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Abstract7

Experimental data is often given as bit vectors, with vectors corresponding to observations, and8

coordinates to attributes, with a bit being true if the corresponding attribute was observed.9

Observations are usually grouped, e.g. into positive and negative samples. Among the essential10

tasks on such data, we have compression, the construction of classifiers for assigning new data, and11

information extraction.12

Our system, MCP, approaches these tasks by propositional logic. For each group of observations,13

MCP constructs a (usually small) conjunctive formula that is true for the observations of the14

group, and false for the others. Depending on the settings, the formula consists of Horn, dual-Horn,15

bijunctive or general clauses. To reduce its size, only relevant subsets of the attributes are considered.16

The formula is a (lossy) representation of the original data and generalizes the observations, as it is17

usually satisfied by more bit vectors than just the observations. It thus may serve as a classifier for18

new data. Moreover, (dual-)Horn clauses, when read as if-then rules, make dependencies between19

attributes explicit. They can be regarded as an explanation for classification decisions.20
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1 Introduction and Related Work25

Since several years, computer science applications are challenged by large quantities of data,26

commonly referred to as Big Data, that needs to be interpreted, captured, treated, and27

transformed. There exist several approaches to cope with this challenge, mainly from the28

field of Artificial Intelligence. One of these approaches is the Logical Analysis of Data. This29

document presents a tool called MCP, performing logical analysis of big data, producing a30

propositional formula. The basic idea behind this tool programmed in C++ is to describe a31

very large data set by a propositional formula.32

Logical Analysis of Data is a part of Machine Learning, which has been developed by33

Hammer and his colleagues [5, 10]. There also exists another approach through mechanized34

hypothesis formation, the GUHA Project developed in Prague by Hájek and his colleagues [13,35

15].36

2 Preliminaries37

We recall the main structures of Boolean algebra. A literal is either a variable, called positive38

literal, or its negation, called negative literal. A clause is a disjunction of literals. A formula39

in conjunctive normal form is a conjunction of clauses. A Horn clause is a clause with at40

most one positive literal. A dual Horn clause is a clause with at most one negative literal. A41

bijunctive clause is a clause consisting of at most two literals. An affine clause is a linear42

equation of the form x1 + · · · + xk = b, where xi are variables, + is the exclusive-or operator,43
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and b ∈ {0, 1} is a Boolean value. A Horn, dual Horn, bijunctive, or affine formula is a44

conjunction of only Horn, dual Horn, bijunctive, or affine clauses, respectively.45

We will work with vectors, also called tuples, of finite arity over a domain D. This domain46

is either Boolean, i.e., D = {0, 1}, or finite, i.e., |D| = n for some natural number n ≥ 2.47

Vectors (a1, . . . , ak) of arity k will be shortened to a1 · · · ak when the elements ai are clear.48

Let a = a1 · · · ak, b = b1 · · · bk, and c = c1 · · · ck be Boolean vectors of the same arity k.49

There exist different closures of these Boolean vectors.50

Horn closure of a and b is the vector d = d1 · · · dk, such that di = ai ∧ bi;51

Dual Horn closure of a and b is the vector d = d1 · · · dk, such that di = ai ∨ bi;52

Bijunctive closure of a, b, and c is the vector d = d1 · · · dk, such that ci = maj(ai, bi, ci),53

where maj is the associative-commutative majority operator;54

Affine closure of a, b, and c is the vector d = d1 · · · dk, such that di = ai + bi + ci,where +55

is the exclusive-or operator in the Boolean ring Z2;56

all for each i = 1, . . . , k. Given a set of Boolean vectors S of arity k, we denote by ⟨S⟩C57

the C-closure of S for C being Horn, dual Horn, bijunctive, or affine. A basic result from58

universal algebra states that for an arbitrary set of Boolean vectors S of the same arity k,59

the C-closure is the set of satisfying assignments for some C-formula φ [3, 4].60

3 Running Example: Mushrooms61

To illustrate the MCP system, we will use the Mushroom Data Set from the UCI Machine62

Learning Repository as a running example.1 It contains 8124 records with 22 attributes each.63

Each record describes an instance of one of 23 species of mushrooms, categorized as edible or64

poisonous. Among the attributes we find e.g. cap-shape, odor or habitat. Each attribute may65

take a value from a finite set. The odor, for instance, may be one of almond, fishy, foul and66

six further odors. A record looks like67

edible,convex,smooth,white,yes,almond,...,purple,several,woods68

where the first field specifies the category and the subsequent ones the values of the 2269

attributes in a fixed order; e.g., the sixth field specifies the odor as almond.70

To process data like the mushrooms with the MCP system, it needs to be binarized. MCP71

offers a utility, mcp-trans, for transforming the data. The particular encoding has to be72

specified in a file that describes the mapping for every attribute and value. To ease the73

burden on the user, the utility mcp-guess takes the original data and generates a draft of74

this specification. So the typical workflow consists of first running mcp-guess, then checking75

and manually adjusting the generated specification, then running mcp-trans on the data,76

and finally feeding its binary output to the core tools of the MCP system. The next section77

takes a closer look at the functionality of the MCP core, while the utility programs are78

discussed in the subsequent section.79

4 Core of the MCP System80

MCP consists of several modules. The core modules generate a propositional formula from81

given sets of binary tuples, according to the following specification.82

1 https://archive.ics.uci.edu/ml/datasets/mushroom

https://archive.ics.uci.edu/ml/datasets/mushroom
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▶ Problem (MCP Problem). Given two sets of Boolean vectors (tuples) of arity k over the83

Boolean domain D = {0, 1}k, representing positive samples T ⊆ D and negative samples84

F ⊆ D, compute a Horn, dual Horn, bijunctive, or general CNF formula φ, respectively,85

such that (1) T |= φ and (2) for each f ∈ F , f ̸|= φ.86

There are several reasons why we focus on the aforementioned four subclasses of87

propositional formulas. Horn, dual Horn, bijunctive, and affine formulas are the four88

families of Boolean formulas, whose satisfiability problem can be decided in polynomial89

time. Moreover, Horn formulas are the foundation of logic-oriented programming, with Horn90

clauses being naturally interpreted as rules.91

▶ Example. Suppose we aim for a formula that characterizes the edible mushrooms in our92

running example. Then the records categorized as edible become the basis for the positive93

samples, T , and the records labeled as poisonous result in the negative samples, F . Since the94

attributes of the example are mostly non-binary, the dimension of the tuples will not equal95

the number of attributes 22, but will be larger and will depend on the chosen transformation.96

The one described later results in 111 Boolean attributes.97

4.1 Strategies for Computing the Closure98

An instance of the MCP problem is not solvable if some tuple occurs in the set of positive99

and negative samples at the same time, hence we require T ∩ F = ∅. For a C-formula (with100

C being Horn, dual Horn, bijunctive or affine), the condition has to be strengthened to101

⟨T ⟩C ∩ F = ∅, as each tuple in the C-closure of T necessarily satisfies any C-formula for T .102

With this constraint, instances of the MCP problem are solvable. In general, there is a103

range of solutions. While every formula solving the instance is satisfied by the tuples in T104

and falsified by those in F , its behavior for the remaining tuples is undetermined. MCP105

offers two strategies. The large strategy (the default) computes a formula satisified by106

a maximal number of tuples, while the exact strategy minimizes the number of satisfying107

tuples.108

4.2 Minimal Section109

For a set of tuples, S, let S|A denote the restriction of the tuples to the coordinates in A.110

Clearly, if two sets S1 and S2 have an empty intersection for a subset of the coordinates,111

then the original sets have an empty intersection, too: S1|A ∩ S2|A = ∅ implies S1 ∩ S2 = ∅.112

In general, each coordinate contributes a variable to the formula, hence minimizing A will113

reduce the number of different variables in the formula.114

Finding an A of minimal cardinality such that T |A ∩ F |A = ∅ (or ⟨T ⟩C |A ∩ F |A = ∅) is an115

NP-complete problem. MCP implements several approximatons differing in the direction116

the coordinates are tried, skipping coordinates whose removal would render the problem117

unsolvable. The following directions are available:118

begin: Prefer coordinates to the left (at the begin) of the tuples by removing coordinates119

from the right. This direction is the default.120

end: Prefer coordinates to the right (at the end) of the tuples by removing coordinates from121

the left.122

lowcard: Prefer coordinates with a lower Hamming weight, by removing coordinates with123

high Hamming weight.124

highcard: Prefer coordinates with a higher Hamming weight, by removing coordinates with125

small Hamming weight.126

ADEMAL 2023



XX:4 MCP: Learning Propositional Formulas from Binarized Data

random: Remove coordinates in random order.127

nosect: Use all coordinates, do not remove any.128

4.3 Effective Learning of Formulas129

The MCP system learns Horn formulas by the following procedure. For each f ∈ F it130

determines if f ∈ ⟨T ⟩Horn efficiently, without computing the Horn closure. Then it computes131

the minimal section of ⟨T ⟩Horn and F , followed by the computation of the corresponding132

Horn formula according to the chosen direction and strategy on the (approximate) minimal133

section of ⟨T ⟩Horn and F . It uses different algorithms for the strategies: that of Angluin et134

al [1] for the large strategy and another of Hébrard and Zanuttini [14] for the exact strategy.135

Learning of dual Horn formulas is done very easily. MCP system first swaps the polarity136

of the Boolean vectors in T and F , producing the new sets T ′ and F ′, respectively. Then it137

computes the Horn formula φ′ for T ′ and F ′, followed by swapping the polarity of literals138

in φ′, producing the dual Horn formula φ.139

There is no known possibility to determine if f ∈ ⟨T ⟩bijunctive for each f ∈ F without140

computing the bijunctive closure ⟨T ⟩bijunctive. Moreover, the bijunctive closure ⟨T ⟩bijunctive141

can be (and usually also is) very much time and space consuming. We adopted the following142

solution to produce bijunctive formulas by MCP system: It computes the minimal section143

using an intersection test, followed by application of the Baker-Pixley Theorem [2] (projection144

on every pair of coordinates), which implicitly guarantees the bijunctive closure.145

Learning a general CNF formula presents several challenges. Its advantage is that We146

get a propositional formula in any case, provided that T ∩ F = ∅. Its drawback is that the147

produced formula is usually very big. We adopted two different approaches in the MCP148

system, depending on the applied strategy. In case of large strategy, for each false element149

f ∈ F the MCP system produces the unique clause cf which falsifies f . The resulting150

formula φ is the conjunction of all falsification clauses cf . In case of exact strategy, the MCP151

system uses an algorithm producing a CNF formula in time O(|T | k2), where k is the arity152

of vectors in T , using a Boolean restriction of a larger algorithm from [12].153

Learning affine formulas reveals more from linear computer algebra than from logic,154

therefore we did not implement it in the MCP system for the time being. We may implement155

it in a further version if there is demand.156

4.4 First Postprocessing: Redundancy Elimination157

The inferred formula φ can contain redundant literals and clauses, which can and must be158

eliminated to produce the smallest possible formula. There are several stages, which can159

be applied for redundancy elimination, called cooking inside the MCP system, with the160

following options: raw performs no redundancy elimination, bleu performs unit resolution,161

medium performs unit resolution and clause subsumption, and finally well done, which162

is the default, performs unit resolution, clause subsumption, and implied clause removal.163

Moreover, the exact strategy includes a primality step, reducing the clauses by elimination164

of unnecessary literals, using an algorithm from [12].165

4.5 Second Postprocessing: Set Cover166

In case of the large strategy, we are mainly interested in producing a formula φ falsified by167

each tuple f ∈ F . However, the inferred formula φ may contain more clauses than necessary,168

even after full redundancy elimination. Our task is to keep the smallest number of clauses169
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in φ which are necessary to guarantee falsification by all tuples f ∈ F . For this purpose in170

the MCP system, we use Set Cover where a clause c ∈ φ covers a vector f ∈ F if f falsifies c.171

Set Cover is a well-known NP-complete problem, therefore we use Johnson’s approximation172

algorithm (see e.g. [11]), where the measure of a clause is the number of covered tuples. Of173

course, this approach is inapplicable for the exact strategy.174

4.6 Input Format and Action Possibilities175

The input file of the MCP system core, is a Boolean matrix, one Boolean vector per row.176

Each vector is prefixed by a string g, identifying a group to which the vector belongs. The177

MCP system core collects first the vectors from the input matrix and distributes them into178

the identified groups. Each input file starts with an indication line, containing two boolean179

values. If both values are equal to 0, the following lines are the rows of the Boolean matrix180

with leading group indicators. If the first value is equal to 1, the following line contains181

the variable names ordered by coordinates. If the second value is equal to 1, there is one182

more line of supplementary information before the matrix. However, this supplementary183

information is unused by the MCP system, but it is still maintained for compatibility reasons184

with data sets used in [8, 9].185

Let G be the set of identified groups. The actual computation is determined by the186

action, which determines how the sets of positive samples T and negative samples F are187

constituted. The are two options, one and all.188

The option one consecutively selects two groups g, g′ ∈ G, determines the vectors189

belonging to the group g as the positive samples T and the vectors belonging to the group g′
190

as the negative samples F , then starts the computation of the corresponding formula with191

minimal section. If there are n groups in the set G, this action proceeds with the computation192

of n(n − 1) formulas.193

The option all, which is the default, consecutively selects a group g ∈ G, determines194

the vectors belonging to the group g as the positive samples T and all vectors belonging195

to any group from G ∖ {g} as the negative samples F , then starts the computation of the196

corresponding formula with minimal section. For n groups in the set G, this action proceeds197

with the computation of n formulas.198

4.7 Parallelization199

For a set of n groups, the MCP system computes either n or n(n − 1) formulas. These200

computations are independent, therefore they can be performed in parallel. This is called201

outer parallelism in the MCP core.202

In case of Horn closure of the positive samples T , the MCP core needs to determine203

if a given vector f ∈ F from negative samples belongs to ⟨T ⟩Horn, without computing the204

closure itself. This procedure is quite time consuming when the set T is quite large. It can205

be computed in parallel, each time taking only a determined chunk of T . This is called inner206

parallelism in the MCP core.207

We adopted three types of parallelization within the MCP core: the Message Passing208

Interface (MPI) [16], the POSIX threads (pthreads) [7], and a hybrid version combining209

both. These parallelizations are effective only on very large input data sets. The MPI version210

is applied only for outer parallelism, the pthreads version to both, and in the hybrid version211

MPI is applied for outer parallelism and pthreads for inner parallelism.212

ADEMAL 2023
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4.8 Invocation213

MCP core is called by one of the following commands and options:214

sequential version: mcp-seq
MPI version: mcp-mpi
POSIX threads version: mcp-pthread
hybrid version: mcp-hybrid


-i input-file -o output-file
-l formula-prefix -c closure
-d direction -s strategy
--cook cooking --setcover y/n

215

Each of these core modules produces files formula-prefix_g.log containing the learned216

formula for each group g inside input-file. Consult the manual pages for more detailed217

information.218

▶ Example. Suppose we have transformed the data of our running example to 15 858 binary219

tuples of length 111, stored in a file mushroom.bin, as described at the end of section 5.1.220

Running the command221

mcp-seq -i mushroom.bin -o mushroom.frm222

we obtain, within a minute or so, Horn formulas for the edible as well as for the poisonous223

mushrooms. E.g., the edible mushrooms are characterized by 17 rules like the following ones:224

cap-color ̸= yellow ∨ odor ̸= foul225

cap-color ̸= gray ∨ odor ̸= foul226

spore-print-color = white → odor = none227

The first two formulas specify that for an edible mushroom, its odor is either not foul, or its228

cap-color is different from yellow and gray. Moreover, if the spore-print-color is white, then229

an edible mushroom has no odor at all.230

5 Prequel and Sequel Modules231

5.1 Data Binarization232

The core of the MCP system accepts only Boolean vectors. However, data are usually233

spanning much larger domains: finite, or infinite but countable, or uncountable. In the latter234

two cases, every very large finite data set contains only a finite subset of the domain, but it235

can be intractable due to the amount of data to be treated. The MCP system copes with236

this situation by binarization.237

Binarization is the process of transforming data of any domain into binary vectors to238

make classifier algorithms, in our case the MCP system core, more efficient. Its advantage is239

that we obtain the possibility to treat any data by propositional formulas. Its drawback is a240

possible exponential explosion. Binarization concerns both, particular values, especially for241

finite domains, as well as intervals, usually used for infinite ones. MCP system adopts both242

approaches.243

Binarization in the MCP system is a two-step procedure. The first step consists of244

scanning of the CSV file and generating a meta-file template. This step is performed by the245

command246

mcp-guess -i csv-file -o meta-template247
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where it is implicitly assumed that the csv-file contains one data vector per line, the vector248

elements are separated by commas or semicolons or space or tabs, vector element can be249

quoted, missing elements are denoted by a question mark. The template generated by250

mcp-guess cannot be used directly by the next module, but it must be manually adapted to251

a proper meta-file. This command just creates indications if the values of a given coordinate252

are Boolean, enumerated strings, enumerated integers, integers in a range, or floats in a253

range.254

The second step of the binarization process is performed by the command255

mcp-trans -i data-file -m meta-file -o binarized-file [--pvt pivot-file] [-r y/n]256

which generates a binarized-file, ready to be treated by the MCP system core, from the257

original data-file using a meta-file. This meta file consists of transformation commands. Each258

transformation command describes the treatment of one attribute and has the following259

format:260

identifier = coordinate : indicator ; {# comment}261

where # starts an optional comment stretching until end of line, the symbols = and : and ;262

are syntactic sugar, identifier will become the name of the variable for the given attribute263

coordinate and the indicator has one of the following forms:264

concept identifier of the concept to be learned
pivot identifiers for pivot values in prediction
bool ‘[’ elem0 elem1 ‘]’ boolean 2-element set
enum ‘[’ elem0 . . . elemℓ ‘]’ enumerated set of ℓ + 1 elements
up ‘[’ elem0 . . . elemℓ ‘]’ enumerated set of increasing ℓ + 1 elements
down ‘[’ elem0 . . . elemℓ ‘]’ enumerated set of decreasing ℓ + 1 elements
int min max integers in the range between min and max
dj n min max interval [min, max) cut in n disjoint chunks
cp [∧] number0 . . . numberℓ [$] intervals determined by checkpoints (The numbers must

build an increasing sequence. Consecutive numbers a

and b determine the interval [a, b). The optional
symbols ∧ and $ stand for minimal and maximal infinity,
respectively)

over n min max ℓ [min, max) cut in n chunks with overlaps of length ℓ

span ℓ min max [min, max) cut in disjoint chunks, each of length ℓ

warp ℓ0 min max ℓ1 [min, max) cut in chunks of length ℓ0, overlaps of length ℓ1

265

The square brackets ‘[’ and ‘]’, written in quotation marks to distinguish them from optional266

parameter indications, are just syntactic sugar for a better orientation of the parser.267

Some data vectors can contain missing values indicated by a quation mark. The default268

treatment by mcp-trans is their elimination. If however we wish to include these data rows269

with missing values, we need to generate for them robust extensions [6], where the question270

marks are replaced by all other data for this coordinate gathered from all other data rows.271

This is achieved by the optonal -r flag. The robust option is incompatible with the pivot272

option.273

The optional pivot-file will contain data identifiers used for prediction (see the command274

mcp-predict). The concept and pivot indicators are exclusive. The concept indicator is used275

during the learning process on training data, whereas the pivot indicator is used during the276

checking process on testing data, when a prediction for these data has to be done. Usually,277

ADEMAL 2023
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the pivot coordinate contains the identifiers, one per data item, for which a prediction is278

done by means of the mcp-predict command.279

After the transformation and binarization, the produced binary vectors do not need to280

be unique. To avoid this situation, we can use the command281

mcp-uniq -i input-file -o output-file282

which eliminates row doublets. Essentially, this command acts as the Linux command uniq,283

but the rows do not need to be sorted and duplicate rows need not be consecutive.284

▶ Example. Our mushroom example uses non-binary attributes. Therefore, we run mcp-guess285

on the original data to draft a specification for the binarization process. The command286

mcp-guess -i mushroom.data -o mushroom.spec287

analyzses the values occurring for every attribute and generates a file starting as follows.288

id0 = 0: bool [edible poisonous];289

id1 = 1: enum string [bell conical convex flat knobbed sunken];290

id2 = 2: enum string [fibrous grooves scaly smooth];291

id3 = 3: enum string [brown buff cinnamon gray green pink ...292

id4 = 4: bool [no yes];293

id5 = 5: enum string [almond anise creosote fishy foul musty ...294

We adapt this file by marking id0 as the column that defines the category (the ‘concept’),295

and by replacing the generic identifiers idx by mnemonic labels, to improve readability. If we296

can also store the names of the attributes in the file mushroom.names and run the command297

mcp-guess -i mushroom.data -o mushroom.spec -n mushroom.names298

with the -n option. The identifiers of the attributes are then read from that file and replace299

the identifiers id0, . . . , id5. Moreover, we check the encodings proposed by mcp-guess.300

Attributes taking more than two different, unordered values are tagged as enum, which tells301

the binarization utility to use a separate propositional variable for every value. Attributes302

with just two values are marked as bool, which results in a single variable for both values.303

While saving on variables reduces the size of the problem, it may make the information304

harder to access and prevent MCP from constructing, for instance, a Horn formula. In our305

final specification, the lines above take the following form.306

class = 0: concept;307

cap-shape = 1: enum [bell conical convex flat knobbed sunken];308

cap-surface = 2: enum [fibrous grooves scaly smooth];309

cap-color = 3: enum [brown buff cinnamon gray green pink purple ...310

bruises = 4: bool [no yes];311

odor = 5: enum [almond anise creosote fishy foul musty ...312

Now we binarize the original data with the command313

mcp-trans -i mushroom.data -m mushroom.spec -o mushroom.bin314

The binarized data, mushroom.bin, starts with the following lines.315

1 0316

cap-shape_5:cap-shape==sunken:cap-shape!=sunken ...317

edible 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 ...318

poisonous 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ...319
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The first line with 1 0 indicates that line 2 is a header and that the actual data starts in line 3.320

The quite verbose header consists of space-separated labels, one for each binary attribute.321

Each label starts with the name of the attribute (cap-shape_5 in the first label above),322

followed by two expressions separated by colons. The first expression, cap-shape==sunken,323

specifies that a value 1 for the attribute cap-shape_5 means that the original attribute324

cap-shape had the value sunken, whereas the second expression, cap-shape!=sunken325

reminds us that cap-shape_5 being 0 means that cap-shape had a value different from326

sunken. This information is used by MCP to enhance the readability of the generated327

formulas. From line 3 to the end of the file, each line contains a tuple of 111 binary values,328

which is prefixed by one of the strings edible or poisonous giving the category of the tuple.329

The total number of lines is actually almost twice as large as in the original data file. The330

increase is caused by unknown values (appearing as a question mark, ?) in the data file.331

Records with such values can be either dropped, decreasing the number of tuples, or can be332

replaced by all possible values of the respective attribute. The latter option may lead to a333

significant increase of the data set.334

5.2 Formula Evaluation and Classification Prediction335

If we are interested only in the produced formula, then the output file generated by the336

MCP core contains the satisfied formulas for each group of Boolean vectors. However, if we337

want to evaluate the accuracy of the produced formula, we must proceed further. The first338

prerequisite for a possibility to check the accuracy of a formula, is to have two sets of vectors:339

one for learning the formula, the other for checking its accuracy. Either we have these two340

sets of vectors already from the beginning or we need to split the original set of Boolean341

vectors into the learning part and the checking part before running the MCP core on the342

learning part. The latter is performed by the command343

mcp-split -i input-file -l learn-file -c check-file -r ratio344

that splits uniformly at random the input-file into a learn-file and check-file, where ratio is345

the percentage of vectors from the input-file populating the check-file. If the options -l or346

-c are not explicitly stated, the software deduces the file identifiers from the base name of347

the input-file and adding the suffix .lrn or .chk to it, respectively. The ratio default is 10.348

The accuracy of the formula for a given group g is checked by the command349

mcp-check -i check-file -l formula-file -o output-file350

where formula-file is the file formula-prefix_g.log produced by the MCP core. Its output-file351

reproduces the formula and reports the following statistical entities, measured on the vectors352

from check-file: true positives (tp), true negatives (tn), false positives (fp), false negatives353

(fn), sensitivity (tp/(tp + fn)), miss rate (fn/(fn + tp)), specificity (tn/(tn + fp)), and precision354

(tp/(tp + fp)). The optimal situation would be to have neither false positives nor false355

negatives. If, however, these values are non-zero, it can be either due to an insufficient356

cardinality of learning data, or a wrong binarization, or else the data itself are not precise.357

Once a learning process has been done and corresponding formulas have been generated,358

a prediction for testing data is performed by the following command:359

mcp-predict -i input -o output -l formula-prefix -pdx prediction [-pdt pivot]360

where input is the testing file containing Boolean vectors without group identifiers for which361

the prediction will be done; output is the file which will contain the report of the prediction362
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run; formula-prefix is the prefix for files containing formulas produced by MCP core and363

where the corresponding formula-file is supposed to have the name formula-prefix_g.log for364

some group G; the file prediction will contain the prediction results in the form365

pivot-value, group identifiers366

where group-identifiers is a list of groups (only one in the best case) separated by the sign +,367

for which the corresponding formula from formula-prefix_g is satisfied by that pivot-value;368

and finally the optional file pivot contains the corresponding pivot identifiers to identify the369

prediction results, one per line.370

The difference between check files and test files is only the presence (in check files) or371

absence (for test files) of group identifiers for attribute data. This is also visible in the372

difference in the semantics of the last two commands. The command mcp-check checks the373

accuracy of the solution with respect to existing knowledge contained in the data, whereas the374

command mcp-predict synthetises the missing attribute from data by means of a previously375

learned formula.376

We can transform a check file into a test file by means of the following command:377

mcp-chk2tst -i input-file -o output-file378

which esentially discards the group information from data.379

6 System Distribution and Examples380

The MCP system is available at the github.com/miki-hermann/mcp. Please, follow the381

instructions in README.md file at the root. It is indispensable to run the installation382

instructions described in that file to be able to run the MCP system properly.383

The overall performance of the MCP system is very competitive, both in terms of time,384

as well as in terms of quality of the produced formulas. The performance of the system has385

been measured on a DELL computer with an Intel Core™ i7-9700 CPU @ 3.00GHz × 8 with386

16GB of memory, running under Linux Fedora 38. All examples from [8, 9] run under one387

second.388

We have been testing the MCP system on several examples from the UCI Machine389

Learning Repository (archive.ics.uci.edu/ml). All examples in the subdirectories are390

equipped with a Makefile simplifying the application of the MCP system on them. The391

directory uci contains the following treated examples:392

abalone identifying abalone with 27 rings;
accent identifying several accents in spoken English language;
balance-scale identifying psychological experiments balancing a scale;
balloons a toy example, where specific formulas are required to be produced;
banknote identifying forged and genuine banknotes;
breast-cancer-wisconsin identifying benign and malignant breast cancer cases in Wisconsin;
car identifying very good cars;
divorce predicting if a marriage will end up in a divorce according to an analysis

of responses to psychological investigation;
forest-fire predicting forest fires in July, August, and September;
iris identifying three types of iris flowers;
monk the well-know monk examples;

https://github.com/miki-hermann/mcp
github.com/miki-hermann/mcp
https://archive.ics.uci.edu/ml/
archive.ics.uci.edu/ml
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mushroom identifying edible and poisonous mushrooms;
nursery for admition of children into a nursery;
optdigits for determining digits from optical reading;
shuttle the shuttle example;
vote identifying democrats and republicans in the House of Representatives

according to the 1984 US Congressional Voting Records.

393

We would especially drive the readers attention to the mushroom example, which identifies394

the edible and poisonous mushrooms always with 100% accuracy. This illustrates very well395

the strength of the MCP system.396

7 Concluding Remarks397

The MCP system consists of more than 7000 lines of C++ code, using only the standard398

library. Parallel execution requires installation of the MPI software. Future versions of MCP399

will include a web GUI to enhance usability, as well as support for finite domains [12] to400

obviate the need for data binarization.401

References402

1 D. Angluin, M. Frazier, and L. Pitt. Learning conjunctions of Horn clauses. Machine Learning,403

9(2-3):147–164, 1992.404

2 K. A. Baker and A. F. Pixley. Polynomial interpolation and the Chinese Remainder Theorem405

for algebraic systems. Mathematische Zeitschrift, 143(2):165–174, 1975.406

3 E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks, part I: Post’s407

lattice with applications to complexity theory. SIGACT News, 34(4):38–52, 2003.408

4 E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks, part II:409

Constraint satisfaction problems. SIGACT News, 35(1):22–35, 2004.410

5 Endre Boros, Yves Crama, Peter L. Hammer, Toshihide Ibaraki, Alexander Kogan, and411

Kazuhisa Makino. Logical analysis of data: classification with justification. Annals of412

Operations Research, 188(1):33–61, 2011.413

6 Endre Boros, Toshihide Ibaraki, and Kazuhisa Makino. Monotone extensions of Boolean data414

sets. In Ming Li and Akira Maruoka, editors, Proceedings 8th International Conference on415

Algorithmic Learning Theory, (ALT ’97), Sendai (Japan), volume 1316 of Lecture Notes in416

Computer Science, pages 161–175. Springer, 1997.417

7 David R. Butenhof. Programming with POSIX threads. Addison-Wesley, 1997.418

8 Arthur Chambon, Tristan Boureau, Frédéric Lardeux, and Frédéric Saubion. Logical419

characterization of groups of data: a comparative study. Applied Intelligence, 48(8):2284–2303,420

2018.421

9 Arthur Chambon, Frédéric Lardeux, Frédéric Saubion, and Tristan Boureau. Computing sets422

of patterns for logical analysis of data. Technical report, Université d’Angers, 2017.423

10 Yves Crama and Peter L. Hammer. Boolean Functions - Theory, Algorithms, and Applications,424

volume 142 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,425

2011.426

11 M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of427

NP-completeness. W.H. Freeman and Co, 1979.428

12 A. Gil, M. Hermann, G. Salzer, and B. Zanuttini. Efficient algorithms for constraint description429

problems over finite totally ordered domains. SIAM Journal on Computing, 38(3):922–945,430

2008.431

ADEMAL 2023



XX:12 MCP: Learning Propositional Formulas from Binarized Data

13 Petr Hájek, Martin Holeňa, and Jan Rauch. The GUHA method and its meaning for data432

mining. Journal of Computer and System Sciences, 76(1):34–48, 2010.433

14 J.-J. Hébrard and B. Zanuttini. An efficient algorithm for Horn description. Information434

Processing Letters, 88(4):177–182, 2003.435

15 Petr Hájek and Tomáš Havránek. Mechanizing Hypothesis Formation. Springer, 1978.436

16 Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Dongarra.437

MPI: The complete reference. MIT Press, 1995.438


	1 Introduction and Related Work
	2 Preliminaries
	3 Running Example: Mushrooms
	4 Core of the MCP System
	4.1 Strategies for Computing the Closure
	4.2 Minimal Section
	4.3 Effective Learning of Formulas
	4.4 First Postprocessing: Redundancy Elimination
	4.5 Second Postprocessing: Set Cover
	4.6 Input Format and Action Possibilities
	4.7 Parallelization
	4.8 Invocation

	5 Prequel and Sequel Modules
	5.1 Data Binarization
	5.2 Formula Evaluation and Classification Prediction

	6 System Distribution and Examples
	7 Concluding Remarks

