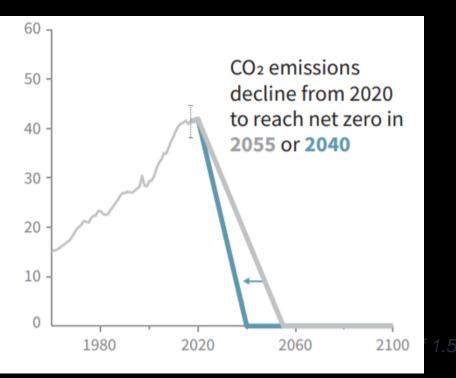
EVs, Renewables and Islands

Yannick Perez


CentraleSupélec – University Paris-Saclay

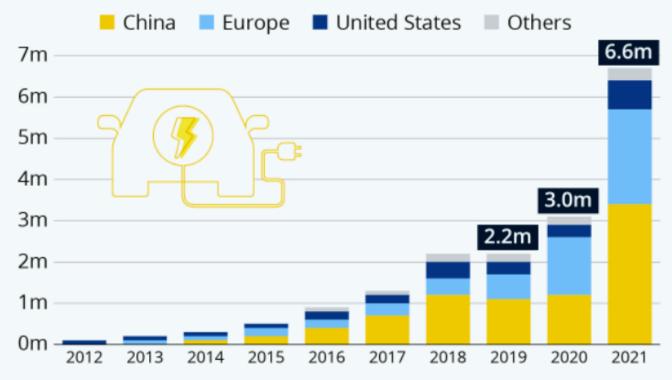
Yannick.perez@centralesupelec.fr

The need for decarbonization

- The need for electric vehicles
- Carbon neutrality needed by 2050 to limit global warming by

1,5°C*Stylized pathway of global CO2 emissions compatible with 1,5°C scenario

[NOM DE CATÉGORIE **[VALEUF INOM DE [NOM DE** CATÉGORIE] CATÉGORIE] [VALEUR] [VALEUR] Transport [VALEUR] **INOM DE** CATÉGORIE **INOM DE** I Wavigation CATÉGORIE **IVALEUR** [VALEUR]


GHG emissions in EU-28, 2019

Own elaboration, data from Eurostat, EEA

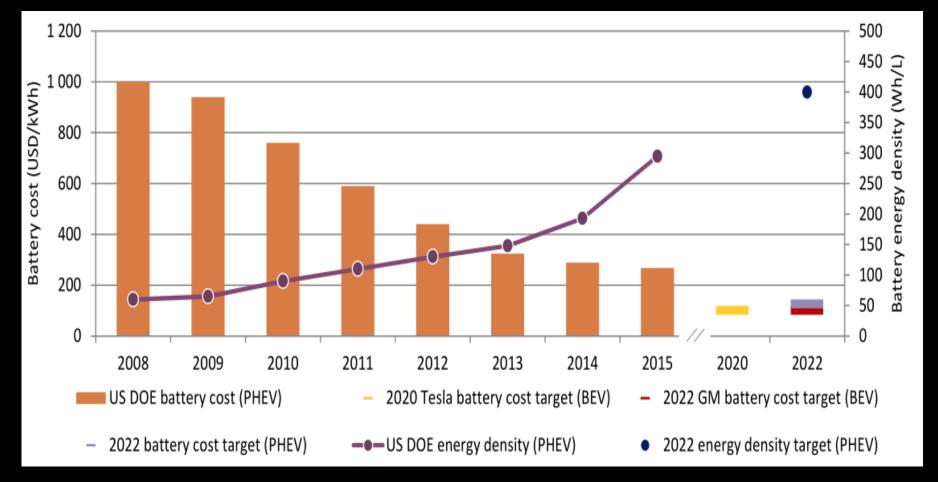
EV sales are starting

Global Electric Car Sales Doubled in 2021

Global registrations of electric vehicles (incl. plug-in hybrids), by region*

* incl. passenger cars and light commercial vehicles (vans, light trucks) Source: EV-volumes.com via IEA

Why the sales are booming

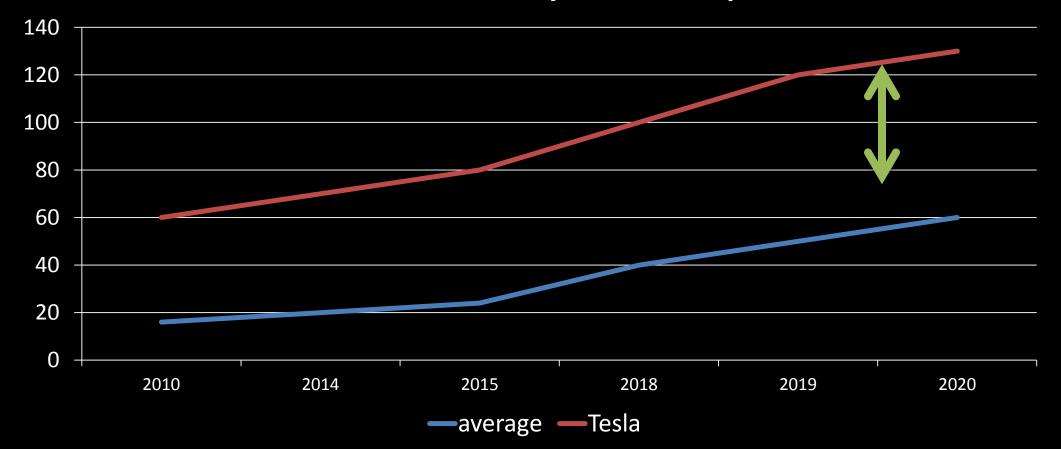

1. Cost of the battery is going down

2. Industrial strategies of car manufacturers

3. Charging infrastructures are the week point

4. Innovations are about to come

1. Evs enjoy a Double dynamic: Increase in ENERGY DENSITY & decrease of COST



Source: IEA Global EV Outlook 2016

2. Industrial strategies of car manufacturers

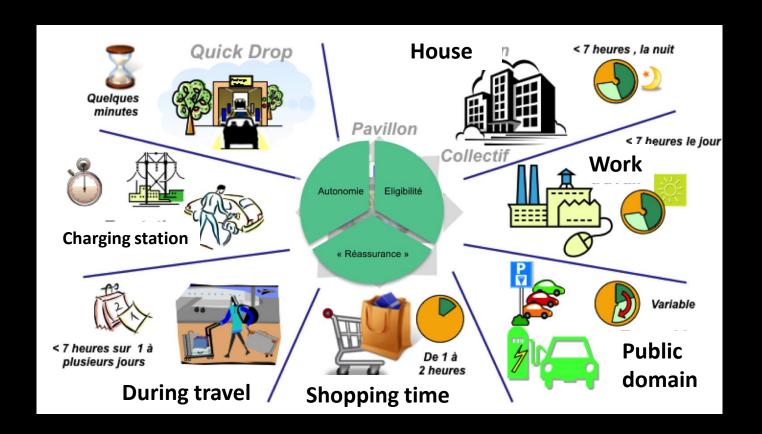
Less cost => more stored energy / car

Evolution of the battery size in kWh per car

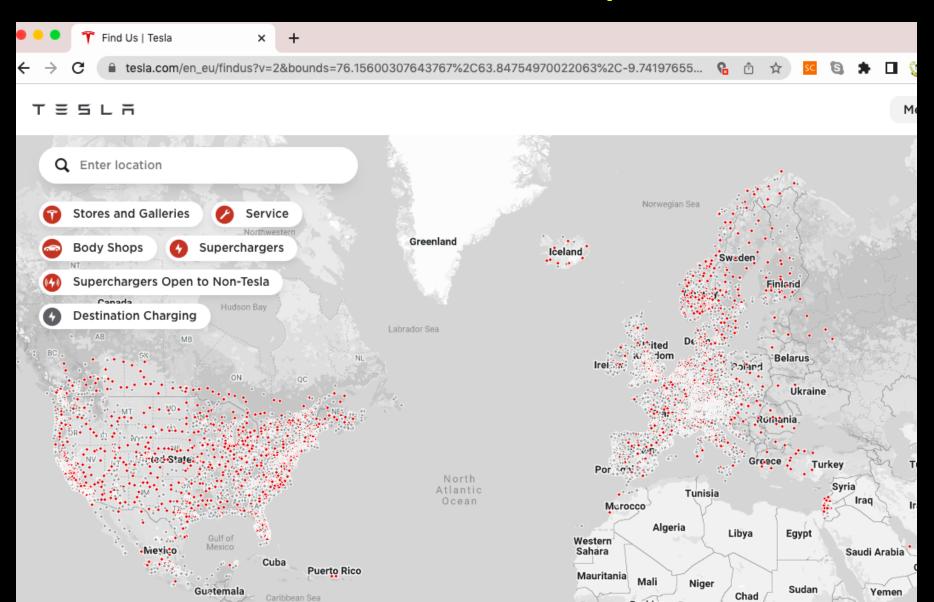
More « good cars » offers

World Plugin Vehicle Sales – Top Brands (January–December 2021)

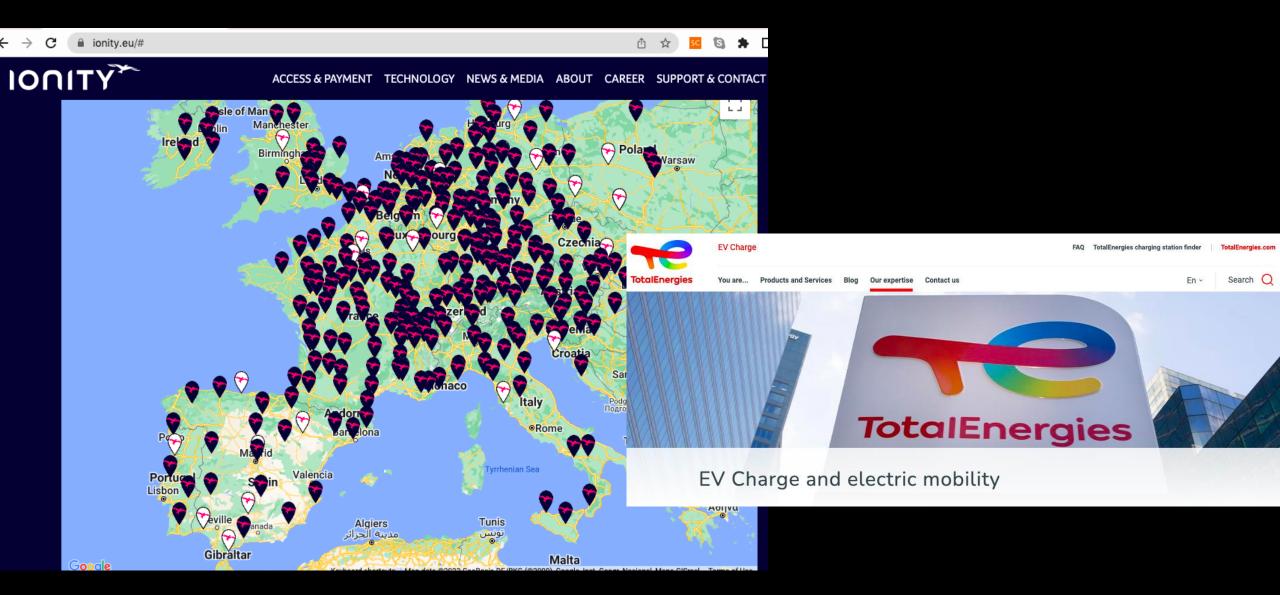
Brands with most plugin electric vehicle sales across world, data aggregated by Jose Pontes of EV Volumes for CleanTechnica.com.


Tesla	936,172			
BYD	593,878			
SGMW	456,123			
Volkswagen	319,735			
BMW	276,037			
Mercedes	228,144			
SAIC	226,963			
Volvo	189,115			
Audi	171,371	⊗ Clea∩	lechnica	
Hyundai	159,343			
Kia	158,134			
Great Wall	137,366			
Renault	136,750			

Real good cars


3. « Range of charging anxiety »?

Minimum charging infrastructures allows to start equipment



7 logical options to charge but 95% of the charging is made at home but a lot seems to be needed elsewhere to secure the EV buyer

The leader is private

The followers

And Public Investments are also displayed

But

European Court of Auditors -> Publications -> Special Report 05/2021: Infrastructure for charging electric cars is too sparse in the EU

Special Report

Infrastructure for charging electric vehicles: more charging stations but uneven deployment makes travel across the EU complicated

About the report:

The objective of our audit was to determine the effectiveness of the Commission's support for the deployment of an EU-wide publicly accessible infrastructure for charging electric vehicles.

We found that despite successes such as in promoting a common EU plug standard, and improving access to different charging networks, obstacles to travel across the EU in electric vehicles remain. The availability of charging stations varies between countries, payment systems are not harmonised with minimum requirements and there is inadequate information for users. In the absence of a comprehensive infrastructure gap analysis, the Commission has been unable to ensure that EU funding goes where it is most needed. The EU is still a long way off its Green Deal target of 1 million charging points by 2025, and it lacks an overall strategic roadmap for electro-mobility.

We made a number of recommendations to the European Commission to help improve the deployment of publicly accessible charging infrastructure across the EU.

ECA special report pursuant to Article 287(4), second subparagraph, TFEU.

Example of Tenerife

4. Evs as Innovations

Electric cars Store more energy than they daily use

- Size of the battery goes from 24 to 100 kWh
- EV consumes 15-20 kWh per 100 km
- EU- USA Mean Drivers Daily trips/day is between 24 km -40 km

Electric cars store more energy than they daily use

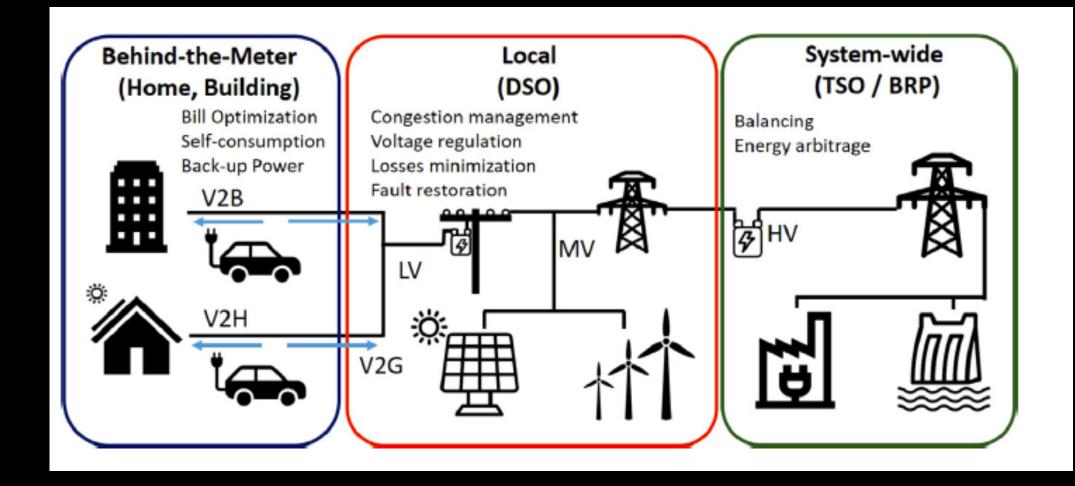
- Size of the battery goes from 24 to 100 kWh
- EV consumes 15-20 kWh per 100 km
- Mean Drivers Daily trips/day is between 24 km -40 km

 –EVs are very flexible resources (to store or deliver electricity) if needed = Distributed Storage Services (DSS)

What is flexibility from EVs?

• Ability to adapt the (dis)charging pattern of the EV

Many uses, for different stakeholders:


- For end-users: optimizing electricity bill, self-consumption
- For the whole system: frequency response, energy arbitrage
- For distribution systems: congestion management, voltage regulation, fault-restoration, investment deferral

Electric cars save more energy than they daily use

- Size of the battery goes from 24 to 100 kWh
- EV consumes 15-20 kWh per 100 km
- Mean Drivers Daily trips/day is between 24 km -40 km
 - –EVs are very flexible resources (to store or deliver electricity) if needed = Distributed Storage Services (DSS)
 - –Arbitrage between private use (house-building) or other flexibility buyers of DSS (Energy markets / grids)

Who need flexible electricity storage? Who would buy flexibility provision?

Where are connected the Evs?

3 main sources

And Up to 16 services... and more to come

A	Wholesale	Demand Response– Wholesale	 Manages high wholesale price or emergency conditions on the grid by calling on users to reduce or shift electricity demand
		Energy Arbitrage	 Allows storage of inexpensive electricity to sell at a higher price later (includes only wholesale electricity purchase)
		Frequency Regulation	 Provides immediate (4-second) power to maintain generation- load balance and prevent frequency fluctuations
		Resource Adequacy	 Provides capacity to meet generation requirements at peak loading in a region with limited generation and/or transmission capacity
		Spinning/ Non-Spinning Reserves	 Maintains electricity output during unexpected contingency event (e.g., an outage) immediately (spinning reserve) or within a short period (non-spinning reserve)
в	Utility	Distribution Deferral	 Provide extra capacity to meet projected load growth for the purpose of delaying, reducing or avoiding distribution system investment in a region
		Transmission Deferral	 Provide extra capacity to meet projected load growth for the purpose of delaying, reducing or avoiding transmission system investment
		Demand Response– Utility	 Manages high wholesale price or emergency conditions on the grid by calling on users to reduce or shift electricity demand
C	Customer	Bill Management	 Allows reduction of demand charge using battery discharge and the daily storage of electricity for use when time of use rates are highest
		Backup Power	 Supplies power reserve for use by Residential and Commercial users when the grid is down

Conclusions

- We need to work on many issues and many different directions
 - Cars technologies need to be improved in many ways
 - Infrastructures need to by displayed at the right place, with the good power level for the needed use, in a timely manner...
 - Governments need to accommodate EV innovations in power system, and mobility systems...
 - Academics must provide models and analytical tools to help this ecosystem to perform better in every dimensions and directions
 - Citizens should move forward and invest in EU-PV combo...