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Abstract
We consider surfaces embedded in a 3D contact sub-Riemannian man-

ifold and the problem of the finiteness of the induced distance (i.e., the
infimum of the length of horizontal curves that belong to the surface).
Recently it has been proved that for a surface having the topology of a
sphere embedded in a tight co-orientable structure, the distance is always
finite. In this paper we study closed surfaces of genus larger than 1, prov-
ing that such surfaces can be embedded in such a way that the induced
distance is finite or infinite. We then study the structural stability of the
finiteness/not-finiteness of the distance.

1 Introduction
Consider a three dimensional contact sub-Riemannian manifold (M,D,g), where
M is a smooth manifold of dimension three, D is a contact distribution (i.e.,
such that rankD = 2 and D + [D,D] = TM) and g is a sub-Riemannian metric
[ABB20; Mon02]. Let S be a surface embedded in M . The intersection D∩TS
defines a field of directions with singularities on S, where the singularities are
the points q ∈ S such that Dq = TqS. Such points are called characteristic points.
In the following the set of characteristic points is denoted with Σ(S). The set
of integral curves of D∩TS on S ∖Σ(S) is called the characteristic foliation of
S, and it is denoted with DS. For an example of characteristic foliation of a
surface in the Heisenberg group see Figure 1.
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Figure 1: Characteristic foliation of the Euclidean unitary sphere centered at
the origin, embedded in the Heisenberg group (R3,D = span{∂x+ y2∂z, ∂y−

x
2∂z}).

Each leaf is a one-dimensional Riemannian manifold, the metric being the
restriction of g. A lipschitz curve γ ∶ [0, T ] → S is called admissible if γ̇(t) ∈ Dγ(t)
for almost every t ∈ [0, T ]. We can use the metric g to measure the length of
admissible curves on S

L(γ) ∶= ∫
T

0

√
g(γ̇(t), γ̇(t))dt,

and we define the induced distance between two points q0, q1 ∈ S as

dS(q0, q1) = inf{L(γ) ∶ γ admissible, γ(0) = q0, γ(T ) = q1 }, (1.1)

with the understanding that the induced distance is infinite whenever there is
no admissible curve connecting q0 to q1. In this paper we are interested in
studying the finiteness of dS . We say that the induced distance is finite if it is
finite for every pair of points, in that case the couple (S, dS) defines a metric
space and in particular a length space. Notice moreover that this distance does
not coincide with the restriction of the sub-Riemannian distance on S, moreover
dS is never continuous with respect to the topology of the surface [D B22]. If
the sub-Riemannian manifold admits a global orthonormal frame (F1, F2), or
equivalently if D is a trivial vector bundle over M , then the problem of finding
the curve realizing the distance between two points q0 and q1 can be written as
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the optimal control problem

γ̇(t) = u1(t)F1(γ(t)) + u2(t)F2(γ(t)),
γ(0) = q0, γ(T ) = q1,

∫
T

0

√
u2

1(t) + u2(t)2 dt→min,

with the state constraint γ(t) ∈ S.

In the study of contact distributions on 3-manifolds from a topological per-
spective, embedded surfaces play a central role [Ben83; Gir91; Gir00]. Recently
related topics have been studied when the contact distribution is endowed with
a Riemannian metric (surfaces embedded in 3D contact sub-Riemannian mani-
folds). See for instance [DGN12; DGN07] for Carnot groups, [D B22] for generic
structures, [BTV17; BTV20; Vel20] for Gauss-Bonnet theorems and [Bar+21]
for stochastic evolution equations. In particular in [D B22] the authors have
proved that the induced distance is always finite for spheres embedded in a co-
oriented tight 3D-contact sub-Riemannian manifolds. Recall that a 3D-contact
sub-Riemannian manifold (M,D,g) is co-orientable if the distribution D can be
globally expressed as the kernel of a 1-form ω. This form is called the contact
form, and in the context of sub-Riemannian geometry is normalized in such a
way that

dω∣D = Volg, (1.2)

where Volg is the area form induced on D by the metric g. The contact con-
dition D + [D,D] = TM can be expressed in term of the contact form ω as
ω ∧ dω ≠ 0, thus a co-orientable contact manifold M is necessarily orientable.
Recall moreover that a contact distribution is called overtwisted (see 4.5 of
[Gei08]) if admits an overtwisted disk, i.e., an embedding of a disk with hori-
zontal boundary whose characteristic foliation has a unique singular point: an
elliptic point in the interior of the disk, see Figure 2.
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Figure 2: The image depicts the overtwisted disk { (r, θ, z) ∶ z = 1
2(π

2 − r2), r ≤
π, θ ∈ [0,2π) } in the contact structure (R3,D = span{∂r, cos r

r
∂θ − sin r∂z}),

expressed in cylindrical coordinates (r, θ, z).

A contact distribution is called tight if it is not overtwisted. Since every
overtwisted contact structure contains a sphere S having closed orbits in its
characteristic foliation, which necessarily implies that dS is not finite, the result
obtained in [D B22] can be stated as a metric characterization of tightness.

Theorem 1. ([D B22]) Let (M,D,g) be a co-oriented 3D-contact sub-Riemannian
manifold, then (M,D) is tight if and only if every embedded surface homemor-
phic to a sphere has finite induced distance.

In this paper we prove that the characterization given by Theorem 1 works
only with spheres. In particular we obtain the following result.

Corollary 1. Let (M,D,g) be a co-orientable 3D-contact sub-Riemannian struc-
ture. Let S be a closed orientable surface of genus g ≥ 1. Then there exist an
embedding of S in M for which the induced distance is finite, and one for which
the induced distance is not finite.

The latter result is a corollary of the following theorem, stating that generi-
cally the finiteness (not finitess) of the distance is a structurally stable property.

Theorem 2. Let (M,D,g) be a co-orientable 3D-contact sub-Riemannian man-
ifold, let S be a closed orientable surface of genus g ≥ 1, and let Emb(S,M) be
the space of embeddings of S in M endowed with the C∞-topology. Then there
exist two disjoint non empty open subsets, Uf ,U∞ ⊂ Emb(S,M), having dense
union, such that the induced distance is finite on Uf and not finite in U∞.
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The proof of this theorem is largely based on the theory of Morse-Smale
vector fields, which are structurally stable. In Section 2 we recall the basic
facts concerning these vector fields. We prove that the only obstruction to the
finiteness of the induced distance on Morse-Smale characteristic foliations is the
existence of closed orbits. We then recall the elimination lemma, a result from
contact topology which we use to break up the closed orbits of a Morse-Smale
foliation by means of an arbitrarily small C0 perturbation. These facts together
ensure the existence of the set Uf of Theorem 2. In Section 3 we prove the
existence of the set U∞ and we conclude the proof of Theorem 2.

2 Morse-Smale vector fields
The characteristic foliation of an oriented surface S embedded in a co-oriented
contact manifold (M,ω) is driven by a global vector field: there exists a smooth
vector field X on S vanishing on Σ(S), satisfying

TqS ∩Dq = spanRXq, ∀ q ∈ S ∖Σ(S). (2.1)

A vector field with the properties described above is called a characteristic vector
field of S. Characteristic vector fields are not unique, and can be obtained one
from the other via multiplication by a positive function. In particular the choice
of a characteristic vector field corresponds to the choice of an area form Ω on
the orientable surface S, compatible with the orientation of the latter. Indeed,
once the area form Ω is chosen, the corresponding characteristic vector field is
the unique solution to the equation

iXΩ = ω∣S . (2.2)

The contact condition ω ∧ dω > 0 implies that the divergence divΩX(q) is non
zero for every q ∈ Σ(S):

d ○ iXΩq = divΩX(q)Ωq ≠ 0. (2.3)

The sign of a critical point q ∈ Σ(S) is defined as

sign(q) ∶= sign(divΩX(q)). (2.4)

For a generic surface S, the characteristic vector field is Morse-Smale: a type of
vector field with particularly simple dynamical features, recalled in the definition
below.

Definition 1. Let S be a closed orientable surface, a vector field X on S is
called Morse-Smale if

• X has finitely many critical points and closed orbits, all of which are non
degenerate,

• the α-limit of every trajectory is either a critical point or a closed orbit,
and the same holds for ω-limits,
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• there are no saddle connections.

In its celebrated stability theorems, M.M. Peixoto showed that such vector
fields are generic and structurally stable on closed orientable surfaces ([Pei62],[M
C59]). These results are summarized in the following theorem.

Theorem 3. Let X be a Morse-Smale vector field on a closed orientable surface
S. The dynamic of any vector field X ′ sufficiently C1-close to X is topologically
conjugated to the dynamic of X. The homeomorphism realizing the topological
equivalence can be chosen C0-close to the identity. Morse-Smale vector fields of
class Cr, with 1 ≤ r ≤ ∞, on a closed orientable surface form an open and dense
subset of the set o vector fields on S endowed with the Cr-topology.

Actually, Morse-Smale vector fields are generic among the characteristic vec-
tor fields of closed orientable surfaces in contact 3-manifolds, as it follows from
the following proposition.

Proposition 1. [Proposition 4.6.11 of [Gei08]] Let S be a closed orientable
surface embedded in a co-oriented contact manifold. There exists a surface S′,
isotopic and C∞ close to S, having a Morse-Smale characteristic foliation.

One clearly necessary condition for a surface to have finite induced distance
is the absence of closed orbits. For a surface with a Morse-Smale characteristic
foliation this condition is also sufficient.

Lemma 1. Let S be a closed orientable surface embedded in a co-oriented 3D-
contact sub-Riemannian manifold M , having characteristic foliation driven by
a Morse-Smale vector field X. Then the induced distance dS is finite if and only
if X does not have closed orbits.

Proof. As we have already said, if X has closed orbits, then the induced distance
is not finite. Assume now that X does not have closed orbits. The Morse-Smale
property ensures that any leaf of the characteristic foliation is admissible, and
hence has finite length: the finiteness of these lengths is proved in [D B22]
Proposition 1.3, and it is a consequence of the fact that the integral curves of X
contained in the stable manifold of a non-degenerate critical point q converge
sub-exponentially to q. Denoting with Ax,y the set of admissible curves joining
x to y, we only need to show that Ax,y ≠ ∅ for any x, y ∈ S. Let S′ be the com-
plement of the hyperbolic points (saddles) in S, which is open and connected.
By definition of Morse-Smale vector field, every saddle is connected to some
elliptic point, thus it is sufficient to show that Ax,y ≠ ∅ for any x, y ∈ S′. For
every x, y ∈ S we define the equivalence relation

x ∼ y ⇐⇒ Ax,y ≠ ∅, (2.5)

and we denote with [x] the equivalence class of x. By definition of Morse-Smale
vector field, for every x ∈ S′ the limits

ω(x) = lim
t→∞

etX(x), α(x) = lim
t→∞

e−tX(x), (2.6)
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exist and are critical points of X. Moreover at least one of the two limits must
be an elliptic point, because there are no trajectories joining hyperbolic points.
Therefore for every x ∈ S′ the set [x] ∩ S′ contains an open neighbourhood of
x, which is the stable (unstable) manifold of some elliptic point. It follows that
the equivalence classes are open, thus, S′ being connected, there is only one
equivalence class.

Given any orientable surface S embedded in a 3D-contact manifold, with
an arbitrarily small C∞ perturbation, we can achieve an isotopic surface with
characteristic foliation of Morse-Smale type. The new surface may well present
closed orbits, even if the original surface S did not have any. The elimination
lemma, a result due to Giroux which we are about to state, describes a procedure
which allows us to destroy closed orbits preserving the Morse-Smale property,
by means of an arbitrarily C0-small perturbation of the surface, see Figure 3
and 4.

Lemma 2. [Lemma 4.6.26 of [Gei08]] Let (M,D) be a three dimensional co-
orientable contact manifold and S and embedded closed oriented surface with
characteristic foliation of Morse-Smale type. Assume that there exist two sin-
gular point of the same sign, one elliptic point qe and one hyperbolic point qh,
connected by a a separatrix γ of the latter. Let U be an arbitrarily small neigh-
bourhood of γ. Then there exists an isotopy ϕt ∶ S → M , t ∈ [0,1], with the
following properties:

• ϕ0 ∶ S →M is the inclusion of S in M ,

• ϕt can be chosen arbitrarily C0-close to ϕ0,

• The isotopy is fixed on γ and outside U ,

• ϕ1(S) has a characteristic foliation of Morse-Smale type,

• the characteristic foliation of ϕ1(S) has no singularities in ϕ1(U).

Figure 3: An elliptic point qe and a saddle point qh in elimination position, as
described by Lemma 2.
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The elimination lemma allows us to reduce the number of singularities in
the characteristic foliation, without destroying the Morse-Smale property. Of
course, this procedure can be reversed: we can use the elimination procedure
to increase the number of singular points. In particular by means of an arbi-
trarily small C0 perturbation of the surface S, it is possible to break any closed
orbit introducing a pair of singular points along it, both positive if the orbit is
repelling and negative if the orbit is attracting. We summarize this immediate
consequence of the lemma in the following corollary.

Figure 4: Elimination of the critical point qe, qh depicted in Figure 3
.

Corollary 2. Let S be a closed orientable surface embedded in an co-oriented
contact three manifold (M,D), having characteristic foliation of Morse-Smale
type. There exists a surface S′ arbitrarily C0-close to S, having a characteristic
foliation of Morse-Smale type without closed orbits.

Putting together Proposition 1, Lemma 1 and Corollary 2, we deduce the
following fact.

Proposition 2. Let (M,D,g) be a contact sub-Riemannian manifold, let g be
a positive integer and let Emb(S,M) be the space of embeddings of the genus
g orientable surface in M , endowed with the C0 topology. The set of surfaces
having finite induced distance is dense in Emb(S,M).

3 Proof of Theorem 2
It is left to show that the subset of Emb(S,M) of embedded surfaces with
infinite induced distance is non empty, for any contact 3-manifold M . The
result is a consequence of the following lemma, paired with Darboux theorem.

Lemma 3. For every positive integer g there exist a closed surface of genus
g embedded in the three dimensional Heisenberg group, having infinite induced
distance.
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Proof. The contact structure of the 3-dimensional Heisenberg group can be writ-
ten as (R3,D = span{∂x + y

2∂z, ∂y −
x
2∂z}). Let us denote the characteristic foli-

ation of a surface S embedded in (R3,D) by DS. Consider first the case g = 1.
There exists an embedded torus in (R3,D) such that at least one leaf of DT
is an embedded closed curve. Indeed given 0 < r < R, consider the torus TR,r
given by the embedding

T2 ∋ (θ1, θ2) ↦ ((R + r cos θ1) cos θ2, (R + r cos θ1) sin θ2, r sin θ1). (3.1)

The characteristic foliation on TR,r is driven by the vector field

X = (R + r cos θ1)2

2
∂θ1 −

r cos θ1

2
∂θ2 . (3.2)

Thanks to Proposition 1 we know that with a C∞ small perturbation of Tr,R we
can obtain a torus T having a Morse-Smale characteristic foliation, which can
be assumed to be devoid of singular points, since the field X in (3.2) is nowhere
vanishing. A Morse-Smale characteristic foliation without singular points must
contain closed orbits. This follows from the second property of Morse-Smale
vector fields listed in Definition 1. The lemma is proved for g = 1. Let now Σg−1
be any embedded surface of genus g − 1, not intersecting the torus T mentioned
above. Let ` ∈ DT be a closed leaf and let B ⊂ T be a ball not intersecting `,
` ∩B = ∅. We define Σg ∶= T#Σg−1, where the connected sum is made deleting
B from T , deleting a small ball from Σg−1, and gluing together (smoothly) the
resulting boundary circles, see Figure 5. Since B∩` = ∅, DΣg still has the closed
curve ` among its leaves, thus Σg has infinite induced distance.

Figure 5: Connected sum between the torus T containing the closed leaf `, on
the left, and the surface Σg−1, on the right.

We conclude the proof of Theorem 2.
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Proof. We define U∞,Uf ⊂ Emb(S,M) to be set of embeddings of S having
a characteristic foliation of Morse-Smale type with and without closed orbits
respectively. They are both open because of structural stability of Morse-Smale
vector fields. Moreover, it follows from Proposition 1 that the union Uf ∪U∞ is
dense in Emb(S,M). Finally Lemma 3 ensures that U∞ ≠ ∅, while Proposition
2 proves that Uf ≠ ∅.
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