z(σ2) = z(σ)σ(z(σ)) = (g1J̃ ḡ2J̃
−1, g2J̃ ḡ1J̃

−1),

which implies
z(σ) = (g1, J̃ ḡ

−1
1 J̃−1).

The cocycle z is trivial in H1(R,RC/RGLN ) since

z(σ) = (g1, 1) σ((g1, 1)
−1).

This proves the triviality of H1(R,RC/RGLN ). The proof of the triviality of the second cohomology
set follows in the same manner.

Lemma 2.1 reduces the set of representations in (26) to the unique real form GLN (C). Thus,
we write

Π(∨O, (RC/RGLN )/R) = Π(∨O,GLN (C)). (36)

This is an opportune moment to bring up two peculiarities of RC/RGLN that will be of im-
portance later. The first is that we could equally well have reversed the roles of the L-group and
extended group by defining the L-group as (34) and the extended group as (32). Indeed, with this
reversal the (unique) real form corresponding to the extended group is the fixed-point set of

(g1, g2) 7→ ((ḡ⊺2 )
−1, (ḡ⊺1 )

−1)

([AV, (5)]), which is easily seen to be

{(g, (ḡ⊺)−1) : g ∈ GLN} ∼= GLN (C).

The recovery of the same inner class, namely GLN (C), under this reversal shall be useful when we
explore Vogan duality in Section 4.1.

The second peculiarity has to do with the connectedness of centralizers in the dual group
∨RC/RGLN = ∨GLN×

∨GLN . It is well-known that the centralizer of the image of any L-parameter
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for the general linear group GLN (R) is connected. This peculiarity is shared by RC/RGLN (R) =
GLN (C) and may be seen as follows. To lighten the notation take N = 2. It is a simple exercise to
show that after conjugation any L-parameter φ ∈ P (∨RC/RGLΓ

2 ) may be taken to have the form

φ(z) =

([

zλ1 z̄λ
′

1 0

0 zλ2 z̄λ
′

2

]

,

[

zλ
′

1 z̄λ1 0

0 zλ
′

2 z̄λ2

]

, 1

)

, z ∈ C×

φ(j) =

([

(−1)(λ1−λ
′

1)/2 0

0 (−1)(λ2−λ
′

2)/2

]

,

[

(−1)(λ1−λ
′

1)/2 0

0 (−1)(λ2−λ
′

2)/2

]

, ∨δ0

)

for some λ1, λ
′
1, λ2, λ

′
2 ∈ C. It is not difficult to see that the centralizer of φ(j) in ∨GL2 ×

∨GL2

reduces the further computation of the centralizer of φ(C×) to the well-known case of ∨GL2, where
it is known to be connected. The connectedness of the centralizer of φ is the same as the triviality
of the component group, which we write as

(∨RC/RGLN )φ/(
∨RC/RGLN )0φ = {1}. (37)

2.3 Atlas parameters for RC/RGLN

We introduce another set of parameters for representations of RC/RGLN which may be used in
place of the complete geometric parameters of Section 2.1. These Atlas parameters are convenient
for Hecke algebra computations and are well-suited to a description of Vogan duality (see Section
4.1). The main references for this section are [AdC] and [AV, Section 3].

We start by working in the context of the extended group (34). We take H ⊂ RC/RGLN to be
the direct product of the diagonal subgroups as in the pinning of the previous section. Following
[AV, Section 3] we set

X∨ρ =
{

δ ∈ Norm(GLN×GLN )δ0(H) : δ2 = exp(2πi ∨ρ)
}

/H

where the quotient is by the conjugation action of H . This is a set of H-conjugacy classes of strong
involutions with infinitesimal cocharacter ∨ρ ([AV, (16e)], cf. (24)). By Lemma 2.1, these strong
involutions are all pure and correspond to the real form GLN (C).

We fix a ϑ-fixed, regular, integrally dominant element λ ∈ ∨h. This means

ϑ(λ) = λ

〈λ, ∨α〉 6= 0, α ∈ R(RC/RGLN , H)

〈λ, ∨α〉 /∈ {−1,−2,−3, . . .}, α ∈ R+(RC/RGLN , H).

(38)

The ∨RC/RGLN -orbit ∨O of λ will be the infinitesimal character of our representations of GLN (C).
The assumption of integral dominance is harmless ([AV, Lemma 4.1]). We shall remove the regu-
larity assumption at the beginning of Section 9.

The action of δ0 in the extended group (34) induces an action on the Weyl groupW (RC/RGLN , H).
Consider the set

{

w ∈W (RC/RGLN , H) : w δ0(w) = 1
}

. (39)

If x ∈ X∨ρ then the action by conjugation of x on H is equal to wδ0 for some w in the set (39).
The map x 7→ w is surjective ([AV, Proposition 3.2]). Let Xw∨ρ be the fibre of this map over w, i.e.

Xw∨ρ =
{

x ∈ X∨ρ : xhx
−1 = wδ0 · h, for all h ∈ H

}

. (40)

Turning to the L-group (32), we have an analogous set in which the infinitesimal cocharacter
∨ρ is replaced by the infinitesimal character λ, and δ0 is replaced by ∨δ0, namely

∨Xλ =
{

∨δ ∈ Norm∨GLN ∨δ0(
∨H) : ∨δ2 = exp(2πiλ)

}

/ ∨H.

The analogue of the set (39) is

{w ∈W (∨RC/RGLN ,
∨H) : w∨δ0(w) = 1} (41)
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and there is an obvious analogue of (40), which we denote by ∨Xwλ .
If we identify ∨GLN with GLN then the actions of δ0 and ∨δ0 on H are related by

∨δ0(h) = w0δ0(h
−1), h ∈ H,

where w0 is the long Weyl group element ([AV, (12c)]). From this it is easily verified that for all
h ∈ H and w ∈W (RC/RGLN , H)

w δ0(w) · h = wδ0wδ0 · h = ww0
∨δ0ww0

∨δ0 · h = ww0
∨δ0(ww0) · h.

It follows that
w 7→ ww0

defines a bijection from (39) onto (41). This map allows us to pair any set Xw∨ρ with the set ∨Xww0

λ .
The next result follows from [AdC], [ABV] and [AV, Theorem 3.11]. Our proof follows that of

[AAM, Lemma 2.2].

Lemma 2.2. There is a canonical bijection

∐

{w:wδ0(w)=1}

Xw∨ρ ×
∨Xww0

λ ←→ Ξ
(

∨O, ∨RC/RGLΓ
N

)

.

Proof. First of all |Xw∨ρ| = 1 for all w. This follows from [AdC, Proposition 12.19(5)] which equates
the cardinality with that of the component group of a dual Cartan subgroup. As indicated in the
first peculiarity near the end of Section 2.2, the dual inner class consists of (products of) complex
general linear groups. The dual Cartan subgroup is therefore isomorphic to N copies of C× and is
evidently connected, so its component group is trivial.

The lemma is now reduced to defining a canonical bijection

∐

wδ0(w)=1

∨Xww0

λ ←→ Ξ
(

∨O, ∨RC/RGLΓ
N

)

.

As explained in [AAM, Lemma 2.2], the triviality of the component groups (37) further reduces
the task to defining a canonical bijection with ∨RC/RGLN -orbits in X

(

∨O, ∨RC/RGLΓ
N

)

, or equiv-
alently, with ∨RC/RGLN -orbits of quasiadmissible homomorphisms. The definition of the latter
bijection is almost identical to the one in [AAM, Lemma 2.2] and is left to the reader.

Together with (30) this gives

Theorem 2.3. Let ∨O be the ∨RC/RGLN -orbit of λ. There are canonical bijections

∐

{w:wδ0(w)=1}

Xw∨ρ ×
∨Xww0

λ ←→ Ξ
(

∨O, ∨RC/RGLΓ
N

)

←→ Π(∨O,GLN (C)) .

As in [AV, Theorem 3.11] the bijection of Theorem 2.3 is written as

Xw∨ρ ×
∨Xww0

λ ∋ (x, y) 7→ J(x, y, λ) (42)

We call the pair (x, y) on the left the Atlas parameter of the irreducible representation J(x, y, λ).
By Lemma 2.2, the Atlas parameter (x, y) is equivalent to a unique complete geometric parameter
ξ ∈ Ξ(∨O, ∨RC/RGLΓ

N ), and accordingly we define

π(ξ) = J(x, y, λ).

The representation π(ξ) is the Langlands quotient of a standard representation which we denote
by M(ξ) or M(x, y).
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2.4 Twisted Atlas parameters for RC/RGLN

We next describe the generalization of Theorem 2.3 to the ϑ-twisted setting, which involves repre-
sentations of the group GLN (C)⋊ 〈ϑ〉. We specialize the results of [AV, Sections 3-5] to this case.
Some of the more complicated issues that arise in [AV] do not occur for RC/RGLN .

We continue with the hypotheses of (38). Recall that both ∨ρ and λ are fixed by ϑ. By Clifford
theory, an irreducible representation of GLN (C)⋊ 〈ϑ〉 restricted to GLN (C) is either an irreducible
ϑ-fixed representation, or the direct sum of two irreducible representations which are exchanged
by the action of ϑ. Since we shall be restricting our attention to twisted characters, we only need
representations of the first type.

By [CM, Theorem 4.1] and Lemma 2.2, the map (42) is ϑ-equivariant. Therefore J(x, y, λ) is
ϑ-stable if and only if (x, y) ∈ Xw∨ρ ×

∨Xww0

λ is fixed by ϑ. Let

Π(∨O,GLN (C))ϑ ⊂ Π(∨O,GLN (C))

be the subset of ϑ-stable irreducible representations and set

W (δ0, ϑ) = {w ∈W (RC/RGLN , H) : wδ0(w) = 1, w = ϑ(w)}

(cf. (39)). The ϑ-equivariance of (42) allows us to restrict Theorem 2.3 to these sets and we obtain

Corollary 2.4. Suppose λ satisfies the hypotheses of (38) and let ∨O be its ∨RC/RGLN -orbit.
Then there is a canonical bijection

∐

{w∈W (δ0,ϑ)}

Xw∨ρ ×
∨Xww0

λ ←→ Π(∨O,GLN(C))
ϑ

written (x, y) 7→ J(x, y, λ).

We now introduce the extended parameters of [AV, Sections 3-5], and summarize some facts.
Fix w ∈ W (δ0, ϑ). An extended parameter for w is a set

E = (λ, τ, ℓ, t), λ, τ ∈ X∗(H), ℓ, t ∈ X∗(H)

satisfying certain conditions depending on w (see [AV, Definition 5.4]).2 There is a surjective map

E 7→ (x(E), y(E)) (43)

carrying extended parameters for w to Xw∨ρ ×
∨Xww0

λ . This map only depends on λ and ℓ. In
addition,

J(x(E), y(E), λ) ∈ Π(∨O,GLN (C))ϑ,

and every ϑ-fixed irreducible representation arises this way. The remaining parameters τ and t in
E define an irreducible representation J(E, λ) of GLN (R)⋊ 〈ϑ〉 satisfying

J(E, λ)|GLN (C) = J(x(E), y(E), λ).

The representation J(x(E), y(E), λ) is determined by a quasicharacter of a Cartan subgroup of
GLN (C). The representation J(E, λ) is determined by the semidirect product of this Cartan
subgroup with an element hϑ ∈ RC/RGLN ⋊ ϑ ([AV, (24e)]) and a choice of extension of the
quasicharacter to the semidirect product. The value of the extended quasicharacter on the element
hϑ depends on a choice of sign [AV, Definition 5.2], and the square root of this sign is given by

z(E) = i〈τ,(1+w)t〉 (−1)〈λ,t〉.

The preceding discussion is a specialization of a general framework to RC/RGLN ⋊ 〈ϑ〉. One of the
special properties of RC/RGLN is that the preimage of any (x, y) ∈ Xw∨ρ ×

∨Xww0

λ under (43) has
a preferred extended parameter of the form

(λ, τ, 0, 0). (44)

2Warning! The symbols λ and τ here are not to be confused with symbols λ and τ appearing elsewhere. Note
the slight difference in font. We have chosen to use λ and τ for ease of comparison with [AV].
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This comes down to the fact that Xw
∨ρ is a singleton (see the proof of Lemma 2.2). In taking t = 0

we see z(λ, τ, 0, 0) = 1, and this in turn amounts to taking the aforementioned semidirect product
of the Cartan subgroup with hϑ = ϑ, and setting the value of the extended quasicharacter at ϑ
equal to 1. In this way, the preferred extended parameter defines a canonical extension

J(x, y, λ)+ = J((λ, τ, 0, 0), λ) (45)

of J(x, y, λ) to GLN (C)⋊ 〈ϑ〉. We call this extension the Atlas extension of J(x, y, λ).
Going back to Theorem 2.3 and Corollary 2.4, we may formulate the result as follows.

Corollary 2.5. There is a natural bijection of ϑ-fixed sets

∐

{w∈W (δ0,ϑ)}

Xw∨ρ ×
∨Xww0

λ ←→ Ξ(∨O, ∨RC/RGLΓ
N )ϑ ←→ Π(∨O,GLN (C))ϑ.

Furthermore, if ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ is identified with (x, y) under the first bijection, then there

is a canonical representation
π(ξ)+ = J(x, y, λ)+

extending π(ξ) to GLN (C)⋊ 〈ϑ〉.

The irreducible representation π(ξ)+ is defined as the unique (Langlands) quotient of a repre-
sentation M(ξ)+ such that M(ξ)+|GLN (C) = M(ξ). We call π(ξ)+ and M(ξ)+ the Atlas extensions

of π(ξ) and M(ξ) respectively.

2.5 Grothendieck groups of characters and twisted characters

The setting for studying characters of reductive groups is the Grothendieck group of admissible
representations. There is a corresponding notion in the twisted setting. In this section we establish
the notation for these objects.

For the moment let G be an arbitrary complex connected reductive group. Fix a semisimple
orbit ∨O ⊂ ∨g. Recall from Section 2.1 that Π(∨O, G/R) is the set of equivalence classes of
irreducible representations (π, δ) of pure strong involutions with infinitesimal character ∨O. We
define KΠ(∨O, G/R) to be the Grothendieck group of admissible representations of pure strong
involutions with infinitesimal character ∨O (see [ABV, (15.5)-(15.6)]). We identify this with the
Z-span of distribution characters of the irreducible representations in Π(∨O, G/R), and refer to
elements of this Z-module as virtual characters.

For the unitary groups we often refer to the submodule of stable characters for the quasisplit
form. So we define

KΠ(∨O, G(R, δq))
st ⊂ KΠ(∨O, G(R, δq))

to be the subspace spanned by the (strongly) stable virtual characters. If we identify virtual
characters with functions on G(R, δq) these are the virtual characters η which satisfy η(g) = η(g′)
whenever strongly regular semisimple elements g, g′ ∈ G(R, δq) are G-conjugate. See [S3, Section
5] or [ABV, Definition 18.2].

We now turn the twisted setting of the inner class GLN (C) of RC/RGLN , equipped with the
involution ϑ. An immediate consequence of (36) is the expression of the Grothendieck group

KΠ(RC/RGLN/R) = KΠ(GLN (C))

in terms of the unique real form. We define

KΠ(∨O,GLN (C))ϑ ⊂ KΠ(∨O,GLN (C))

to be the submodule spanned by Π(∨O,GLN (C))ϑ. This is not the Grothendieck group of ϑ-
stable representations of GLN (C), but we retain the “K” to help align the object with its ambient
Grothendieck group. On the other hand we let

KΠ(∨O,GLN (C)⋊ 〈ϑ〉) (46)
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be the veritable Grothendieck group of admissible representations of GLN (C)⋊ 〈ϑ〉 with infinites-
imal character ∨O.

We are ready to construct the Z-module of twisted characters of GLN (C). An irreducible
character in KΠ(∨O,GLN (C) ⋊ 〈ϑ〉) is the usual distribution on GLN (C) ⋊ 〈ϑ〉 given by Trπ,
where π is an irreducible representation of GLN(C) ⋊ 〈ϑ〉. The restriction of such a distribution
character to the non-identity component GLN (C)⋊ ϑ (when non-zero) is what we we mean by an
irreducible twisted character of GLN (C) (cf. [AAM, (42)]) . We define

KΠ(∨O,GLN (C), ϑ)

to be the Z-module generated by the irreducible twisted characters of GLN (C) of infinitesimal
character ∨O.

As noted in Section 2.4, an irreducible representation of GLN (C) ⋊ 〈ϑ〉 restricts either to
an irreducible ϑ-fixed representation of GLN (C), or to a direct sum π ⊕ (π ◦ ϑ) of inequivalent
irreducible representations. In the second case the twisted character is 0, so we only need to consider
the first case. The first case describes the irreducible representations in KΠ(∨O,GLN (C))ϑ. If
π ∈ Π(∨O,GLN (C))ϑ then it has two extensions π± to GLN (C)⋊ 〈ϑ〉, satisfying

π−(ϑ) = −π+(ϑ). (47)

Consequently the twisted characters of π± agree up to sign. If we set U2 = {±1} then it follows
that the homomorphism

KΠ(∨O,GLN (C))ϑ ⊗Z Z[U2]→ KΠ(∨O,GLN (C), ϑ),

which restricts the distribution character of π(ξ)+ to the non-identity component, is surjective. By
(47), the homomorphism passes to an isomorphism

KΠ(∨O,GLN (C), ϑ) ∼= KΠ(∨O,GLN (C))ϑ ⊗Z Z[U2]/〈(π ⊗ 1) + (π ⊗−1)〉, (48)(a)

where the quotient runs over π ∈ Π(∨O,GLN (C))ϑ. The map carrying π(ξ) ∈ Π(∨O,GLN (C))ϑ

to the twisted character of the Atlas extension π(ξ)+ extends to an isomorphism

KΠ(∨O,GLN (C))ϑ ∼= KΠ(∨O,GLN (C), ϑ).

We again remind the reader that the Z-modules appearing in (48) are not Grothendieck groups in
any natural fashion, notwithstanding the appearance of the “K”.

3 Sheaves, Pairings and Characteristic Cycles

Suppose ψG is an Arthur parameter for G as in (1). In this section we give more details on the
definition of the ABV-packet ΠABV

ψG
and its stable virtual character ηABV

ψG
(2). The results apply

in the more general context of complex connected reductive groups G ([ABV, Sections 19, 22]).
However, for this section G will be GLN or RC/RGLN , with the setup of Section 2.2.

The definitions depend on a pairing between characters and sheaves. We also define a pairing
between twisted characters and twisted sheaves for RC/RGLN ([CM, Sections 5-6], [AAM, Section
3]). The key properties of this twisted pairing are listed in this section and shall be proved in
Section 4.

3.1 The pairing and the ABV-packets in the non-twisted case

Let φψG be the Langlands parameter associated to ψG ([ABV, Definition 22.4]), ∨O be the in-
finitesimal character of φψG , and SψG ⊂ X(∨O, ∨GΓ) be the corresponding orbit (29). Recall that
Ξ(∨O, ∨GΓ) is the set of pure complete geometric parameters.

Let C(X(∨O, ∨GΓ)) be the category of ∨G-equivariant constructible sheaves of complex vector
spaces on X(∨O, ∨GΓ). This is an abelian category and its simple objects are parameterized by
the set of complete geometric parameters ξ = (S, τS) ∈ Ξ(∨O, ∨GΓ) as follows. Choose p ∈ S, let
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∨Gp = Stab∨G(p), and choose a character τξ of the component group of ∨Gp so that (p, τξ) is a
representative of ξ. Then τξ pulled back to ∨Gp defines an algebraic vector bundle

∨G×∨Gp V → S. (49)

The sheaf of sections of this vector bundle is, by definition, a ∨G-equivariant local system on S
([ABV, Section 7, Lemma 7.3]). Extend this local system to the closure S̄ by zero and then take the
direct image into X(∨O, ∨GΓ) to obtain an irreducible (i.e. simple) ∨G-equivariant constructible
sheaf denoted by µ(ξ) ([ABV, (7.10)(c)]).

Now let P(X(∨O, ∨GΓ)) be the abelian category of ∨G-equivariant perverse sheaves of complex
vector spaces on X(∨O, ∨GΓ) ([BL, Section 5]). The simple objects of P(X(∨O, ∨GΓ)) are defined
from ξ = (S, τS) ∈ Ξ(∨GΓ, ∨O) and the algebraic vector bundle (49) by taking the intermediate
extension ([BBD, Section 2]) to the closure S̄ instead of the extension by zero. This is denoted
P (ξ) ([ABV, (7.10)(d)]). It is an irreducible ∨G-equivariant perverse sheaf on X(∨O, ∨GΓ).

The Grothendieck groups of the two categories C(X(∨O, ∨GΓ)) and P(X(∨O, ∨GΓ)) are canon-
ically isomorphic ([BBD], [ABV, Lemma 7.8]). We identify the two Grothendieck groups via this
isomorphism and denote them by KX(∨O, ∨GΓ). This Grothendieck group has two natural bases

{µ(ξ) : ξ ∈ Ξ(∨O, ∨GΓ)} and {P (ξ) : ξ ∈ Ξ(∨O, ∨GΓ)}.

Suppose ξ = (S, τ) ∈ Ξ(∨O, ∨GΓ). We define two invariants associated to ξ. First, let d(ξ) be
the dimension of Sξ. Second, associated to ξ is the representation π(ξ) of a pure strong involution
of G (30). Let e(ξ) = ±1 be the Kottwitz invariant of the underlying real form of this strong
involution ([ABV, Definition 15.8]).

As stated in the introduction, we define a perfect pairing

〈 ·, ·〉 : KΠ(∨O, G/R)×KX(∨O, ∨GΓ)→ Z (50)

by
〈M(ξ), µ(ξ′)〉 = e(ξ) δξ,ξ′ .

The pairing takes a deceptively simple form relative to the bases given by π(ξ) and P (ξ′) ([ABV,
Theorem 1.24, Sections 15-17]). We state it as a theorem.

Theorem 3.1. The pairing (50) satisfies

〈π(ξ), P (ξ′)〉 = (−1)d(ξ) e(ξ) δξ,ξ′ , ξ, ξ′ ∈ Ξ(∨O, ∨GΓ).

This pairing allows us to regard elements ofKΠ(∨O, G/R) as Z-linear functionals ofKX(∨O, ∨GΓ).
The microlocal multiplicity maps χmic

S discussed in (11) are Z-linear functionals on KX(∨O, ∨GΓ).
Before making the connection with the pairing (50), we review some facts needed to define χmic

S .
To begin, we consider the category of ∨G-equivariant coherent D-modules on X(∨O, ∨GΓ). We
denote this category by D(X(∨O, ∨GΓ)). Here, D is the sheaf of algebraic differential operators on
X(∨O, ∨GΓ) ([BGK+, VIII.14.4], [ABV, Section 7], [HTT, Part I]).

The equivariant Riemann-Hilbert correspondence ([BGK+, Theorem VIII.14.4]) induces an
isomorphism

DR : KD(X(∨O, ∨GΓ))→ KX(∨O, ∨GΓ). (51)

For simplicity we write X = X(∨O, ∨GΓ), and DX = D(X(∨O, ∨GΓ)).
The sheafD is filtered by the order of the differential operators, and the associated graded ring is

canonically isomorphic to OT∗(X), the coordinate ring of the cotangent bundle of X ([HTT, Section
1.1]). SupposeM ∈ DX . ThenM has a filtration such that the resulting graded sheaf grM is a
coherent OT∗(X)-module ([HTT, Section 2.1]).

The support of grM is a closed subvariety of T ∗(X) ([ABV, Definition 19.7]). Each minimal
∨G-invariant component of this closed subvariety is the closure of a conormal bundle T ∗

S(X), where
S ⊂ X is a ∨G-orbit ([ABV, Proposition 19.12(c)]). Therefore to each conormal bundle T ∗

S(X) we
may attach a non-negative integer, denoted by χmic

S (M), which (when nonzero) is the length of
the module grM localized at T ∗

S(X) ([HTT, Section 2.2]).
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The characteristic cycle ofM is defined as

Ch(M) =
∑

S∈X/∨G

χmic
S (M) T ∗

S(X).

For a given ∨G-orbit S we may regard χmic
S as a function on D-modules which is additive for short

exact sequences ([ABV, Proposition 19.12(e)]). It therefore defines a homomorphismKD(X(∨O, ∨GΓ))→
Z, called the microlocal multiplicity along S. Using the isomorphism (51), we interpret this as a
homomorphism

χmic
S : KX(∨O, ∨GΓ)→ Z.

We now return to the pairing (50) and its relationship to χmic
S . This relationship defines

ηABV
ψG

. We first define ηmic
ψG
∈ KΠ(∨O, G/R) to be the element of KΠ(∨O, G/R) corresponding

via the pairing to the Z-linear functional χmic
S on KX(∨O, ∨GΓ). Explicitly working through the

identifications in the definition we see

ηmic
ψG =

∑

ξ∈Ξ(∨O,∨GΓ)

(−1)d(Sξ)−d(SψG) χmic
SψG

(P (ξ))π(ξ). (52)

An important result of Kashiwara and Adams-Barbasch-Vogan is

Proposition 3.2 ([ABV, Theorem 1.31, Corollary 19.16]). The virtual character ηmic
ψG

is stable.

The microlocal packet Πmic
ψG

of ψG is defined to be the irreducible representations in the support

of ηmic
ψG

. In other words

Πmic
ψG = {π(ξ) : ξ ∈ Ξ(∨O, ∨GΓ), χmic

SψG
(P (ξ)) 6= 0}.

This is a set of irreducible representations of pure strong involutions of G. We are primarily
interested in the packet for the quasisplit strong involutions. We therefore define

ηABV
ψG = ηmic

ψG (δq) (53)

to be the restriction of ηmic
ψG

to the submodule of KΠ(∨O, G/R) generated by the representations

in Π(∨O, G(R, δq)). The ABV-packet ΠABV
ψG

is defined as the support of ηABV
ψG

, that is

ΠABV
ψG = {π(ξ) : ξ ∈ Ξ(∨O, ∨GΓ), χmic

SψG
(P (ξ)) 6= 0, π(ξ) ∈ Π(G(R, δq))}. (54)

In definitions (53) and (54) we may easily replace δq with any other pure strong involution δ.
Although we shall only use these further objects in Section 11, it seems appropriate to define them
now. Let

ηABV
ψG (δ) = ηmic

ψG (δ) (55)

be the restriction of ηmic
ψG

to the submodule of KΠ(∨O, G/R) generated by the representations in
Π(∨O, G(R, δ)). In addition, let

ΠABV
ψG (G(R, δ)) = {π(ξ) : ξ ∈ Ξ(∨O, ∨GΓ), χmic

SψG
(P (ξ)) 6= 0, π(ξ) ∈ Π(G(R, δ))}. (56)

We conclude this section with a restatement of Theorem 3.1 which will be valuable later on.
Define the representation-theoretic transition matrix mr by

M(ξ) =
∑

ξ′∈Ξ(∨O,∨GΓ)

mr(ξ
′, ξ)π(ξ′).

Define the geometric “transition matrix” cg by

P (ξ) =
∑

ξ′∈Ξ(∨O,∨GΓ)

(−1)d(ξ) cg(ξ
′, ξ)µ(ξ′).

(see [ABV, (7.11)(c)]). Then [ABV, Corollary 15.13] says

Proposition 3.3. Theorem 3.1 is equivalent to the identity

mr(ξ
′, ξ) = (−1)d(ξ)−d(ξ

′) cg(ξ, ξ
′).

This equation relates the decomposition of characters with the decomposition of sheaves.
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3.2 The pairing in the twisted case

In the previous section the pairing (50) plays a fundamental role in the definition of ABV-packets.
We now develop a twisted version of this pairing for RC/RGLN .

We replace KΠ(∨O,GLN (C)) with the Z-module KΠ(∨O,GLN (C), ϑ) of twisted characters
(48). Associated to ξ ∈ Ξ(∨O, ∨RC/RGLΓ

N )ϑ are an irreducible representation π(ξ) ∈ Π(∨O,GLN (C))ϑ

as well as the Atlas extension π(ξ)+ to GLN (C) ⋊ 〈ϑ〉 (Corollary 2.5). The twisted character of
π(ξ)+ is an element of KΠ(∨O,GLN (C), ϑ), the Z-module of twisted characters, and this gives
a basis of KΠ(∨O,GLN (C), ϑ) parameterized by Ξ(∨O, ∨RC/RGLΓ

N )ϑ. See (46) and the end of
Section 2.4.

The twisted characters are to be paired with twisted sheaves which are elements in a Z-module
generalizing KX(∨O, ∨GΓ). The twisted objects for this pairing are given in [ABV, (25.7)] (see
also [CM, Section 5.4]). We provide a short summary.

The automorphism ϑ acts on X(∨O, ∨RC/RGLΓ
N ) in a manner which is compatible with its

∨RC/RGLN -action ([ABV, (25.1)]), and so also acts on ∨RC/RGLN -equivariant sheaves. Let

P(X(∨O, ∨RC/RGLΓ
N );ϑ)

be the category of ∨RC/RGLN -equivariant perverse sheaves with a compatible ϑ-action. An ob-
ject in this category is a pair (P, ϑP ) in which P is an equivariant perverse sheaf and ϑP is an
automorphism of P which is compatible with ϑ ([CM, Section 5.4]). Similarly, we define

C(X(∨O, ∨RC/RGLΓ
N );ϑ)

to be the category of ∨RC/RGLN -equivariant constructible sheaves with a compatible ϑ-action.
An object in this category is a pair (µ, ϑµ) in which µ is an equivariant constructible sheaf and ϑµ
is an automorphism of µ which is compatible with ϑ.

The Grothendieck groups of these two categories are isomorphic ([CM, (35)]). We identify them
and denote their Grothendieck groups by K(X(∨O, ∨RC/RGLΓ

N );ϑ). This is the sheaf-theoretic
analogue of KΠ(GLN (C)⋊ 〈ϑ〉).

As with the representations (see (45)), we seek a canonical choice of extension of P (ξ), i.e.
a canonical automorphism ϑP (ξ) of P (ξ). This is achieved by the following lemma, whose proof
follows exactly as for [AAM, Lemma 3.4] by virtue of (37).

Lemma 3.4. Let ∨G = ∨RC/RGLN , ξ = (S, τS) ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ, p ∈ S, and (49) be the

equivariant vector bundle representing µ(ξ).

(a) Suppose p′ ∈ S and p′ = a · p for some a ∈ ∨RC/RGLN . Then the maps

(g, v) 7→ (ga−1, v)

g · p 7→ (ga−1) · p′

define an isomorphism of equivariant vector bundles

∨G×∨Gp V →
∨G×∨Gp′ V.

which is independent of the choice of a.

(b) There exist canonical choices of pairs

µ(ξ)+ = (µ(ξ), ϑ+µ(ξ)) ∈ C(X(∨O, ∨RC/RGLΓ
N );ϑ),

P (ξ)+ = (P (ξ), ϑ+P (ξ)) ∈ P(X(∨O, ∨RC/RGLΓ
N );ϑ)

such that if p ∈ S is fixed by ϑ then ϑ+µ(ξ) (and ϑ
+
P (ξ)) acts trivially on the stalk of µ(ξ) (and

P (ξ) ∈ KX(∨O, ∨RC/RGLΓ
N )) at p.
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We now imitate the definition of KΠ(∨O,GLN (C), ϑ) (48) for the sheaves appearing in Lemma
3.4. Attached to ξ ∈ Ξ(∨O, ∨RC/RGLΓ

N )ϑ are perverse sheaves P (ξ)±, where P (ξ)+ is defined in
Lemma 3.4, and P (ξ)− is the unique other choice of extension. Furthermore, the microlocal traces
of P (ξ)± differ by sign ([ABV, (25.1)(j)]). Similar comments apply to µ(ξ)±. The microlocal traces
are used in Proposition 5.5 and are the analogues of twisted characters.

We are interested only in irreducible sheaves with non-vanishing microlocal trace. We conse-
quently follow the definition of (48) in defining the quotient

KX(∨O, ∨RC/RGLΓ
N , ϑ) = K(X(∨O, ∨RC/RGLΓ

N ))ϑ ⊗ Z[U2]/〈(P (ξ)⊗ 1) + (P (ξ) ⊗−1)〉 (57)

where the quotient runs over ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ.

This is the Z-module which we shall pair with

KΠ(∨O,GLN (C))ϑ ∼= KΠ(∨O,GLN (C), ϑ)

in Section 4. We call the elements of this module twisted sheaves, and remind the reader that
these modules are not naturally Grothendieck groups, even though we have kept the “K” in the
notation.

For reasons that will only become clear in Section 7, the definition of our twisted pairing
involves some additional signs. The signs depend on the integral lengths of parameters, which may
be described as follows.

From now on we assume λ ∈ ∨O satisfies the regularity condition (38). Let ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ.

Lemma 2.2 tells us that associated to ξ is an element x ∈ X∨ρ. Set

θx = Int(x)|H . (58)

Let
R(λ) =

{

α ∈ R(RC/RGLN , H) : 〈λ, ∨α〉 ∈ Z
}

(59)(a)

be the λ-integral roots, with positive λ-integral roots

R+(λ) = {α ∈ R(λ) : 〈λ, ∨α〉 > 0} . (59)(b)

Define the integral length, following [ABV, (16.16)], as

lI(ξ) = −
1

2

(

|{α ∈ R+(λ) : θx(α) ∈ R
+(λ)}|+ dim(Hθx)

)

+
N

2
. (60)

The integral length takes values in the non-positive integers.
Furthermore define

R+
ϑ (λ) = {α ∈ R((RC/RGLϑN )0, (Hϑ)0) : 〈λ, ∨α〉 ∈ Z>0}.

We define the ϑ-integral length by

lIϑ(ξ) = −
1

2

(

|{α ∈ R+
ϑ (λ) : θx(α) ∈ R

+
ϑ (λ)}|+ dim((Hϑ)θx)

)

+
⌈N/2⌉

2
, (61)

where ⌈N/2⌉ is the least integer greater than or equal to N/2. This is the integral length for the
fixed-point group (RC/RGLN )ϑ ∼= GLN , or more precisely, for a quasisplit unitary group of Section
2.2.

Now we define a perfect pairing (under the assumption (38))

〈·, ·〉 : KΠ(∨O,GLN (C), ϑ) ×KX(∨O, ∨RC/RGLΓ
N , ϑ)→ Z (62)

by setting

〈M(ξ)+, µ(ξ′)+〉 = (−1)l
I(ξ)−lIϑ(ξ) δξ,ξ′ (63)

for ξ, ξ′ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ. The analogue of Theorem 3.1 is
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Theorem 3.5. Suppose λ ∈ ∨O satisfies (38). Define the pairing (62) by (63). Then

〈π(ξ)+, P (ξ′)+〉 = (−1)d(ξ) (−1)l
I(ξ)−lIϑ(ξ) δξ,ξ′

where ξ, ξ′ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ.

The proof of this theorem is the primary purpose of Section 4. Its proof is modelled on the
proof of Theorem 3.1 in [ABV, Sections 15-17].

We conclude this section by giving a twisted analogue of Proposition 3.3. This analogue will
only be needed in Sections 7 and 9, so the reader may wish to skip this discussion and return to it
later.

For ξ, ξ′ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ, define mr(ξ

′
±, ξ+) to be the multiplicity of the representation

π(ξ′)± in M(ξ)+ as elements of the Grothendieck group KΠ(∨O,GLN (C)⋊ 〈ϑ〉) (Section 2.5). In
other words

M(ξ)+ =
∑

ξ′∈Ξ(∨O,∨GΓ)ϑ

mr(ξ
′
+, ξ+)π(ξ

′)+ +mr(ξ
′
−, ξ+)π(ξ

′)− + · · ·

where the omitted summands are irreducible representations of GLN (C) ⋊ 〈ϑ〉 which restrict to
the sum of two irreducible representations of GLN(C). Define the twisted multiplicity of π(ξ′)+ in
M(ξ)+ by

mϑ
r (ξ

′, ξ) = mr(ξ
′
+, ξ+)−mr(ξ

′
−, ξ+), ξ, ξ′ ∈ Ξ(∨O, ∨RC/RGLΓ

N )ϑ (64)

(cf. [AvLTV, (19.3d)]). By construction, the image of M(ξ)+ in KΠ(∨O,GLN (C), ϑ) (48) decom-
poses as

M(ξ)+ =
∑

ξ′∈Ξ(∨O,∨GLΓ
N )ϑ

mϑ
r (ξ

′, ξ)π(ξ′)+. (65)

The matrix given by (64) is invertible ([AAM, Lemma 3.6]).
In a parallel fashion, we define cg(ξ

′
±, ξ+) for ξ, ξ

′ ∈ Ξ(∨O, ∨GΓ)ϑ by

P (ξ)+ =
∑

ξ′∈Ξ(∨O,∨GΓ)ϑ

(−1)d(ξ
′) cg(ξ

′
+, ξ+)µ(ξ

′)+ + (−1)d(ξ
′) cg(ξ

′
−, ξ+)µ(ξ

′)− + · · ·

in the Grothendieck group KX(∨O, ∨RC/RGLN ;ϑ) of Section 3.2. Setting

cϑg (ξ
′, ξ) = cg(ξ

′
+, ξ+)− cg(ξ

′
−, ξ+). (66)

we see that the image of P (ξ)+ in KX(∨O, ∨RC/RGLN , ϑ) is

∑

ξ′∈Ξ(∨O,∨GΓ)ϑ

(−1)d(ξ
′) cϑg (ξ

′, ξ)µ(ξ′)+.

Just as Theorem 3.1 is equivalent to Proposition 3.3. We have the following equivalence.

Proposition 3.6 ([AAM, Proposition 3.7]). Theorem 3.5 is equivalent to the identity

mϑ
r (ξ

′, ξ) = (−1)l
I
ϑ(ξ)−l

I
ϑ(ξ

′) cϑg (ξ, ξ
′)

for all ξ, ξ′ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ.

4 The proof of Theorem 3.5

We continue working with an infinitesimal character λ ∈ ∨O which satisfies the hypothesis of (38).
The proof of Theorem 3.5 is nearly identical to the proof of [AAM, Theorem 3.5]. In fact, the proof
of Theorem 3.5 is somewhat simpler. In order to convince the reader of these claims we review the
proof of [AAM, Theorem 3.5] in our context, calling attention to the points which are simplified.

The general idea of the proof is already given in the non-twisted context of [ABV, Sections
15-17]. In the proof one first extends the Z-modules appearing in Theorem 3.5 to Hecke modules
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acted upon by a Hecke algebra. The extended pairing is then shown to furnish an isomorphism
between one of the Hecke modules and the dual of the other. Special bases are chosen for the Hecke
modules. The values of the special bases are explicitly computed under the pairing. Theorem 3.5
then follows by restricting these values to the setting of the original Z-modules.

There are numerous Hecke module computations underlying this proof, and many of them have
been completed in [LV] and [AV]. The computations of [AV] are given in representation-theoretic
language and are therefore suitable when working with KΠ(∨O,GLN (C), ϑ). In order to adapt
the computations of [AV] to KX(∨O, ∨RC/RGLΓ

N , ϑ) we replace this module with an equivalent
module of representations. In so doing, we touch on the notion of Vogan duality ([AV, Section
6.1]). We attend to this preliminary work in the next section.

4.1 Vogan duality and KX(∨O, RC/RGLΓ
N , ϑ)

We wish to replace the sheaf-theoretic module KX(∨O, RC/RGLΓ
N , ϑ) with an equivalent mod-

ule of representations. In the non-twisted setting this is achieved by [ABV, Theorem 8.5]. This
theorem relies on two correspondences. The first correspondence is the Riemann-Hilbert corre-
spondence, which furnishes an equivalence between the category of equivariant perverse sheaves on
X(∨O,RC/RGLΓ

N ) and a category of equivariant D-modules on the same space ([ABV, Theorem
7.9], [BBD, Theorem VIII.14.4]). The second correspondence is the Beilinson-Bernstein localiza-
tion theorem, which furnishes an equivalence between the category of equivariant D-modules and
a category of Harish-Chandra modules ([ABV, Theorem 8.3], [V1, Proposition 1.2]).

Combining the two correspondences produces a bijection between a set of irreducible perverse
sheaves and a set of irreducible representations (Harish-Chandra modules). The set of irreducible
perverse sheaves is

{P (ξ) : ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )}

(Section 3.1). We denote the set of corresponding representations by ∨Π(∨O,GLN (C)), so that
the bijection may be written as

{P (ξ) : ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )} ←→ ∨Π(∨O,GLN (C)). (67)

The notation for the set of representations on the right hints at some manner of duality with
Π(∨O,GLN (C)). The particulars of this duality are given in [AAM, Section 4.2] for GLN (R). The
arguments there apply just as well to GLN (C) and are summarized as follows. By Lemma 2.2 a
complete geometric parameter ξ ∈ Ξ(∨O, ∨RC/RGLΓ

N ) corresponds to a unique Atlas parameters
(x, y) ∈ X∨ρ ×

∨Xλ. By reversing the order of the entries in the Atlas parameter, one obtains an
Atlas parameter

(y, x) ∈ ∨Xλ ×X∨ρ

for the group
∨RC/RGLN (λ) = centralizer in ∨RC/RGLN of exp(2πiλ) (68)

(cf. [AAM, Lemma 4.2]). The irreducible representation J(y, x, ∨ρ) (cf. (42)) is a ((∨glN ×
∨glN )(λ), ∨K̃y)-module, where ∨K̃y is a two-fold cover of ∨Ky (cf. (25)). It has infinitesimal
character ∨ρ. This representation may be made plainer by computing that ∨RC/RGLN (λ) is a
product of groups

∏

i
∨RC/RGLni . As noted in Section 2.2, this product has only one real form,

namely
∏

iGLni(C). Consequently, J(y, x,
∨ρ) is a representation of a double-cover of

∏

iGLni(C).
Bijection (67) is given by

P (ξ) 7→ J(y, x, ∨ρ)

([AAM, Proposition 4.3]). We streamline the notation by the identification ξ = (x, y) using Lemma
2.2, and defining the dual parameter ∨ξ by

∨ξ = (y, x)⇐⇒ ξ = (x, y). (69)

We denote the dual representation by

π(∨ξ) = J(y, x, ∨ρ).
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In this way, bijection (67) takes the form

P (ξ) 7→ π(∨ξ), ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N ).

Every representation π(∨ξ) is the unique irreducible (Langlands) quotient of a standard module,
which we denote byM(∨ξ) ([AV, (20)]). Bijection (67) extends to an isomorphism of Grothendieck
groups

KX
(

∨O, ∨RC/RGLΓ
N

)

∼= K∨Π(∨O,GLN (C)) . (70)

which satisfies
(−1)d(ξ)µ(ξ)→M(∨ξ), ξ ∈ Ξ(∨O, ∨RC/RGLΓ

N )

([AAM, Proposition 4.3]).
The isomorphism (70) may be generalized to the twisted setting as well. Recall from (45) that

the Atlas extension π(ξ)+ is defined from a preferred extended parameter. The same extended
parameter also determines a unique extension π(∨ξ)+ of π(∨ξ) ([AV, (39h)]). It is a ((∨glN ×
∨glN )(λ), ∨K̃y ⋊ 〈ϑ〉)-module, which is the unique irreducible quotient of an extension M(∨ξ)+ of
M(∨ξ). Define a bijection

P (ξ)+ 7→ π(∨ξ)+, ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ.

The bijection induces an isomorphism of Z-modules

KX(∨O, ∨RC/RGLΓ
N , ϑ)

∼= K∨Π(∨O,GLN (C), ϑ)

which satisfies
(−1)d(ξ)µ(ξ)+ 7→M(∨ξ)+, ξ ∈ Ξ(∨O, ∨RC/RGLΓ

N )ϑ

([AAM, Proposition 4.5]).
The representation-theoretic replacement forKX(∨O, ∨RC/RGLΓ

N , ϑ) is the Z-moduleK∨Π(∨O,GLN (C), ϑ).
Making this replacement in Theorem 3.5, and taking into account the fixed relationship between
d(ξ) and lI(ξ) ([AMR2, Proposition B.1]), we obtain

Lemma 4.1 ([AAM, Lemma 4.6]). Theorem 3.5 is equivalent to the following assertion. The
pairing

〈·, ·〉 : KΠ(∨O,GLN (C), ϑ)×K∨Π(∨O,GLN (C), ϑ)→ Z (71)

defined by

〈M(ξ)+,M(∨ξ′)+〉 = (−1)l
I
ϑ(ξ) δξ,ξ′

satisfies

〈π(ξ)+, π(∨ξ′)+〉 = (−1)l
I
ϑ(ξ) δξ,ξ′

where ξ, ξ′ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ.

4.2 Twisted Hecke modules

The proof of Theorem 3.5 relies on a Hecke algebra and Hecke modules, which we introduce in the
context of (71). In the twisted setting, Lusztig and Vogan define a Hecke algebra which we denote
by H(λ) ([LV, Section 3.1]). This Hecke algebra acts on the Hecke modules

KΠ(∨O,GLN (C), ϑ) = KΠ(∨O,GLN (C), ϑ)⊗Z Z[q1/2, q−1/2]

and
K∨Π(∨O,GLN (C), ϑ) = K∨Π(∨O,GLN (C), ϑ)⊗Z Z[q1/2, q−1/2]

as in [LV, Section 7]. We extend the pairing (71) to these Hecke modules

〈·, ·〉 : KΠ(∨O,GLN (C), ϑ) ×K∨Π(∨O, ∨GLN (C), ϑ)→ Z[q1/2, q−1/2], (72)

by setting

〈M(ξ)+,M(∨ξ′)+〉 = (−1)l
I
ϑ(ξ) q(l

I (ξ)+lI(∨ξ′))/2 δξ,ξ′
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for all ξ, ξ′ ∈ Ξ(∨O, ∨RC/RGLΓ
N)

ϑ. In view of the Kronecker delta, the term q1/2(l
I(ξ)+lI (∨ξ′)) in

the pairing could be replaced by q1/2(l
I(ξ)+lI (∨ξ)) or q1/2(l

I (ξ′)+lI(∨ξ′)). In fact, both of the latter
terms are independent of ξ or ξ′ ([AAM, Lemma 4.7]).

To say more about the Hecke algebra H(λ), we must examine the set of integral roots R(λ)
(59). Let κ be a ϑ-orbit on the set of simple roots of R+(λ). The orbit κ is equal to one of the
following:

one root {α = ϑ(α)} (type 1)

two roots {α, β = ϑ(α)}, 〈α, ∨β〉 = 0 (type 2) (73)

two roots {α, β = ϑ(α)}, 〈α, ∨β〉 = −1 (type 3).

It is clear that our automorphism ϑ renders all orbits κ to be of type 2. This is a notable simplifi-
cation in our setting.

Write W (λ) for the Weyl group of the integral roots R(λ), and let

W (λ)ϑ = {w ∈W (λ) : ϑ(w) = w}.

The group W (λ)ϑ is a Coxeter group ([LV, Section 4.3]) with generators

wκ = sαsϑ(α), κ = {α, ϑ(α)}. (74)

The Hecke algebra H(λ) ([AV, Section 10], [LV, Section 4.7]) is a free Z[q1/2, q−1/2]-algebra with
basis

{Tw : w ∈W (λ)ϑ}.

It is a consequence of [LV, Equation 4.7 (a)] that H(λ) is generated by the operators Tκ := Twκ ,
where κ is a ϑ-orbit as in (73).

The action of Tκ is defined in terms of the types listed in (73), which for us are only of
type 2. The action also depends on the relationship of κ relative to a fixed parameter ξ ∈
Ξ(∨O, ∨RC/RGLΓ

N )ϑ. To say a bit more about this dependence, recall that the parameter ξ is
equivalent to an Atlas parameter (x, y) as in Lemma 2.2. The adjoint action of x acts as an in-
volution on R(λ) (see (40)). This action separates the ϑ-orbits of roots κ into various types, e.g.
real, imaginary, etc. Lusztig and Vogan combine this information with the types of (73) and also
with the types defined by Vogan in [V3, Section 8.3]. The list of combined types may be found in
[LV, Section 7] or [AV, Table 1].

Very few of the types that appear in these lists are relevant for GLN (C). We have already
observed that only type 2 orbits appear in the sense of (73). Furthermore, GLN (C) has only
complex roots relative to x (33). The only relevant types for GLN (C) in [AV, Table 1] are labelled
as

2C+, 2C−, 2Ci, 2Cr. (75)

That only these four types are relevant to our setting is another notable simplification. Any ϑ-orbit
κ also has a type relative to the dual parameter ∨ξ (69). The dual parameter is equivalent to the
Atlas parameter (y, x) and the adjoint action of y is essentially the negative of the adjoint action
of x ([AV, Definition 3.10]). In consequence, it is easy to compute the types and see that we again
recover exactly those listed in (75).

In [LV, Section 4] and [AV, Section7] the Hecke algebra action on KΠ(∨O,GLN (C), ϑ) is given
by defining the action of the operators Tκ on the generating set {M(ξ)+ : ξ ∈ Ξ(∨O, ∨RC/RGLΓ

N )ϑ}.
The actions are presented in terms of extended Atlas parameters in [AV, Proposition 10.4]. A case-
by-case summary of the actions is given in [AV, Table 5].

There are obvious parallel constructions for (68) which define a Hecke algebra ∨H(λ) and a
Hecke module structure for K∨Π(∨O,GLN (C), ϑ). The Hecke algebra ∨H(λ) for (68) is generated
by Hecke operators T∨κ, where

∨κ runs over the simple coroots corresponding to κ. The bijection
between the two sets of operators

{Tκ : κ ∈ R+(λ) simple} ←→ {T∨κ : κ ∈ R+(λ) simple}

extends to an isomorphism H(λ) ∼= ∨H(λ). For this reason, we also regard K∨Π(∨O, ∨GLN (C), ϑ)
as an H(λ)-module.
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4.3 A Hecke module isomorphism

Let
K∨Π(∨O,GLN (C), ϑ)∗ = HomZ[q1/2q−1/2]

(

K∨Π(∨O,GLN (C), ϑ), Z[q1/2q−1/2]
)

.

The extended pairing (72) induces a Z[q1/2, q−1/2]-module isomorphism

KΠ(∨O,GLN (C), ϑ)→ K∨Π(∨O,GLN (C), ϑ)∗ (76)

M(ξ)+ 7→ 〈M(ξ)+, · 〉.

We endow K∨Π(∨O,GLN (C), ϑ)∗ with the Hecke module structure given in [AV, Section 11] (cf.
[AAM, Section 4.5]). Specifically, for any µ ∈ K∨Π(∨O,GLN (C), ϑ)∗ and ϑ-orbit κ as in (73)

T ∗
wκ · µ = −(Twκ)

t · µ+ (ql(wκ) − 1)µ, (77)

where l(w) is the usual length of w with respect to the simple reflections, and (Tw)
t is the transpose

of Tw. Since both the domain and codomain of (76) are H(λ)-modules it is natural to ask whether
(76) extends to a H(λ)-module isomorphism.

Proposition 4.2. The map (76) is an isomorphism of H(λ)-modules.

The proof of this proposition is a simplified version of the proof of [AAM, Proposition 4.8]. We
provide a sketch. In view of (77), Proposition 4.2 is equivalent to

〈TwκM(ξ1)
+,M(∨ξ2)

+〉 = 〈M(ξ1)
+,−TwκM(∨ξ2)

+ + (ql(wκ) − 1)M(∨ξ2)
+〉 (78)

for all ξ1, ξ2 ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ and wκ as in (74). Looking back to the definition of (72), the

left-hand side of (78) may be expressed as

〈TwκM(ξ1)
+,M(∨ξ2)

+〉 = (−1)l
I
ϑ(ξ2)q(l

I (ξ2)+l
I (∨ξ2))/2 · (the coefficient of M(ξ2)

+ in TwκM(ξ1)
+).

Similarly, the right-hand side of (78) may be expressed as the product of (−1)l
I
ϑ(ξ1)q(l

I(ξ1)+l
I(∨ξ1))/2

with
the coefficient of M(∨ξ1)

+ in − TwκM(∨ξ2)
+ + (ql(wκ) − 1)M(∨ξ2)

+.

As in [AAM, Lemma 4.7],
lI(ξ1) + lI(∨ξ1) = lI(ξ2) + lI(∨ξ2),

so Equation (78) is equivalent to

(−1)l
I
ϑ(ξ2)−l

I
ϑ(ξ1) · (the coefficient of M(ξ2)

+ in TwκM(ξ1)
+) (79)

= the coefficient of M(∨ξ1)
+ in − TwκM(∨ξ2)

+ + (ql(wκ) − 1)M(∨ξ2)
+.

The values of TwκM(ξ1)
+ and TwκM(∨ξ2)

+ are known ([AV, Table 5], [AAM, Proposition 4.9]).
The proof of (79) may therefore be achieved by a case-by-case analysis of the types of κ relative
to ξ1, ξ2,

∨ξ1 and ∨ξ2 (75).
We provide some more detail in the case that κ = {α, β} is of type 2Ci relative to ξ1, leaving

the remaining cases to the reader. We identify ξ1 with its corresponding Atlas parameter (x1, y1)
(Lemma 2.2) and do likewise for all other parameters to come. Type 2Ci implies β = x1 · α.

Let us start by computing the left-hand side of (79). According to [AV, Proposition 9.1 and
Proposition 10.4], we have

TwκM(ξ1)
+ = qM(ξ1)

+ + (q + 1)M(ξ)+,

where ξ = (x, y) ∈ Ξ(∨O, ∨RC/RGLΓ
N ) is a parameter satisfying

x = sαx1s
−1
α = sαsβx1 = x1sαsβ (80)
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([AV, (46o)]). (We note that the signs appearing in [AV, Proposition 9.1] are always one for the
Atlas extensions.) Consequently,

the coefficient of M(ξ2)
+ in TwκM(ξ1)

+ is







q, if ξ2 = ξ1
(q + 1), if ξ2 = ξ

0, otherwise.

To compute the ϑ-integral lengths (61), observe that

x · {α, β} = sαsβx1 · {α, β} = {−α,−β},

and for any positive root γ ∈ R+(λ) with γ 6= α, β, we have

x · {γ, ϑγ} = x1sαsβ{γ, ϑγ} = x1 · {γ
′, ϑγ′},

where γ′ is a positive root in R+(λ). Hence, after identifying the roots in R+
ϑ (λ) with ϑ-orbits in

R+(λ), we deduce

∣

∣{γ ∈ R+
ϑ (λ) : x · γ ∈ R

+
ϑ (λ)}

∣

∣ =
∣

∣{γ ∈ R+
ϑ (λ) : x1 · γ ∈ R

+
ϑ (λ)}

∣

∣− 1,

and

dim
(

(Hϑ)x
)

= dim
(

(Hϑ)x1
)

− 1.

It follows that lIϑ(ξ) = lIϑ(ξ1)− 1 and (−1)l
I
ϑ(ξ)−l

I
ϑ(ξ1) = −1. The left-hand side of (79) is therefore

equal to







q, if ξ2 = ξ1
−(q + 1), if ξ2 = ξ

0, otherwise.
(81)

Let us consider the right-hand side of (79), in which ∨κ is of type 2Cr relative to ∨ξ1. According
to [AV, Table 5], M(∨ξ1)

+ occurs in TwκM(∨ξ2)
+ only if one of the following holds

1. M(∨ξ1)
+ =M(∨ξ2)

+,

2. M(∨ξ1)
+ = s∨α ×M(∨ξ2)

+,

3. M(∨ξ1)
+ = w∨κ ×M(∨ξ2)

+.

The third equation holds if and only if M(∨ξ2)
+ = w∨κ×M(∨ξ1)

+, and for ∨κ of type 2Cr relative
to ∨ξ1 one obtains

w∨κ ×M(∨ξ1)
+ = s∨α ×

(

s∨β ×M(∨ξ1)
+
)

= M(∨ξ1)
+.

Therefore the third equation is equivalent to the first one.
The second equation is equivalent to ∨ξ2 being equal to ∨ξ ((80), [AAM, Proposition 4.9]).

Moreover, ∨κ is of type 2Ci relative to ∨ξ. The results [AV, Proposition 9.1 and Proposition 10.4]
indicate that

Tw∨κ
M (∨ξ1)

+
= (q2 − q − 1)M(∨ξ1)

+ + (q2 − q)M(∨ξ)+,

Tw∨κ
M (∨ξ)

+
= qM(∨ξ)+ + (q + 1)M(∨ξ1)

+.

Therefore, the right-hand side of (79) equals







q, if ∨ξ2 = ∨ξ1
−(q + 1), if ∨ξ2 = ∨ξ

0, otherwise.

In all cases we have equality with (81).
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4.4 Special bases and the proof of Theorem 3.5

In addition to theH(λ)-action onKΠ(∨O,GLN (C), ϑ), there is a Z-linear involutionD onKΠ(∨O,GLN (C), ϑ)
satisfying

D(q1/2M(ξ)+) = q−1/2D((ξ)+)

D((Tκ + 1)M(ξ)+) = q−l(wκ)(Tκ + 1)D(M(ξ)+)
(82)

for all ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ. This is the Verdier duality map ([LV, 4.8 (e)-(f)]). The Verdier

duality map is uniquely determined by the additional conditions given in [LV, 8.1 (a)].
The special basis we seek for KΠ(∨O,GLN (C), ϑ) is a basis of eigenvectors for D. It is defined

in terms of the twisted KLV-polynomials Pϑ(ξ′, ξ) ∈ Z[q1/2, q−1/2] defined in [LV, Section 0.1]. Its
definition and characteristics are summarized in following theorem.

Theorem 4.3 ([LV, Theorem 5.2]). For every ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ, define

Cϑ(ξ) =
∑

ξ′∈Ξ(∨O,∨RC/RGLΓ
N )ϑ

(−1)l
I(ξ)−lI (ξ′) Pϑ(ξ′, ξ) M(ξ′)+, (83)

an element in KΠ(∨O,GLN (C), ϑ). Then

1. D(Cϑ(ξ)) = q−l
I(ξ) Cϑ(ξ)

2. Pϑ(ξ, ξ) = 1

3. Pϑ(ξ′, ξ) = 0 if ξ′ � ξ

4. degPϑ(ξ′, ξ) ≤ (lI(ξ) − lI(ξ′)− 1)/2 if ξ′ ≤ ξ.

Conversely suppose {C(ξ′, ξ)} and {P (ξ′, ξ)} satisfy (83) and (1)-(4) above. Then P (ξ′, ξ) =
Pϑ(ξ′, ξ) and C(ξ′, ξ) = Cϑ(ξ′, ξ) for all ξ′, ξ ∈ Ξ(∨O, ∨RC/RGLΓ

N )ϑ.

The third property of this theorem uses a partial order on Ξ(∨O, ∨RC/RGLΓ
N )ϑ, the Bruhat

order, which is defined in [LV, Section 5.1] (cf. [ABV, (7.11)(f)]).
There is also a Verdier duality map ∨D for the module K∨Π(∨O,GLN (C), ϑ) which satisfies

obvious analogues of (82) and the additional conditions of [LV, 8.1 (a)]. Furthermore, there is an
obvious analogue Theorem 4.3 for the dual basis elements

Cϑ(∨ξ) =
∑

ξ′∈Ξ(∨O,∨RC/RGLΓ
N )ϑ

(−1)l
I(∨ξ)−lI(∨ξ′) ∨Pϑ( ∨ξ′, ∨ξ)M(∨ξ′)+.

According to [AAM, Proposition 4.14], by setting q = 1 in the polynomials of the basis elements,
one obtains

Cϑ(ξ)(1) = π(ξ)+ and Cϑ(∨ξ)(1) = π(∨ξ)+ (84)

for all ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ. It is immediate from Equation (84) and Lemma 4.1 that Theorem

3.5 is proved by the following theorem.

Theorem 4.4. Pairing (72) satisfies

〈Cϑ(ξ), Cϑ(∨ξ′)〉 = (−1)l
I
ϑ(ξ) q(l

I (ξ)+lI (∨ξ′))/2 δξ,ξ′ .

for all ξ, ξ′ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ.

Proof. The isomorphism (76) allows us to define unique elements Cϑ(ξ) ∈ KΠ(∨O,GLN (C), ϑ),
ξ ∈ Ξ(∨O, ∨RC/RGLΓ

N )ϑ, satisfying

〈Cϑ(ξ), Cϑ(∨ξ′)〉 = (−1)l
I
ϑ(ξ

′) q(l
I (ξ)+lI (∨ξ′))/2 δξ,ξ′ .

The proof amounts to showing that

Cϑ(ξ) = Cϑ(∨ξ), ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ
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and we may do so by showing that Cϑ(ξ) satisfies each of the four properties in Theorem 4.3. We
outline the proof of the the first property of Theorem 4.3, as it is the most involved. We leave the
reader to verify the remaining three properties by consulting [AAM, Section 4.7].

The first step is to prove that the two Verdier dualities are related by

〈D(M(ξ)),M(∨ξ′)〉 = 〈M(ξ), ∨D(M(∨ξ′))〉, ξ, ξ′ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ (85)

where
¯ : Z[q1/2, q−1/2]→ Z[q1/2, q−1/2]

is the unique automorphism sending q1/2 to q−1/2. To do this, one may define ∨D′ by

〈M(ξ), ∨D′(M(∨ξ′))〉 = 〈D(M(ξ)),M(∨ξ′)〉, ξ, ξ′ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ

and prove that ∨D′ = ∨D using the properties of (82) and [LV, 8.1 (a)] which characterize the
Verdier duality (cf. [V4, Lemma 13.4]). Proposition 4.2 plays a key role in proving the property

∨D′((Tκ + 1)M(∨ξ′)+) = q−l(wκ)(Tκ + 1) ∨D′(M(∨ξ′)+) (86)

of (82), so it seems fitting to supply the arguments for it. We are to prove that

〈M(ξ), ∨D′((Tκ + 1)M(∨ξ′)+)〉 = 〈M(ξ), q−l(wκ)(Tκ + 1) ∨D′(M(∨ξ′)+)〉

for all ξ, ξ′ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ. According to the definition of ∨D′, and Equation (78) of

Proposition 4.2, this is equivalent to

(−Tκ + ql(wκ))D(M(ξ)) = D
(

(−Tκ + ql(wκ))q−l(wκ)M(ξ)
)

.

Beginning with the right-hand side and following ([V4, Lemma 13.4]) with (82), we compute

−D
(

(Tκ + 1)q−l(wk)M(ξ)
)

+D
(

(ql(wκ) + 1)q−l(wκ)M(ξ)
)

= −q−l(wκ)(Tκ + 1)D(q−l(wκ)M(ξ)) + (1 + ql(wκ))D(M(ξ))

= −(Tκ + 1)D(M(ξ)) + (1 + ql(wκ))D(M(ξ))

= (−Tκ + ql(wκ))D(M(ξ)).

This proves (86). The remaining properties ensuring that ∨D′ = ∨D are also easily read from the
proof of [V4, Lemma 13.4].

We now take for granted Equation (85), and may prove that Cϑ(ξ) satisfies the first property
of Theorem 4.3 as follows.

〈DCϑ(ξ), Cϑ(∨ξ′)〉 = 〈Cϑ(ξ), ∨DCϑ(∨ξ′)〉

= ql
I (∨ξ′) 〈Cϑ(ξ), Cϑ(∨ξ′)〉

= (−1)l
I
ϑ(ξ)ql

I (∨ξ′)q−(lI(ξ)+lI (∨ξ′))/2δξ,ξ′

= 〈q−l
I (ξ) Cϑ(ξ), Cϑ(∨ξ′)〉.

Since the elements Cϑ(∨ξ′) form a basis we conclude that

DCϑ(ξ) = q−l
I(ξ) Cϑ(ξ)

and the first property of Theorem 4.3 is proved. As mentioned, the remaining properties of Theorem
4.3 follow easily from [AAM, Section 4.7].

5 Endoscopic lifting for complex general linear groups fol-

lowing Adams-Barbasch-Vogan

We proceed with a review of standard endoscopy and twisted endoscopy from the perspective of
[ABV], but restricted only to the particular case of the group RC/RGLN . A similar review was
made for GLN in [AAM, Section 5]. The present review contains nothing new and so we shall refer
to [AAM, Section 5] liberally. The background material for this section is found in [ABV, Section
26] and [CM, Section 5].
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5.1 Standard endoscopy

In this section we do not place any restrictions on the infinitesimal characters. In addition the
general framework applies to any connected real reductive group. For the purposes of motivation
we specialize to the group ∨RC/RGLΓ

N = (∨GLN ×
∨GLN ) ⋊ 〈∨δ0〉 as in Section 2.2. In the last

two sections, we shall apply the theory of endoscopy to unitary groups.
An endoscopic datum for ∨RC/RGLΓ

N is a pair

(s, ∨GΓ)

which satisfies

1. s ∈ ∨RC/RGLN is semisimple

2. ∨GΓ ⊂ ∨RC/RGLΓ
N is open in the centralizer of s in ∨RC/RGLΓ

N

3. ∨GΓ is an E-group for a group G ([ABV, Definition 4.6]).

This is a specialization of [ABV, Definition 26.15] to ∨RC/RGLΓ
N . The groups ∨G and G here are

isomorphic Levi subgroups. They are products of smaller general linear groups. Consequently,
∨G and ∨RC/RGLN share the maximal torus ∨H , which is two copies of the diagonal subgroup.
Similarly, G and RC/RGLN share the maximal torus H . We shall abusively denote by δq the strong
involution on both G and RC/RGLN which correspond to the quasisplit real forms. The group G
in this definition is called the endoscopic group. We do not require the concept of an E-group in
this section. From now on we assume that ∨GΓ = ∨G⋊ 〈∨δ0〉. In other words, ∨GΓ is an L-group
for G.

There is a notion of equivalence for endoscopic data, and using this equivalence we may assume
without loss of generality that s ∈ ∨H . We fix λ ∈ ∨h. Let ∨OG be the ∨G-orbit of λ and ∨O be
the ∨RC/RGLN -orbit of λ. The second property of the endoscopic datum above allows us to define
the inclusion

ǫ : ∨GΓ →֒ ∨RC/RGLΓ
N . (87)

This inclusion induces another map ([ABV, Corollary 6.21]), which we abusively also denote as

ǫ : X
(

∨OG,
∨GΓ

)

→ X
(

∨O, ∨RC/RGLΓ
N

)

. (88)

It is easily verified that the ∨G-action on X(∨OG,
∨GΓ) is compatibly carried under ǫ to the

∨RC/RGLN -action on X(∨O, ∨RC/RGLΓ
N ) ([ABV, (7.17)]). As a result, the map ǫ induces a map

from the orbits of the space X(∨OG,
∨GΓ) to the orbits of X(∨O, ∨RC/RGLΓ

N ).
The inverse image functor of ǫ on equivariant constructible sheaves induces a homomorphism

ǫ∗ : K(∨O, ∨RC/RGLΓ
N )→ K(∨OG,

∨GΓ)

([ABV, Proposition 7.18]). When ǫ∗ is combined with the pairings of Theorem 3.1, we obtain a
map

ǫ∗ : KCΠ(
∨OG, G/R)→ KCΠ(

∨O,GLN (C))

defined on ηG ∈ KCΠ(
∨OG, G/R) by

〈ǫ∗ηG, µ(ξ)〉 = 〈ηG, ǫ
∗µ(ξ)〉G , ξ ∈ Ξ(∨O, ∨RC/RGLΓ

N). (89)

Here, KC = C⊗ZK and we have placed a subscript G beside the pairing on the right to distinguish
it from the pairing for RC/RGLN on the left.

The endoscopic lifting map Lift0 is defined to be the restriction of ǫ∗ to the submodule

KCΠ(
∨OG, G(R, δq))

st ⊂ KCΠ(
∨OG, G/R)

of stable virtual characters of the quasisplit form G(R, δq). Since G(R, δq) is a product of complex
general linear groups, stability is not an issue and we have

KCΠ(
∨OG, G(R, δq))

st = KCΠ(
∨OG, G/R).
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This equality will not hold for twisted endoscopic groups in Section 5.2, and so it is better two
write the endoscopic lifting map as

Lift0 : KCΠ(
∨OG, G(R, δq))

st → KCΠ(
∨O,GLN (C)). (90)

According to [ABV, Lemma 18.11] and [MW, Corollary IV.2.8]), a basis forKCΠ(
∨OG, G(R, δq))st

is provided by the virtual characters

ηlocS1
(δq) =

∑

τS1

M(S1, τS1), (91)

where (S1, τS1) ∈ Ξ(∨OG,
∨GΓ) runs over those complete geometric parameters which correspond

to the strong involution δq under the local Langlands correspondence (30). As indicated at the
end of Section 2.2, the relevant component groups for complex general linear groups are trivial.
Therefore the representations τS1 are all trivial for G and (91) reduces to

ηlocS1
(δq) =M(S1, 1),

a single standard representation. The following proposition describes the image of ηlocS1
(δq) under

endoscopic lifting. Its proof follows from [AAM, Proposition 5.1] by replacing GLN with RC/RGLN .

Proposition 5.1 ([AAM, Proposition 5.1]). (a) Suppose S1 ⊂ X(∨OG,
∨GΓ) is a ∨G-orbit which

is carried to the ∨RC/RGLN -orbit S under ǫ. Then

Lift0
(

ηlocS1
(δq)

)

= ηlocS ,

or equivalently,
Lift0 (M(S1, 1)) =M(S, 1).

(b) The endoscopic lifting map Lift0 is equal to the parabolic induction functor ind
GLN (C)
G(R,δq)

on

KCΠ(
∨OG, G(R, δq))st.

It is much more difficult to compute the value of Lift0 on the stable virtual character ηmic
ψG

given
in (52). Let ψ = ǫ ◦ ψG. According to [ABV, Theorem 26.25]

Lift0
(

ηmic
ψG

)

=
∑

ξ∈Ξ(∨GLΓ
N ,

∨O)

(−1)d(Sξ)−d(Sψ) χmic
Sψ (P (ξ))π(ξ) = ηmic

ψ . (92)

Recall from (54) that the ABV-packets ΠABV
ψG

and ΠABV
ψ are defined from ηmic

ψG
and ηmic

ψ respectively.
We shall see in Section 6 that these ABV-packets are singletons.

5.2 Twisted endoscopy

Our aim in this section is to lay out the twisted versions of the concepts presented in the previous
section. We define twisted endoscopic data relevant to unitary groups, the twisted endoscopic
version of Lift0 (90), compute twisted variants of Lift0(η

loc
S ) for S ∈ X(∨OG,

∨GΓ), and compute
twisted variants of Lift0(η

mic
ψG

). We shall work under the assumption of (38) on the infinitesimal
characters. This assumption is made only to accommodate the definition of Atlas extensions.

An endoscopic datum for (∨RC/RGLΓ
N , ϑ) is a pair

(s, ∨GΓ)

which satisfies

1. s ∈ ∨RC/RGLN is ϑ-semisimple (see [KS, (2.1.3)])

2. ∨GΓ ⊂ ∨RC/RGLΓ
N is open in the fixed-point set of Int(s) ◦ ϑ in ∨RC/RGLΓ

N ⋊ 〈ϑ〉

3. ∨GΓ is an E-group for a group G ([ABV, Definition 4.6]).
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This is a special case of [CM, Definition 5.1] to ∨RC/RGLΓ
N . There is a notion of equivalence for

these endoscopic data ([CM, Definition 5.6], [KS, (2.1.5)-(2.1.6)]).
Let us take s = 1 in the endoscopic pair above. Then the fixed-point subgroup

(∨RC/RGLN )ϑ = {(g, J̃(g⊺)−1J̃−1) : g ∈ ∨GLN} ∼=
∨GLN

is a legitimate dual group for an endoscopic datum. Furthermore, by setting

∨GΓ = (∨RC/RGLN )ϑ ⋊ 〈∨δ0〉

with ∨δ0 as in (33) we see that ∨GΓ is isomorphic to the L-group of a quasisplit unitary group as
in (31). We have just shown that

(1, ∨GΓ) = (1, ∨GLΓ
N )

is an endoscopic datum for (∨RC/RGLΓ
N , ϑ) and that the corresponding endoscopic group is the

rank N quasisplit unitary group. This is the only endoscopic datum of interest to us here.
Unlike the previous section, we must distinguish between maximal tori in ∨RC/RGLN and

∨GΓ. We let ∨H be the diagonal maximal torus in ∨RC/RGLN , and ∨HG be a maximal torus in
∨G ∼= ∨GLN . The two tori are related by

∨HG = (∨H)ϑ.

We fix λ ∈ ∨hϑ. Let ∨OG be the ∨G-orbit of λ and ∨O be the ∨RC/RGLN -orbit of λ.
The ǫ maps of (87)-(88) have obvious analogues and are equally valid in the twisted setting.

The analogue of (87) is quite transparent as it takes the form

ǫ(g) = (g, J̃−1(g⊺)−1J̃−1), g ∈ ∨G

and carries the element ∨δ0 in (31) to the element ∨δ0 in (32).
The crucial point in the twisted setting is to include the action of ϑ into the objects pertinent

to endoscopy. In particular we must extend the sheaf theory of [ABV] for ∨RC/RGLN to the
disconnected group ∨RC/RGLN ⋊ 〈ϑ〉. This mimics the extension of the representation theory of
GLN (C) to the disconnected group GLN (C)⋊ 〈ϑ〉 in Section 2.4. Rather than viewing the sheaves
in C(∨O, ∨RC/RGLΓ

N ;ϑ) as ∨RC/RGLN -equivariant with compatible ϑ-action (Section 3.2), we view
them simply as (∨RC/RGLN ⋊ 〈ϑ〉)-equivariant sheaves and apply the theory of [ABV] which is
valid in this generality ([CM, Section 5.4]).

Let ξ = (S, 1) ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ and p ∈ S. Here, 1 is the trivial representation of the

trivial group (∨RC/RGLN )p/((
∨RC/RGLN )p)

0 with representation space V ∼= C as in (49). We
define 1+ on

(∨RC/RGLN )p/((
∨RC/RGLN )p)

0 × 〈ϑ〉

by
1+(ϑ) = ϑµ(ξ)+ = 1 (93)

In this way, 1+ defines the local system underlying the irreducible (∨RC/RGLN ⋊ 〈ϑ〉)-equivariant
constructible sheaf µ(ξ)+ (Lemma 3.4, [ABV, p. 83]).

In a similar, but completely vacuous, fashion we may include the trivial action of ϑ on µ(ξ1) ∈
C(∨OG,

∨G) with ξ1 = (S1, τ1) and p1 ∈ S1. In other words, we may regard µ(ξ1) as a (∨G× 〈ϑ〉)-
equivariant sheaf whose underlying local system is defined by a quasicharacter τ+1 on

∨Gp1/(
∨Gp1)

0 × 〈ϑ〉 (94)

by τ+1 (ϑ) = 1.
The inverse image functor

ǫ∗ : KX(∨O, ∨RC/RGLΓ
N , ϑ)→ KX(∨OG,

∨GΓ)

in the present twisted setting is defined on (∨RC/RGLN ⋊ 〈ϑ〉)-equivariant sheaves (Section 3.2).
As in standard endoscopy, we combine ǫ∗ with a pairing, namely the pairing of Theorem 3.5, to
define

ǫ∗ : KCΠ(
∨OG, G/R)→ KCΠ(

∨O,GLN (C), ϑ).
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To be precise, the image of any η ∈ KCΠ(
∨OG, G/R) under ǫ∗ is determined by

〈

ǫ∗η, µ(ξ)
+
〉

=
〈

η, ǫ∗µ(ξ)+
〉

G
, ξ ∈ Ξ(∨O, ∨RC/RGLΓ

N )ϑ. (95)

(cf. (89)). The twisted endoscopic lifting map

Lift0 : KCΠ(
∨OG, G(R, δq))

st → KCΠ(
∨O,GLN (C), ϑ) (96)

is the restriction of ǫ∗ to the stable submodule KCΠ(
∨OG, G(R, δq))st.

Now, we wish to evaluate Lift0 on the basis elements (91) ofKCΠ(
∨OG, G(R, δq))st. To maintain

ease of comparison with [ABV] we evaluate Lift0 on the virtual representations ηlocS1
(ϑ)(δq) ([ABV, p.

279]). These virtual characters are defined by

ηlocS1
(ϑ)(δq) =

∑

τ1

Tr(τ+1 (ϑ))M(S1, τ1) =
∑

τ1

M(S1, τ1),

where τ1 runs over all quasicharacters of ∨Gp1/(
∨Gp1)

0 as in (94) which correspond to the strong
involution δq ([ABV, Definition 18.9]) under (30). It is immediate from the definition of τ+1 following
(94) that

ηlocS1
(ϑ)(δq) = ηlocS1

(δq)

and so this virtual character is stable ([ABV, Lemma 18.10]). The proof of the following proposition
is the same as the proof of Proposition 5.3 [AAM] once GLN is replaced by RC/RGLN .

Proposition 5.2 (Proposition 5.3 [AAM]). Suppose S1 ⊂ X(∨OG,
∨GΓ) is a ∨G-orbit which is

carried to a ∨RC/RGLN -orbit S under ǫ. Then

Lift0
(

ηlocS1
(ϑ)(δq)

)

= (−1)l
I(S,1)−lIϑ(S,1)M(S, 1)+

Proposition 5.3. The twisted endoscopic lifting map Lift0 is injective.

Proof. Suppose S1, S2 ⊂ X(∨OG,
∨GΓ) are ∨G-orbits which are carried to the same ∨RC/RGLN -

orbit under ǫ. Then, after identifying these orbits with L-parameters ([ABV, Proposition 6.17]),
[GGP, Theorem 8.1] implies S1 = S2 (cf. [M3, Lemma 2.2.1]). It now follows from Proposition 5.2
that Lift0 sends the basis

{

ηlocSG(δq) : SG a ∨G-orbit of X(∨OG,
∨GΓ)

}

of KCΠ(
∨OG, G(R, δq))st bijectively onto the linearly independent subset

{

(−1)l
I(ǫ(SG),1)−lIϑ(ǫ(SG),1)M(ǫ(SG), 1)

+ : SG a ∨G-orbit of X(∨OG,
∨GΓ)

}

of KCΠ(
∨O,GLN (C), ϑ).

The next and final goal of this section is to provide the twisted analogue of the endoscopic
lifting of the virtual characters attached to A-parameters as in (92). As a guiding principle, it
helps to remember that in moving from ηlocS to ηlocS (ϑ)(δq) we extended the component groups by
〈ϑ〉 to obtain (94), and then extended the quasicharacters τ1 defined on the original component
groups. We shall follow the same process with ηmic

ψG
, doing our best to avoid the theory of microlocal

geometry.
The stable virtual character (52) for the endoscopic group G is

ηmic
ψG =

∑

ξ∈Ξ(∨OG,∨GΓ)

(−1)d(Sξ)−d(SψG) χmic
SψG

(P (ξ))π(ξ) ∈ KΠ(∨OG, G/R)
st.

Here, SψG ⊂ X(∨OG, G
Γ) is the ∨G-orbit determined by the L-parameter φψG , and ξ = (Sξ, τSξ).

We may rewrite ηmic
ψG

using the following deep theorem in microlocal analysis. It is a summary of
[ABV, Theorem 24.8, Corollary 24.9, Definition 24.15].
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Theorem 5.4. For each ξ ∈ Ξ(∨OG,
∨GΓ) there is a representation τmic

SψG
(P (ξ)) of ∨GψG/(

∨GψG)
0,

the component group of the centralizer in ∨G of the image of ψG, which satisfies the following
properties

(a) τmic
SψG

(P (ξ)) represents a (possibly zero) ∨G-equivariant local system Qmic(P (ξ)) of complex
vector spaces.

(b) The degree of τmic
SψG

(P (ξ)) is equal to χmic
SψG

(P (ξ)).

(c) If ξ = (SψG , τSψG ) then τ
mic
SψG

(P (ξ)) = τSψG ◦ iSψG , where

iSψG : ∨GψG/(
∨GψG)

0 → ∨Gp/(
∨Gp)

0

is a surjective homomorphism for p ∈ SψG .

By Theorem 5.4 (b), we may rewrite ηmic
ψG

as

ηmic
ψG =

∑

ξ∈Ξ(∨OG,∨GΓ)

(−1)d(Sξ)−d(SψG) Tr
(

τmic
SψG

(P (ξ))(1)
)

π(ξ). (97)

Next, we extend ∨GψG/(
∨GψG)

0 trivially to

∨GψG/(
∨GψG)

0 × 〈ϑ〉, (98)

and extend τmic
SψG

(P (ξ)) trivially to (98) by defining τmic
SψG

(P (ξ))(ϑ) to be the identity map. We

define

ηmic
ψG (ϑ) =

∑

ξ∈Ξ(∨OG,∨GΓ)

(−1)d(Sξ)−d(SψG) Tr
(

τmic
SψG

(P (ξ))(ϑ)
)

π(ξ)

=
∑

ξ∈Ξ(∨OG,∨GΓ)

(−1)d(Sξ)−d(SψG) dim
(

τmic
SψG

(P (ξ))
)

π(ξ).

Clearly
ηmic
ψG (ϑ) = ηmic

ψG . (99)

Finally, define

ηmic
ψG (ϑ)(δq) =

∑

(Sξ,τSξ )

(−1)d(Sξ)−d(SψG ) Tr
(

τmic
SψG

(P (ξ))(ϑ)
)

π(ξ)

=
∑

(Sξ,τSξ )

(−1)d(Sξ)−d(SψG ) dim
(

τmic
SψG

(P (ξ))
)

π(ξ)

in which the sum runs over only those ξ = (Sξ, τSξ) ∈ Ξ(∨OG,
∨GΓ) in which τSξ corresponds to

the strong involution δq under (30). Therefore, by (53)

ηmic
ψG (ϑ)(δq) = ηmic

SψG
(δq) = ηABV

SψG
.

The virtual character ηmic
ψG

(ϑ)(δq) is a summand of the stable virtual character ηmic
ψG

and is therefore

also stable ([ABV, Theorem 18.7]). Consequently, ηmic
ψG

(ϑ)(δq) lies in the domain of Lift0. In

addition, the ABV-packet ΠABV
ψG

consists of the irreducible characters in the support of ηmic
ψG

(ϑ)(δq)
(54).

What we have done for ηmic
ψG

we begin to do for ηmic+
ψ , which we define as

ηmic+
ψ =

∑

ξ∈Ξ(∨O,∨RC/RGLΓ
N )ϑ

(−1)d(Sξ)−d(Sψ) Tr(χmic
Sψ (P (ξ))) (−1)l

I (ξ)−lIϑ(ξ)π(ξ)+ (100)

for
ψ = ǫ ◦ ψG.
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The main difference now is that ϑ does not act trivially on ∨RC/RGLN and so the extensions require
more attention. The properties of Theorem 5.4 hold for ψ and RC/RGLN as they do for ψG and G.

The first step is writing

ηmic+
ψ =

∑

ξ∈Ξ(∨O,∨RC/RGLΓ
N )ϑ

(−1)d(Sξ)−d(Sψ) Tr(τmic
Sψ

(P (ξ))(1)) (−1)l
I (ξ)−lIϑ(ξ)π(ξ)+.

This holds from Theorem 5.4 (b) as (97) did for the endoscopic group G. What is simpler here is
that the component group (∨RC/RGLN )ψ/((

∨RC/RGLN )ψ)
0 is trivial ([A1, Section 2.3]). It follows

that τmic
Sψ

(P (ξ)) is either trivial or zero.

Let us digress briefly to examine Theorem 5.4 (c) for ξ = (Sψ , τSψ). Since the component group
(∨RC/RGLN )p/((

∨RC/RGLN )p)
0 is trivial, the representation τSψ is trivial. It follows that

τmic
Sψ (P (Sψ, τSψ)) = τSψ ◦ iSψ = 1 ◦ iSψ = 1 6= 0.

In particular, π(Sψ , 1) is in the support of ηmic
ψ and belongs to ΠABV

ψ . In the next section we will

prove that this is the only representation in ΠABV
ψ .

Returning to the matter of extensions, there is an obvious extension

(∨RC/RGLN )ψ/((
∨RC/RGLN )ψ)

0 × 〈ϑ〉

of the trivial component group, as ϑ fixes the image of ψ. We wish to extend the representation
τmic
Sψ

(P (ξ)) to this group for ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ. The action of ϑ on P (ξ) ∈ P(∨O, ∨RC/RGLΓ

N ;ϑ)

determines an action on the stalks of the local system Qmic(P (ξ)) as in (5.4) ([ABV, (25.1)]).
[ABV, Proposition 26.23 (b)] allows us to choose a stalk over a ϑ-fixed point p′ (related to Sψ)
in the topological space of Qmic(P (ξ)). This places us in the same setting as Lemma 3.4, with
τS replaced byτmic

Sψ
(P (ξ)) and S replaced by the ∨RC/RGLN -orbit of p′. As in that lemma, ϑ

determines a canonical isomorphism of the stalk at p′ equal to 1. In short, we define

τmic
Sψ

(P (ξ)+)(ϑ) = 1 (101)

and extend τmic
Sψ

(P (ξ)) to a representation τmic
Sψ

(P (ξ)+). The representation τmic
Sψ

(P (ξ)+) represents

the (∨RC/RGLN ⋊ 〈ϑ〉)-equivariant local system of the restriction of Qmic(P (ξ)) to the orbit of p′.
We may extend iSψ in Theorem 5.4 (c) to include the products with 〈ϑ〉. Definitions (93) and (101)
are compatible in that

τmic
Sψ

(P (Sψ, 1))
+) = 1+ ◦ iSψ .

Finally, we define

ηmic+
ψ (ϑ) =

∑

ξ∈Ξ(∨O,∨RC/RGLΓ
N )ϑ

(−1)d(Sξ)−d(Sψ) Tr(τmic
Sψ (P (ξ)+)(ϑ)) (−1)l

I (ξ)−lIϑ(ξ)π(ξ)+. (102)

It is clear from definition (100) that ηmic+
ψ (ϑ) = ηmic+

ψ .

The obvious definition of the representation τmic
Sψ

(P (ξ)−) is to take

τmic
Sψ (P (ξ)−)(ϑ) = −1.

With this definition in place the following proposition is a consequence of [ABV, Corollary 24.9].

Proposition 5.5. The functor τmic
Sψ

(·), from (∨RC/RGLN⋊〈ϑ〉)-equivariant perverse sheaves to rep-

resentations of
(

∨Gψ/(
∨Gψ)

0
)

×〈ϑ〉, induces a map from the Grothendieck groupK(X(∨O, ∨RC/RGLΓ
N );ϑ)

to the space of virtual representations. Furthermore the microlocal trace map

Tr
(

τmic
Sψ

(·)(ϑ)
)

induces a homomorphism from K(X(∨O, ∨RC/RGLΓ
N ), ϑ) (as in (57)) to C.
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A similar statement is true for τmic
SψG

and the (∨G×〈ϑ〉)-equivariant sheaves defined earlier. The

proof of the next theorem is identical to the proof of [AAM, Theorem 5.6].

Theorem 5.6. [AAM, Theorem 5.6]

(a) As a function on K(X(∨O, ∨RC/RGLΓ
N ), ϑ) we have

〈

ηmic+
ψ (ϑ), ·

〉

= (−1)d(Sψ) Tr
(

τmic
Sψ (·)(ϑ)

)

.

(b) The stable virtual character ηmic+
ψ (ϑ) is equal to

(−1)d(Sψ)
∑

ξ∈Ξ(∨O,∨RC/RGLΓ
N )ϑ

Tr
(

τmic
Sψ (µ(ξ)+)(ϑ)

)

(−1)l
I(ξ)−lIϑ(ξ)M(ξ)+.

(c) Lift0

(

ηmic
ψG

(ϑ)(δq)
)

= ηmic+
ψ (ϑ).

6 ABV-packets for complex general linear groups

In this section we prove that any ABV-packet for RC/RGL(R) = GLN (C) consists of a single
(equivalence class of an) irreducible representation. This implies that such an ABV-packet is equal
to its corresponding L-packet ([ABV, Theorem 22.7 (a)]). From the classification of the unitary
dual of GLN (C) we shall deduce that the single representation in the packet is unitary.

In this section we let
ψ :WR × SL2 →

∨RC/RGLΓ
N

be an arbitrary A-parameter for RC/RGLN . The description of the ABV-packet ΠABV
ψ will be

achieved in three steps. We follow the same proof as in [AAM, Section 6]. First, we treat the
case of an irreducible A-parameter. Second, we compute the ABV-packet for a Levi subgroup
of RC/RGLN , whose dual group contains the image of ψ minimally. The final result is obtained
from the second step by considering the Levi subgroup as an endoscopic group of RC/RGLN and
applying the endoscopic lifting (92).

According to [M3, Section 2.3], any A-parameter ψ for RC/RGLN may be decomposed as a
formal direct sum of A-parameters

ψ = ⊞
r
i=1ℓiψi, (103)

with ℓi ∈ N, ψi being an A-parameter of RC/RGLNi , and N =
∑r

i=1 ℓiNi. We may identify real
L-parameters of RC/RGLNi with their corresponding complex L-parameters of GLNi ([B, Section
I.5]). This correspondence extends in an evident way to an analogous identification between A-
parameters. The complex A-parameter of GLNi corresponding to each ψi is given by

µi ⊠ νNi ,

where νNi is the unique irreducible representation of SL2 of dimension Ni, and µi is an irreducible
representation C×.

The parameter ψ in (103) is said to be irreducible if r = 1 and ℓ1 = 1. For any irreducible
A-parameter ψ of RC/RGLN the corresponding representation νN of SL2 is irreducible and of
dimension N . As a consequence the image of any unipotent subgroup of SL2 under νN is principally
unipotent (i.e. regular and unipotent) in ∨GLN . Equivalently, the image of any unipotent subgroup
of SL2 under the real A-parameter ψ is principally unipotent in ∨GLN ×

∨GLN . [AR, Theorem
4.11 (d)] therefore implies the following result (cf. [ABV, Theorem 27.18]).

Proposition 6.1. Suppose ψ is an irreducible A-parameter of RC/RGLN . Then ΠABV
ψ consists of

a single unitary character.
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Let us proceed to the case of a general A-parameter ψ as in Equation (103). Define

∨G =

r
∏

i=1

(∨Gi)
ℓi ∼=

r
∏

i=1

(∨GLNi ×
∨GLNi)

ℓi (104)

to be the obvious Levi subgroup of ∨GLN ×
∨GLN containing the image of ψ minimally. Set

∨GΓ = ∨G ⋊ 〈∨δ0〉, a subgroup of ∨RC/RGLΓ
N . It is immediate that ψ factors through an A-

parameter

ψ :WR × SL2
ψG
−−→ ∨GΓ →֒ ∨RC/RGLΓ

N ,

where ψG = ×ri=1ℓiψGi and each ψGi is an irreducible A-parameter of ∨GΓ
i = ∨RC/RGLΓ

Ni . The
description of the ABV-packet corresponding to ψG is a straightforward consequence of Proposition
6.1. We must only remind ourselves that the direct product of (104) translates into a tensor product
of ABV-packets as it passes through the process defining the packets in Section 3.1. The proof
follows exactly as for Corollary 6.2 [AAM].

Corollary 6.2. The ABV-packet ΠABV
ψG

consists of a single irreducible unitary representation
π(SψG , 1).

Finally, take ∨G as in (104), and take s ∈ Z(∨G) ⊂ ∨GLN ×
∨GLN to be as regular as possible

so that its centralizer in ∨GLN ×
∨GLN is equal to ∨G. Then (s, ∨GΓ) is an endoscopic datum for

∨RC/RGLΓ
N (Section 5.1). According to (92), Corollary 6.2, and Proposition 5.1 we have

ηmic
ψ = Lift0

(

ηmic
ψG

)

= Lift0 (π(SψG , 1)) = ind
GLN (C)
G(R,δq)

π(SψG , 1).

Consequently, ΠABV
ψ consists of a single representation, and this representation is parabolically

induced from the single unitary representation of ΠABV
ψG

. Since parabolic induction for general
linear groups takes irreducible unitary representations to irreducible unitary representations ([T,
Proposition 2.1]), we have just proved

Proposition 6.3. Let ψ be an A-parameter for RC/RGLN as in (103). Then the ABV-packet
ΠABV
ψ consists of a single irreducible unitary representation π(Sψ, 1).

As a corollary, we have the next result. Its proof is the same as that of [AAM, Corollary 6.4].

Corollary 6.4. The stable virtual character ηmic+
ψ (ϑ) defined in (102) is equal to (−1)l

I(ξ)−lIϑ(ξ)π(ξ)+,
where ξ = (Sψ, 1). In particular,

Lift0
(

ηmic
ψG (ϑ)(δq)

)

= (−1)l
I(ξ)−lIϑ(ξ)π(ξ)+.

7 Whittaker extensions and their relationship to Atlas ex-

tensions

Recall that (45) defines a preferred extension to GLN (C)⋊ 〈ϑ〉 of any irreducible representation of
GLN (C). These are the extensions we have called “Atlas extensions”. Since GLN (C) is quasisplit as
a real group, there is another choice of preferred extension, which depends on a Whittaker datum.
This extension is introduced by Arthur ([A3, Section 2.2]) and followed by Mok ([M3, Section 3.2]).
We call this alternative extension the Whittaker extension.

Here is a summary of the definition of Whittaker extensions. We fix a unitary character χ on
the upper-triangular unipotent subgroup

U(R) ⊂ RC/RGLN (R) = GLN (C)

which satisfies χ ◦ ϑ = χ. In this manner (U, χ) is a ϑ-fixed Whittaker datum. We work under
the hypothesis of (38) on an infinitesimal character λ ∈ ∨h and set ∨O to be its ∨RC/RGLN -orbit.

Let ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ so that π(ξ) is (an infinitesimal equivalence class of) an irreducible
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representation of GLN (C). In defining Whittaker extensions we must work with an actual admis-
sible group representation in this equivalence class which we also denote by (π(ξ), V ). If π(ξ) is
tempered then up to a scalar there is a unique Whittaker functional ω : V → C satisfying

ω(π(ξ)(u)v) = χ(u)ω(v), u ∈ U(R), (105)

for all smooth vectors v ∈ V . It follows that there is a unique operator I∼ which intertwines
π(ξ) ◦ ϑ with π(ξ) and also satisfies ω ◦ I∼ = ω. We extend π(ξ) to a representation π(ξ)∼ of
GLN (C)⋊ 〈ϑ〉 by setting π(ξ)∼(ϑ) = I∼. We call this extension π(ξ)∼ the Whittaker extension of
π(ξ).

If π(ξ) is not tempered then we express it as the Langlands quotient of a representation M(ξ)
induced from an essentially tempered representation of a Levi subgroup. The ϑ-stability of π(ξ)
and the uniqueness statement in the Langlands classification together imply the ϑ-stability of the
essentially tempered representation. The earlier argument for tempered representations has an
obvious analogue for the essentially tempered representation of the Levi subgroup. We may argue
as above to extend the essentially tempered representation to the semi-direct product of the Levi
subgroup with 〈ϑ〉. One then induces this extended representation to GLN (C)⋊ 〈ϑ〉. The unique
irreducible quotient of this representation is the canonical extension of π(ξ), namely the Whittaker
extension π(ξ)∼ of π(ξ). If one omits the Langlands quotient in this argument then we obtain,
by definition, the Whittaker extension M(ξ)∼ of the standard representation M(ξ). A Whittaker
functional for the tempered representation of the Levi subgroup induces a Whittaker functional
for M(ξ) ([S2, Proposition 3.2]). It is a simple exercise to prove that M(ξ)∼(ϑ) is the unique
intertwining operator that fixes an induced Whittaker functional as in (105).

How does the Whittaker extension π(ξ)∼ differ from the Atlas extension π(ξ)+ of (45)? The
operators π(ξ)∼(ϑ) and π(ξ)+(ϑ) are involutive, and both intertwine π(ξ) ◦ϑ with π(ξ). Therefore
they are equal up to a sign, i.e.

π(ξ)∼(ϑ) = ± π(ξ)+(ϑ). (106)

A direct comparison of the two extensions is problematic in that the Whittaker extension is essen-
tially analytic in nature, and the Atlas extension is essentially algebraic.

Happily, there is a special type of parameter ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ for which the construc-

tion of the two extensions is directly comparable. To describe this type, we must examine the
construction of π(ξ) in (45) in more detail. In this construction we identify ξ with its equivalent
Atlas parameter (x, y) (Lemma 2.2), or its equivalent preferred extended parameter (44). Recall
that θx is an automorphism of H (58). To the parameter (x, y) one associates the irreducible
(h, Hθx ⋊ 〈ϑ〉)-module π+

0 of differential λ such that π+
0 (ϑ) = 1 ([AV, (20b), Lemma 5.1, Definition

5.6]). Then to the module π+
0 one applies the functor [AV, (20e)] to obtain π(ξ)+ = J(x, y, λ)+

(cf. [KV, (11.54b), (11.116b)]). The functor depends on θx. In the particular circumstance that
θx sends all positive roots (determined by the Borel subgroup B in the pinning of RC/RGLN ) to
negative roots, the Borel subalgebra b is real relative to θx and B is a real parabolic subgroup
([AvLTV, Proposition 13.12 (2)]). Moreover, in this circumstance, the functor is equivalent to the

(normalized) parabolic induction functor ind
GLN (C)⋊〈ϑ〉
B(R)⋊〈ϑ〉 ([KV, Proposition 11.47]), and so

M(ξ)+ = ind
GLN (C)⋊〈ϑ〉
B(R)⋊〈ϑ〉 π+

0 . (107)

The following lemma shows that the assumption of the ϑ-stability of the parameter ξ is not nec-
essary when θx sends all positive roots to negative roots, and asserts the equality of the Atlas and
Whittaker extensions.

Lemma 7.1. Suppose ξ = (x, y) ∈ Ξ(∨O, ∨RC/RGLΓ
N ) and θx sends all positive roots to negative

roots. Then

(a) M(ξ) and π(ξ) are ϑ-stable so that ξ = (x, y) ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ.

(b) The Whittaker and Atlas extensions of M(ξ) and π(ξ) are equal, i.e. M(ξ)∼ = M(ξ)+ and
π(ξ)∼ = π(ξ)+.
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Proof. The assertions for π(ξ) follow by definition from the assertions for M(ξ). For M(ξ) we
imitate the process described before the lemma and thereby obtain an irreducible (h, Hθx)-module
π0 of differential λ. In addition,

M(ξ) = ind
GLN (C)
B(R) π0.

As a representation of the connected Lie group H(R) ∼= (C×)N , π0 is completely determined by its
differential λ. Obviously, π0 ◦ ϑ has differential ϑ(λ) = λ (38). Consequently π0 ◦ ϑ = π0 and one
may verify that

M(ξ) ◦ ϑ ∼= ind
GLN (C)
ϑ(B(R)) (π0 ◦ ϑ) = ind

GLN (C)
B(R) π0 =M(ξ).

This proves (a).
For (b) we may return to (107) and note that, vacuously, π+

0 (ϑ) = 1 determines the Whittaker
extension of π0, i.e. π

+
0 = π∼

0 . Therefore, by definition, M(ξ)∼ is equal to (107). (The reader may
wonder in what sense (107) is “standard”. An explanation may be found in [KV, Theorem 11.129
(a)]).

Lemma 7.1 provides a simple solution for the comparison of Atlas and Whittaker extensions
of some special representations. As we shall soon see, an arbitrary irreducible representation
appears as a subquotient of one of these special standard representations. Remarkably, the twisted
multiplicity (64) with which this subquotient appears may be used to determine the sign in (106).

We begin this line of reasoning by recalling how irreducible generic representations appear in
the characters of standard representations. Recall that a representation is generic if it admits a
non-zero Whittaker functional as in (105).

Lemma 7.2. Suppose ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ. Then

(a) (up to infinitesimal equivalence) there is a unique irreducible generic representation π(ξ0) =
M(ξ0) which occurs in M(ξ) as a subquotient. Moreover π(ξ0) is ϑ-stable and occurs as a
subquotient with multiplicity one;

(b) (any representative in the class of) π(ξ0) embeds as a subrepresentation of (any representative
in the class of) M(ξ);

(c) (any representative in the class of) π(ξ0)
∼ embeds as a subrepresentation of (any represen-

tative in the class of) M(ξ)∼.

Proof. A result due to Vogan and Kostant states that every standard representationM(ξ) contains
a unique generic irreducible subquotient occurring with multiplicity one ([K2, Theorems E and L],
[V2, Corollary 6.7]). In the rest of the proof we write π(ξ0) for the actual generic representation
(not the equivalence class) for some ξ0 ∈ Ξ(∨O, ∨RC/RGLΓ

N ). It is straightforward to verify that
π(ξ0) ◦ ϑ satisfies (105), just as π(ξ0) does. Therefore π(ξ0) ◦ ϑ is the unique irreducible generic
subquotient ofM(ξ)◦ϑ ∼=M(ξ). By uniqueness, π(ξ0)◦ϑ ∼= π(ξ0) and so ξ0 ∈ Ξ(∨O, ∨RC/RGLΓ

N )ϑ.
The equality π(ξ0) =M(ξ0) follows from [V2, Theorem 6.2 (f)].

For part (b), assume that M(ξ) is an actual representation (not an equivalence class) with
infinitesimal character λ ∈ h satisfying the assumption of (38). As a standard representation, we
may write it as

M(ξ) = ind
GLN (C)
P (R) (πM ⊗ e

ν) .

Here, P is a standard real parabolic subgroup with Levi subgroupM ,M has Langlands decomposi-
tion M(R) =M1(R)A(R), πM is an irreducible tempered representation ofM1(R), and ν ∈ a∗ has
dominant real part. The Levi subgroupM(R) is a product of smaller complex general linear groups
([B, Section 5.2]). SinceM(R) is a direct product of complex general linear groups, [T, Proposition
2.1] allows us to write the tempered representation as a parabolically induced representation from
a discrete series representation on the unique standard cuspidal Levi subgroup H(R). By induction
in stages we may write

M(ξ) = ind
GLN (C)
B(R) (π0 ⊗ e

ν)

where we now regard ν as an element in the Lie algebra of the split component of H(R). The
differential of π0 ⊗ e

ν is λ. Since λ is integrally dominant and Re ν is dominant, M(ξ) satisfies
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the properties of [V2, Theorem 6.2 (e) (i)-(ii)]. From [V2, Theorem 6.2 (e)] we know that any
irreducible subrepresentation of M(ξ) is generic. By part (a), we conclude that M(ξ) has a unique
irreducible subrepresentation and this subrepresentation is equivalent to π(ξ0).

For part (c) we consider the standard representationM(ξ), which has a Whittaker functional ω
induced from πM above ([S1, Proposition 3.2]). The functional ω restricts to a non-zero Whittaker
functional on π(ξ0). It is simple to verify thatM(ξ)∼(ϑ) is the intertwining operator which satisfies
ω ◦M(ξ)∼(ϑ) = ω. Restricting this equation to the subrepresentation π(ξ0) yields in turn that

π(ξ0)
∼(ϑ) =M(ξ)∼(ϑ) |π(ξ0) and π(ξ0)

∼ →֒M(ξ)∼. (108)

Lemma 7.2 tells us that the multiplicity of π(ξ0)
∼ in M(ξ)∼ is one. On the other hand the

twisted multiplicity mϑ
r (ξ0, ξ) of (64) tells us about the “signed multiplicity” of π(ξ0)

+ in M(ξ)+.
We investigate mϑ

r (ξ0, ξ) further before comparing the two kinds of multiplicities.

Proposition 7.3. Suppose ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ and π(ξ0) is the generic subrepresentation of

M(ξ) (Lemma 7.2). Then

mϑ
r (ξ0, ξ) = (−1)l

I (ξ)−lIϑ(ξ)+l
I (ξ0)−l

I
ϑ(ξ0). (109)

Proof. It follows from the definition of the KLV-polynomials ([LV, Section 0.1]), (66) and [AMR2,
Proposition B.1] that

∨Pϑ( ∨ξ′, ∨ξ)(1) = (−1)d(ξ)−d(ξ
′) cϑg (ξ

′, ξ) = (−1)l
I (ξ)−lI(ξ′) cϑg (ξ

′, ξ).

(Note that the definition of P (ξ) in [LV] differs from ours by a shift in degree d(ξ) cf. [ABV,
(7.10)(d)].) According to Proposition 3.6 the above equation may be written as

∨Pϑ( ∨ξ′, ∨ξ)(1) = (−1)l
I(ξ)−lIϑ(ξ)+l

I (ξ0)−l
I
ϑ(ξ0)mϑ

r (ξ0, ξ)

Therefore the proposition is equivalent to proving

∨Pϑ( ∨ξ, ∨ξ0)(1) = 1.

This equation follows from [AAM, Proposition 4.17] once we establish that ∨ξ0 satisfies the stated
hypotheses. Indeed, the proof of [AAM, Proposition 4.17] depends on the group RC/RGLN only in
terms of the types of roots (75). The proof relies crucially on the absence of some nuisance types,
which fortunately do not appear in (75) either.

The hypotheses of [AAM, Proposition 4.17] refer to the block of ξ ([V4, Definition 1.14]). The
hypotheses of [AAM, Proposition 4.17] are satisfied if we can prove that ∨ξ0 is the unique maximal
parameter in the block of π(∨ξ) with respect to the (dual) Bruhat order. This is equivalent to estab-
lishing that ξ0 is the unique minimal parameter in the block of π(ξ) ([V4, Theorem 1.15]). We use
[ABV, Proposition 1.11] to convert the Bruhat order for the representations of GLN (C) into a clo-
sure relation between ∨RC/RGLN -orbits of X(∨O, ∨RC/RGLΓ

N ). Moreover, this proposition implies

that the minimality of ξ0 = (S0, 1) is equivalent to the ∨RC/RGLN -orbit S0 ⊂ X(∨O, ∨RC/RGLΓ
N )

being maximal. The uniqueness and maximality of this orbit follows from [ABV, p. 19].

Equation (108) gives us information about the multiplicity of the Whittaker extension of a
generic representation, and Equation (109) gives us information about the multiplicity of the Atlas
extension of a generic representation. In the next theorem we combine this information with
Lemma 7.1 to determine the sign between the two extensions of a generic representation. This
may then be leveraged to determine the sign between the two extensions of an arbitrary irreducible
representation.

Theorem 7.4. Suppose ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ. Then

M(ξ)∼(ϑ) = (−1)l
I(ξ)−lIϑ(ξ) M(ξ)+(ϑ)

and
π(ξ)∼(ϑ) = (−1)l

I (ξ)−lIϑ(ξ) π(ξ)+(ϑ).
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Proof. We first prove that there exists ξp = (xp, yp) ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ satisfying the hypoth-

esis of Lemma 7.1 such that π(ξp) lies in the block of π(ξ). Let (x, y) be the Atlas parameter
corresponding to ξ (Lemma 2.2) and θx be as in (58). A short exercise using (39) and (40) shows
that

θx = (w,w0w
−1w−1

0 )δ0

for some Weyl group element w for RC/RGLN , the long Weyl group element w0 for RC/RGLN ,
and δ0 as in (33). According to [V4, Theorem 8.8] there is a transitive action on the block of
π(ξ) given by cross actions (there are no Cayley transforms for RC/RGLN ). Cross actions are
recorded in the Atlas parameter (x, y) by conjugating both entries with an appropriate Weyl group
element ([AdC, (9.11)(f)]). By taking the cross action of (x, y) with respect to (w0w

−1, 1) ∈
W (RC/RGLN , H) we arrive at an Atlas parameter (xp, yp) such that

θxp = (w0, w0)δ0.

Evidently, θxp sends all positive roots to negative roots. Setting ξp = (xp, yp), we see that π(ξp) lies
in the block of π(ξ) and satisfies the hypothesis of Lemma 7.1. Consequently, M(ξp)

∼ =M(ξp)
+.

It is straightforward to show lI(ξp) = lIϑ(ξp) = 0. By (65) and (109)

M(ξp)
∼ = mϑ

r (ξ0, ξp)π(ξ0)
+ +

∑

ξ′ 6=ξ0

mϑ
r (ξ

′, ξp)π(ξ
′)+

= (−1)l
I(ξ0)−l

I
ϑ(ξ0) π(ξ0)

+ +
∑

ξ′ 6=ξ0

mϑ
r (ξ

′, ξp)π(ξ
′)+.

According to (108), with ξ = ξp, this equation implies

(−1)l
I(ξ0)−l

I
ϑ(ξ0)π(ξ0)

+(ϑ) = π(ξ0)
∼(ϑ). (110)

Thus, the theorem holds for ξ = ξ0.
It remains to prove that the theorem holds when ξ 6= ξ0. We compute, using (109) and (110),

that

M(ξ)+ =
∑

ξ′ 6=ξ0

mϑ
r (ξ

′, ξ)π(ξ′)+ +mϑ
r (ξ0, ξ)π(ξ0)

+

=
∑

ξ′ 6=ξ0

mϑ
r (ξ

′, ξ)π(ξ′)+ + (−1)l
I (ξ)−lIϑ(ξ)+l

I (ξ0)−l
I
ϑ(ξ0) π(ξ0)

+

=
∑

ξ′ 6=ξ0

mϑ
r (ξ

′, ξ)π(ξ′)+ + (−1)l
I (ξ)−lIϑ(ξ)π(ξ0)

∼.

This equation and Lemma 7.2 imply

(−1)l
I(ξ)−lIϑ(ξ)π(ξ0)

∼(ϑ) =M(ξ)+(ϑ) |π(ξ0) .

Combining this equation with (108), we see in turn that

(−1)l
I (ξ)−lIϑ(ξ)M(ξ)+(ϑ)|π(ξ0) = π(ξ0)

∼(ϑ) =M(ξ)∼(ϑ)|π(ξ0)

and (−1)l
I(ξ)−lIϑ(ξ)M(ξ)+(ϑ) =M(ξ)∼(ϑ). By taking Langlands quotients we obtain (−1)l

I(ξ)−lIϑ(ξ)π(ξ)+(ϑ) =
π(ξ)∼(ϑ).

Theorem 7.4 allows us to replace the Atlas extensions with signed Whittaker extensions in the
twisted pairing (62) and the endoscopic lifting (96). The results are recorded in the following two
corollaries. The proofs are obtained from the analogous corollaries indicated in [AAM].

Corollary 7.5. [AAM, Corollary 7.9] The pairing (62), defined by (63), satisfies

〈M(ξ)∼, µ(ξ′)+〉 = δξ,ξ′
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and
〈π(ξ)∼, P (ξ′)+〉 = (−1)d(ξ) δξ,ξ′

for ξ, ξ′ ∈ Ξ(O, ∨RC/RGLΓ
N )ϑ. Equivalently ( cf. Proposition 3.6),

m∼

r (ξ
′, ξ) = (−1)d(ξ)−d(ξ

′)cϑg (ξ, ξ
′), (111)

where m∼
r (ξ

′, ξ) is defined by the decomposition

M(ξ)∼ =
∑

ξ′∈Ξ(O,∨RC/RGLΓ
N )ϑ

m∼

r (ξ
′, ξ)π(ξ′)∼.

in KΠ(O,GLN (C), ϑ).

Corollary 7.6. [AAM, Corollary 7.10] Suppose that SG ⊂ X(OG,
∨GΓ) is a ∨G-orbit and let

ǫ(SG) ⊂ X(O, ∨RC/RGLΓ
N) be the ∨RC/RGLN -orbit of the image of SG under ǫ (88). Then

(a)
Lift0(η

loc
SG(σ)(δq)) =M(ǫ(SG), 1)

∼,

(b)

Lift0 = Trans
GLN (C)⋊ϑ
G(R)

on KCΠ(OG, G(R, δq))st.

8 The equality of ΠMok
ψG

and ΠABV
ψG

for regular infinitesimal

character

In this section we prove the equality of the stable virtual characters ηMok
ψG

and ηABV
ψG

under a
regularity condition on the infinitesimal character. We shall work using the framework of Section
5.2. In particular, ψG and ψ = ǫ ◦ ψG are A-parameters with respective infinitesimal characters
∨OG and ∨O. The assumption on the infinitesimal characters is that they are regular with respect
to RC/RGLN . This assumption shall be removed in the next section.

The definition of ηMok
ψG

was outlined in the introduction. Let us follow [M3] and provide a few
more details. All we need is contained in the following lemma, which is a version of Lemma 8.1
[AAM] for unitary groups.

Lemma 8.1. Let Sψ ⊂ X(∨O, ∨RC/RGLΓ
N ) be the ∨RC/RGLN -orbit corresponding to φψ ([ABV,

Proposition 6.17]).

(a) There exist integers nS such that

π(Sψ , 1)
∼ =

∑

(S,1)∈Ξ(∨O,∨RC/RGLΓ
N )ϑ

nSM(S, 1)∼ (112)

in KΠ(∨O,GLN (C), ϑ).

(b) For every S such that nS 6= 0 in (112) there exists a unique ∨G-orbit SG ⊂ X(∨OG,
∨GΓ)

which is carried to S under ǫ.

(c) Writing
S = ǫ(SG)

for the orbits in part (b), we have

π(Sψ , 1)
∼ = Trans

GLN (C)⋊ϑ
G(R)

(

∑

SG

nǫ(SG) η
loc
SG(δq)

)

= Lift0

(

∑

SG

nǫ(SG) η
loc
SG(δq)

)

.

(113)
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Proof. The proof follows almost exactly as for [AAM, Lemma 8.1]. The only difference is that the
existence of the orbit SG in part (b) is established in the proof of [M3, Proposition 8.2.1].

Let us recall that Mok defines ηMok
ψG

through the identity

π(Sψ , 1)
∼ = Trans

GLN (C)⋊ϑ
G(R)

(

ηMok
ψG

)

.

Since Trans
GLN (C)⋊ϑ
G(R) = Lift0 (7.6) and Lift0 is injective (Proposition 5.3), it follows by Equation

(113) that

ηMok
ψG =

∑

SG

nǫ(SG) η
loc
SG(δq) ∈ KCΠ(

∨OG, G(R, δq))
st (114)

(cf. [M3, Proposition 8.2.1]). By definition, the A-packet ΠMok
ψG

consists of those irreducible
representations in Π(∨OG, G(R, δq)) which occur with non-zero multiplicity when (114) is expressed
as a linear combination of irreducible representations.

Theorem 8.2. Let ψG be an A-parameter for G with regular infinitesimal character. Then

ηMok
ψG = ηmic

ψG (δq) = ηABV
ψG and ΠMok

ψG = ΠABV
ψG .

Proof. The proof is the same as that of [AAM, Theorem 8.2 (a)]. We repeat it here in the case of
unitary groups for the convenience of the reader. Let ξ = (Sψ, 1) as in Corollary 6.4.

Lift0 (η
mic
ψG (δq)) = Lift0 (η

mic
ψG (ϑ)(δq)) (by (99))

= (−1)l
I (ξ)−lIϑ(ξ)π(ξ)+ (Corollary 6.4)

= π(ξ)∼ (Theorem 7.4)

= π(Sψ , 1)
∼

= Trans
GLN (C)⋊ϑ
G(R)

(

∑

SG

nǫ(SG) η
loc
SG(δq)

)

(Lemma 8.1, (114))

= Lift0
(

ηMok
ψG

)

(Corollary 7.6(b)).

The equality of the stable virtual characters follows from the injectivity of Lift0 (Proposition 5.3).
The equality of packets follows immediately.

9 The equality of ΠMok
ψG

and ΠABV
ψG

for singular infinitesimal

character

To conclude our comparison of stable virtual characters, we retain the setup of the previous section,
but without the hypothesis of regularity on the infinitesimal character. In other words, the orbits
∨OG and ∨O are now allowed to be orbits of singular infinitesimal characters and the reader should
think of them as such. In order to prove ηMok

ψG
= ηABV

ψG
for singular λ ∈ ∨OG, we must extend the

pairing of Theorem 3.5 and extend the twisted endoscopic lifting (96) to include representations
with singular infinitesimal character. This was done in Section 9 of [AAM] through the use of
the Jantzen-Zuckerman translation principle, to which we refer from now on simply as translation.
The same arguments can be used to extend the results of the previous sections to singular repre-
sentations of GLN (C). For the convenience of the reader we are including it here again, adding
the needed modifications to the context of the current paper.

In essence, translation allows one to transfer results for regular infinitesimal character to results
for singular infinitesimal character. Applying this principle to the results of the previous section
will allow us to compare ΠψG with ΠABV

ψG
with no restriction on the infinitesimal character.

The translation principle begins with the existence of a regular orbit ∨O′ ⊂ ∨glN ×
∨glN

and a translation datum T from ∨O to ∨O′ ([ABV, Definition 8.6, Lemma 8.7]). As ∨O is the
∨RC/RGLN -orbit of λ ∈ ∨hϑ we may take ∨O′ to be the ∨RC/RGLN -orbit of

λ′ = λ+ λ1 ∈
∨h (115)
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where λ1 ∈ X∗(H) is regular and dominant with respect to the positive system ofR+(RC/RGLN , H).
We may and shall take λ1 to be the sum of the positive roots. In this way, each of λ, λ1 and λ′

are fixed by ϑ. The translation datum T induces a ∨RC/RGLN -equivariant morphism

fT : X(∨O′, ∨RC/RGLΓ
N )→ X(∨O, ∨RC/RGLΓ

N ) (116)

of geometric parameters ([ABV, Proposition 8.8]). The morphism has connected fibres of fixed
dimension, a fact we shall use when comparing orbit dimensions. The ∨RC/RGLN -equivariance
of (116) is tantamount to a coset map commuting with left-multiplication by ∨RC/RGLN ([ABV,
(6.10)(b)]). Since both λ and λ′ are fixed by ϑ, it is just as easy to see that the action of ϑ
commutes with the same coset map. We leave this exercise to the reader, taking for granted the
resulting ∨RC/RGLN -equivariance of (116).

According to [ABV, Proposition 7.15], the morphism fT induces an inclusion

f∗
T : Ξ(∨O, ∨RC/RGLΓ

N ) →֒ Ξ(∨O′, ∨RC/RGLΓ
N )

of complete geometric parameters. The ϑ-equivariance of (116) implies that this inclusion restricts
to an inclusion (denoted by the same symbol)

f∗
T : Ξ(∨O, ∨RC/RGLΓ

N )ϑ →֒ Ξ(∨O′, ∨RC/RGLΓ
N )ϑ.

The (Jantzen-Zuckerman) translation functor ([AvLTV, (17.8j)])

T λλ′ = T λλ+λ1

is an exact functor on a category of Harish-Chandra modules, which we shall often regard as a
homomorphism

T λλ+λ1
: KΠ(∨O′,GLN (C)⋊ 〈ϑ〉)→ KΠ(∨O,GLN(C)⋊ 〈ϑ〉) (117)

of Grothendieck groups. It is surjective ([AvLTV, Corollary 17.9.8]). This translation functor is
an extended version of the usual translation functor ([AvLTV, (16.8f)]), which we also denote by

T λλ+λ1
: KΠ(∨O′,GLN (C))→ KΠ(∨O,GLN (C)). (118)

Let us take a moment to make (117) more precise. The sum of the positive roots λ1 is the
infinitesimal character of a finite-dimensional representation of GLN (C). Therefore, λ1 is the
differential of a ϑ-fixed quasicharacter Λ1 of the real diagonal torus H(R), which matches the
weight of this finite-dimensional representation. The quasicharacter Λ1 may be extended to a
quasicharacter Λ+

1 of the semi-direct product H(R)⋊ 〈ϑ〉 by setting

Λ+
1 (ϑ) = 1.

We define translation in the extended setting of (117) using this representation of the extended
group. Since the extension is evident here we continue to write T λλ+λ1

instead of T λ
λ+Λ+

1

.

In the ordinary setting of (118) we have

π(ξ) = T λλ+λ1
(π(f∗

T (ξ))) ,

M(ξ) = T λλ+λ1
(M(f∗

T (ξ))) , ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )

([AvLTV, Corollary 16.9.4, 16.9.7 and 16.9.8], or [ABV, Theorem 16.4 and Proposition 16.6]). We
define the Atlas extensions of π(ξ) and M(ξ), with ξ ∈ Ξ(∨O, ∨RC/RGLΓ

N )ϑ, by

π(ξ)+ = T λλ+λ1
(π(f∗

T (ξ))
+)

M(ξ)+ = T λλ+λ1
(M(f∗

T (ξ))
+).

With the definition of Atlas extensions in place, the discussion of Section 2.5 is valid, and
we see that T λλ+λ1

factors to a homomorphism of KΠ(∨O,GLN (C), ϑ) (see (48)). We use the

same notation T λλ+λ1
to denote the functor of Harish-Chandra modules, and either of the earlier

homomorphisms. The reader will be reminded of the context when it is important.
The definition of a Whittaker extension does not depend on the regularity of the infinitesi-

mal character. The following proposition shows that translation sends Whittaker extensions to
Whittaker extensions.
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Proposition 9.1. Suppose ξ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ. Then (as Harish-Chandra modules)

T λλ+λ1
(M(f∗

T (ξ))
∼) =M(ξ)∼,

and
T λλ+λ1

(π(f∗
T (ξ))

∼) = π(ξ)∼.

Proof. The proof runs along the same lines as that of [AAM, Proposition 9.1]. The proof is even
simpler in the current context, since every ϑ-invariant irreducible representation of GLN (C) appears
as a subquotient of a principal series representation as given in Lemma 7.1.

Our translation datum T for RC/RGLN is defined by (115), in which both λ and λ′ are fixed by
ϑ. For this reason (115) also determines a translation datum TG from ∨G-orbits ∨OG to ∨O′

G for
the twisted endoscopic group G ([ABV, Definition 8.6 (e)]). Just as for RC/RGLN , we have maps

fTG : X(∨O′, ∨GΓ)→ X(∨O, ∨GΓ)

f∗
TG : Ξ(∨O, ∨GΓ) →֒ Ξ(∨O′, ∨GΓ)

and the translation functor T λλ+λ1
which satisfies

π(ξ) = T λλ+λ1

(

π(f∗
TG(ξ))

)

, ξ ∈ Ξ(∨OG,
∨GΓ)

([ABV, Proposition 16.6], [AvLTV, Section 16]).
The translation data T and TG allow us to transport properties of our pairings at regular in-

finitesimal character to the same properties for pairings at singular infinitesimal character. More
precisely, as explained at the end of [ABV, page 178], the translation datum TG applied to Propo-
sition 3.3 allows us to extend Theorem 3.1 to any infinitesimal character. In a similar fashion, the
translation datum T applied this time to Equation (111), allows us to transport Corollary 7.5 from
regular to singular infinitesimal character. These two procedures have the following result.

Proposition 9.2 ([AAM, Proposition 9.2]). Define the pairing

〈·, ·〉 : KΠ(∨O,GLN (C), ϑ) ×KX(∨O, ∨RC/RGLΓ
N , ϑ)→ Z (119)

by
〈M(ξ)∼, µ(ξ′)+〉 = δξ,ξ′ .

Then
〈π(ξ)∼, P (ξ′)+〉 = (−1)d(ξ) δξ,ξ′

where ξ, ξ′ ∈ Ξ(∨O, ∨RC/RGLΓ
N )ϑ.

Proposition 9.2 is the final version of the twisted pairing, and we use it to extend the definition
of endoscopic lifting Lift0 to include singular infinitesimal characters ((95), (96)). In fact, all of the
remaining results used in Section 8 easily carry over to the more general setting. In particular, using
the pairing (119) in the proof of Proposition 5.2, we see that for any ∨G-orbit SG ⊂ X(∨OG,

∨GΓ)
we still have

Lift0
(

ηlocSG(ϑ)(δq)
)

=M(ǫ(SG), 1)
∼.

Finally, since the injectivity of Lift0 still holds for singular infinitesimal character, the same argu-
ment used in the proof of Theorem 8.2 allows us to conclude

Theorem 9.3. Let ψG be an A-parameter for G. Then

ηMok
ψG = ηmic

ψG (δq) = ηABV
ψG and ΠMok

ψG = ΠABV
ψG .
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10 Some consequences for standard endoscopy

In this section we explore standard endoscopic lifting from an endoscopic group G′ of our quasisplit
unitary group G. Both [ABV] and [M3] provide formulae for this lifting, and it is not obvious why
the two types of formulae should be equal. Our goal is to show how Theorem 9.3 implies the
equality of the formulae, arguing as in [AAM, Section 10].

A brief review of the definition of G′ may be found in [ABV, Section 26]. The endoscopic group
G′ is defined to be a quasisplit form of a complex reductive group whose dual ∨G′ is the identity
component of the centralizer in ∨G of a semisimple element s ∈ ∨G (cf. Section 5). We further
assume that the element s centralizes the image of a fixed A-parameter ψG as in (1). There is a
natural embedding

ǫ′ : ∨(G′)Γ →֒ ∨GΓ (120)

(cf. [M3, (2.1.13)]), and an A-parameter ψG′ for G′ such that

ψG = ǫ′ ◦ ψG′

(cf. [A3, p. 36]). We write ΠψG for ΠMok
ψG

= ΠABV
ψG

. For any π ∈ ΠψG , we write τmic
ψG

(π) = τmic
SψG

(π)

for the representation of AψG = ∨GψG/(
∨GψG)

0 introduced in (5.4).

Let us first look at endoscopic lifting from the perspective of [ABV]. Let Lift
G(R)
G′(R) denote the

endoscopic lifting map from stable virtual characters of the quasisplit group G′(R) to the virtual
characters of G(R) = G(R, δq) as given in [ABV, Definition 26.18]. According to [ABV, Theorem
22.7 and Theorem 26.25] the stable virtual character ηABV

ψG′
of G′(R) satisfies

Lift
G(R)
G′(R)(η

ABV
ψG′

) =
∑

π∈ΠψG

(−1)d(π)−d(SψG) Tr
(

τmic
ψG (π)(s̄)

)

π. (121)

Here, d(SψG) is the dimension of the ∨G-orbit SψG , and s̄ is the coset of s in AψG .
The analogue of formula (121) from Mok’s perspective is [M3, (8.2.4)]. It describes the en-

doscopic lifting map Trans
G(R)
G′(R) defined by Shelstad ([S6]) on a stable virtual character ηMok

ψG′

([M3, Theorem 3.2.1]). With this notation Mok’s formula is

Trans
G(R)
G′(R)(η

Mok
ψG′

) =
∑

σ∈ΣψG

〈sψG s̄, σ〉σ. (122)

Here, ΣψG is a finite set of non-negative integral linear combinations

σ =
∑

π∈Πunit(G(R))

m(σ, π)π

of irreducible unitary characters of G(R). Furthermore, there is an injective map from ΣψG into
the set of those quasicharacters of AψG which are trivial on the centre of ∨G. The injection is
denoted by

σ 7→ 〈·, σ〉.

The element sψG is the image of

ψG

(

1,

[

−1 0
0 −1

])

in AψG .
If one takes s = 1 in (122) then one recovers G′ = G and the equation reduces to

ηMok
ψG =

∑

σ∈ΣψG

〈sψG , σ〉σ (123)

=
∑

σ∈ΣψG

〈sψG , σ〉
∑

π∈Πunit(G(R))

m(σ, π)π

=
∑

π∈ΠψG





∑

σ∈ΣψG

m(σ, π) 〈sψG , σ〉



 π.
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For each π ∈ ΠψG define

τψG(π) =
∑

σ∈ΣψG

m(σ, π) 〈·, σ〉,

which is apparently a finite sum of quasicharacters of AψG . Moeglin and Renard have proven that
τψG(π) is actually irreducible ([MR2, Theorem 1.3]). Therefore (123) becomes

ηMok
ψG =

∑

π∈ΠψG

τψG(π)(sψG)π,

and more generally (122) becomes

Trans
G(R)
G′(R)(η

Mok
ψG′

) =
∑

π∈ΠψG

τψG(π)(sψG s̄)π. (124)

Our goal is to show that the two equations, (124) and (121), are identical. In order to compare
the two equations, we must choose the element s ∈ ∨G defining the endoscopic group G′ carefully.
Recall that s lies in the centralizer of the image of ψG. We may suppose s̄ ∈ AψG is not trivial.
An explicit description of this centralizer is given in [M3, (2.4.13)] (following [GGP, Section 4]).
In consideration of this description, it is not difficult to choose for each, s̄ ∈ AψG , a diagonal
representative ṡ in the centralizer with eigenvalues ±1. The endoscopic group G′(ṡ) determined
by ṡ is a direct product G′

1(ṡ) × G′
2(ṡ) in which each of the two factors is a quasisplit unitary

group whose rank is less than G (cf. [R, Proposition 4.6.1]). The A-parameter ψG′(ṡ) decomposes
accordingly as a product ψG′

1(ṡ)
×ψG′

2(ṡ)
of A-parameters. Similarly, Mok’s stable virtual character

ηMok
ψG′(ṡ)

is defined as the tensor product ηMok
ψG′

1(ṡ)
⊗ηMok

ψG′

2(ṡ)
. For these choices of endoscopic data, (124)

reads as
Trans

G(R)
G′(R)(η

Mok
ψG′

1(ṡ)
⊗ ηMok

ψG′

2(ṡ)
) =

∑

π∈ΠψG

τψG(π)(sψG s̄)π. (125)

We now turn to rewriting the left-hand side of (125) so as to match it with the left-hand side of
(121). First, it is noted on [ABV, p. 289] that

Trans
G(R)
G′(R) = Lift

G(R)
G′(R). (126)

Second, using the arguments in the proof of Corollary 6.2, we see that

ηABV
ψG′(ṡ)

= ηABV
ψG′

1
(ṡ)
⊗ ηABV

ψG′

2
(ṡ)
.

Third, since G′
1(ṡ) and G

′
2(ṡ) are both quasisplit unitary groups, Theorem 9.3 tells us that

ηMok
ψG′

j
(ṡ)

= ηABV
ψG′

j
(ṡ)
, j = 1, 2. (127)

Taking these three observations together we conclude

Trans
G(R)
G′(R)

(

ηMok
ψG′(ṡ)

)

= Lift
G(R)
G′(R)

(

ηMok
ψG′

1
(ṡ)
⊗ ηMok

ψG′

2
(ṡ)

)

= Lift
G(R)
G′(R)

(

ηABV
ψG′

1(ṡ)
⊗ ηABV

ψG′

2(ṡ)

)

= Lift
G(R)
G′(R)

(

ηABV
ψG′(ṡ)

)

.

It is now immediate from (125) and (121) that

∑

π∈ΠψG

τψG(π)(sψG s̄)π =
∑

π∈ΠψG

(−1)d(π)−d(SψG) Tr
(

τABV
ψG (π)(s̄)

)

π

for any s̄ ∈ Aψ. By the linear independence of characters on G(R)

τψG(π)(sψG s̄) = (−1)d(π)−d(SψG) Tr
(

τABV
ψG (π)(s̄)

)
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for any s̄ ∈ Aψ . This may be regarded as an equality between virtual characters on Aψ. By
appealing to the linear independence of these characters we conclude that

τψG(π)(sψG) = (−1)d(π)−d(SψG)

and
τψG(π) = τABV

ψG (π).

In particular, τABV
ψG

(π) is irreducible. This completes our comparison of (121) and (124).

11 Pure inner forms

Fix a pure strong involution δ of GΓ as given in (23). As δ runs over the equivalence classes
of pure strong involutions, the real forms G(R, δ) run over all isomorphism classes of indefinite
unitary groups U(p, q), p + q = N ([A, Section 9]). Recall that δq is a pure strong involution.
We shall extend the results of Section 10 by replacing G(R) = G(R, δq) with any G(R, δ). The
virtual characters ηMok

ψG
for quasisplit unitary groups are replaced by virtual characters ηMR

ψG
, defined

and studied by Moeglin and Renard ([MR1], [MR2]). With these virtual characters in place the
arguments are more or less the same as in Section 10.

There is one additional wrinkle in the non-quasisplit setting, which is to prove that the en-
doscopic maps of Shelstad and [ABV] are equal. We were able to manage this in Section 10 by
using canonical transfer factors for quasisplit groups and citing an exercise on [ABV, p. 289] (cf.
(126)). For non-quasisplit groups we refer to methods of Kaletha and [AM]. Let us settle this
matter straightaway. We continue with the initial setup of Section 10, namely with an endoscopic
group G′ obtained from a semisimple element s ∈ ∨G, but temporarily without the assumption of
s being in the centralizer of ψG.

The first significant departure from the previous section arises in the nature of the spectral

transfer map Trans
G(R,δ)
G′(R) from stable virtual characters of the quasisplit group G′(R) to the virtual

characters of G(R, δ). If δ = δq so that G(R) = G(R, δ) is quasisplit, a Whittaker datum fixes

a set of constants, the transfer factors, which specify the map Trans
G(R)
G′(R) ([S4, Corollary 11.7]).

When G(R, δ) is not quasisplit, Shelstad does not provide canonical transfer factors, and as a result

Trans
G(R,δ)
G′(R) is defined only up to a non-zero constant. This ambiguity is rectified by Kaletha in [K1],

where canonical transfer factors for G(R, δ) are again defined relative to a fixed Whittaker datum.

This specifies the transfer map Trans
G(R,δ)
G′(R) on tempered L-packets and agrees with Trans

G(R)
G′(R) when

G(R, δ) is quasisplit ([K1, (5.11), Proposition 5.10]). The extension of Trans
G(R,δ)
G′(R) to the space of

stable virtual characters follows from the characterization of this space ([MW, Corollary IV.2.8]),
and an analytic continuation argument from the tempered setting (cf. Lemma 4.8 [AJ]). More

concretely, the map Trans
G(R,δ)
G′(R) is characterized by

Trans
G(R,δ)
G′(R)





∑

τS1

M(S1, τS1)



 = e(δ)
∑

τS

τS(s)M(S, τS) (128)

(cf. [K1, (5.9)]). On the left, Trans
G(R,δ)
G′(R) is evaluated on a stable virtual character (91) for (G′)Γ.

On the right, e(δ) = ±1 is the Kottwitz invariant of G(R, δ) ([ABV, Definition 15.8]), and the
∨G-orbit S ⊂ X(∨OG,

∨GΓ) is the one determined by the image of the ∨G′-orbit S1 under (120).
The sum on the right runs over certain characters τS of ∨Gp/(

∨Gp)
0, for fixed p ∈ S (see the

discussion following (29)). They are the characters which correspond to the pure strong involution
δ under [K1, (5.13), Corollary 5.4, Theorem 5.2]. It follows from [AM, Theorem 1.1] that this
correspondence between τS and δ coincides with the one given by (30) in [ABV]. (This is just
another way of saying that we are justified in denoting the standard representations on the right-
hand side of (128) by M(S, τS).)

47



Let Lift
G(R,δ)
G′(R) denote the endoscopic lifting map written as Lift0(δ) in [ABV, Definition 26.18].

By [ABV, Proposition 26.7],

Lift
G(R,δ)
G′(R)





∑

τS1

M(S1, τS1)



 = e(δ)
∑

τS

τS(s)M(S, τS),

where the terms are identical to those of (128). In consequence,

Trans
G(R,δ)
G′(R) = Lift

G(R,δ)
G′(R) . (129)

We now adopt all of the assumptions of Section 10, so that s ∈ ∨G is taken to centralize the
image of a fixed A-parameter ψG and s̄ is the coset of s in AψG . In [MR2] Moeglin and Renard
prove Arthur’s local conjectures for all pure inner forms of unitary groups (cf. [KMSW, Section
1.6.1]). Let us give a brief description of their solution to the conjectures.

For each s̄ ∈ AψG we choose a representative s ∈ ∨G and its endoscopic group G′ as in the
paragraph following Equation (124). Then there is an A-parameter ψG′ for G′ such that

ψG = ǫ′ ◦ ψG′ .

For each s̄ ∈ AψG , Moeglin and Renard define the virtual character ηMR
ψG

(s̄) of G(R, δ) by

e(δ) ηMR
ψG (s̄) = Trans

G(R,δ)
G′(R)

(

ηMok
ψG′

)

([MR1, Sections 1 and 2.1]). At first glance, the virtual character ηMR
ψG

(s̄) is a finite linear combi-
nation of irreducible representations with complex coefficients. In fact, the coefficients are integers
and the irreducible representations are unitary. More precisely, in [MR2, Theorem 5.3] the authors
define a finite set

ΠMR
ψG (G(R, δ))

of unitary representations, together with a mapping

π 7−→ τψG(π),

from ΠMR
ψG

(G(R, δ)) to the group of irreducible representations of AψG , such that

ηMR
ψG (s̄) =

∑

π∈ΠMR
ψG

(G(R,δ))

τψG(π)(sψG s̄)π, s̄ ∈ AψG .

In particular, for s = 1, G′(R) = G(R, δq) and

e(δ) ηMR
ψG (1) = Trans

G(R,δ)
G(R,δq)

(

ηMok
ψG

)

.

This virtual character is stable since Trans
G(R,δ)
G(R,δq)

carries stable virtual characters to stable virtual

characters (cf. (128) with s = 1). The set ΠMR
ψG

(G(R, δ)) is the Arthur packet attached to the

stable virtual character ηMR
ψG

= ηMR
ψG

(1).
We would like to compare these constructions of Moeglin and Renard with their analogues in

[ABV, Theorem 22.7 and Definition 26.8]. For this we return to the discussion preceding (121)
and specialize to the real form G(R, δ). The analogous Arthur packet ΠABV

ψG
(G(R, δ)) was defined

in (56). We use the representations τmic
ψG

(π) given in (5.4) to define

ηABV
ψG (δ)(s̄) =

∑

π∈ΠABV
ψG

(G(R,δ))

e(δ) (−1)d(π)−d(SψG) Tr
(

τmic
ψG (π)(s̄)

)

π (130)

([ABV, p. 281]). In particular, ηABV
ψG

(δ)(1) is the stable virtual character ηABV
ψG

(δ) defined in (55).

48



Theorem 11.1. Let ψG be an A-parameter for G. Then for any pure inner form G(R, δ) we have

e(δ) ηMR
ψG (s̄) = ηABV

ψG (δ)(s̄), s̄ ∈ AψG .

In particular,
ΠMR
ψG (G(R, δ)) = ΠABV

ψG (G(R, δ)), τψG(π) = τABV
ψG (π)

and
τψG(π)(sψG) = (−1)d(π)−d(SψG).

Proof. For any s̄ ∈ AψG , we have

e(δ) ηMR
ψG (s̄) = Trans

G(R,δ)
G′ (ηMok

ψG′
)

= Lift
G(R,δ)
G′(R) (η

Mok
ψG′

) (Equation (129))

= Lift
G(R,δ)
G′(R) (η

ABV
ψG′

) (Theorem 9.3 and Equation (127))

= ηABV
ψG (δ)(s̄) ([ABV, Theorem 26.25]).

The equality of packets follows immediately after taking s = 1. The remaining equalities follow
the argument used at the end of Section 10.
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tations of real reductive groups, Astérisque 417 (2020), viii + 188. MR4146144
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