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SUBADDITIVITY OF SHIFTS, EILENBERG-ZILBER SHUFFLE PRODUCTS AND COHOMOLOGY OF LATTICES

We show that the maximal shifts in the minimal resolution of a monomial ideal form a subadditive function, answering a conjecture of Avramov, Conca and Iyengar. To do so, we study dierent models for the cohomology rings of posets and lattices, introduce the Eilenberg-Zilber shue product for lattices and use it to establish vanishing theorems and models for homology for lattices.

Preliminaries

For a homogeneous ideal I in the polynomial ring S := K[x 1 , . . . , x n ] over some eld K we study β ij (S/I) := dim K Tor S i (S/I, K) j , the degree j part of the ith Betti number of the minimal free resolution of S/I over S. The ith maximal shift t i (S/I) is the maximal j such that β ij (S/I) ̸ = 0. If β ij (S/I) = 0 for all j we set t i (S/I) = 0. The following question has been asked (see [START_REF] Avramov | Subadditivity of Syzygies of Koszul algebras[END_REF][START_REF] Eisenbud | The regularity of Tor and graded Betti numbers[END_REF]) for general graded ideals I and their graded Betti numbers.

Question 1.1. In which generality is it true that

t i 1 +i 2 ≤ t i 1 + t i 2 for all 0 ≤ i 1 , i 2 .
Avramov, Conca and Iyengar in particular conjectured this for monomial ideals [START_REF] Avramov | Subadditivity of Syzygies of Koszul algebras[END_REF], and the case has been investigated extensively [START_REF] Abdelfatah | Some results on the subadditivity condition of syzygies[END_REF][START_REF] Herzog | A note on the subadditivity problem for maximal shifts in free resolutions[END_REF][START_REF] Eisenbud | The regularity of Tor and graded Betti numbers[END_REF][START_REF] Dao | Bounds on the regularity and projective dimension of ideals associated to graphs[END_REF].

Since t 0 = 0 the only interesting case is i 1 , i 2 ≥ 1. The question has a negative answer for general ideals, indeed it fails already for binomial ideals, see for example the results on ideals of Veronese embeddings in [START_REF] Ein | Asymptotic syzygies of algebraic varieties[END_REF]. But for the case of monomial ideals there is evidence that the question has a positive answer; for example the case i 1 = 1 is known by [START_REF] Herzog | A note on the subadditivity problem for maximal shifts in free resolutions[END_REF] and the papers [START_REF] Eisenbud | The regularity of Tor and graded Betti numbers[END_REF][START_REF] Dao | Bounds on the regularity and projective dimension of ideals associated to graphs[END_REF] provides further supportive evidence.

For a monomial ideal I with minimal monomial generating set G the LCMlattice L(I) is the set of all least common multiples lcm m∈B m for B ⊆ G(I) where lcm m∈∅ m = 1. Ordered by divisibility the set L(I) becomes an atomic lattice. We denote the proper part of any lattice, that is, the lattice without its maximum (henceforth denoted by 1) and minimum ( 0), by Ľ.
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To answer Question 1.1 for monomial ideals and our combinatorial approach via the LCM-lattice, and their topology. For the latter, when speaking of the topology of a poset, we are meaning the topology of its order complex, the simplicial complex of (order) chains, that is, the simplicial complex of totally ordered subsets 1 .

For p ≤ q in P we denote by [p, q] the interval {x ∈ P | p ≤ x ≤ q} in P . Open and halfopen intervals in P are dened analogously. We shall also be interested in the halfopen intervals P ≤x and analogous subposets. An ideal is a downclosed set in a poset, that is, if y ∈ a and x ≤ y then x ∈ a. An ideal generated by a single element is a principal ideal.

Our approach to the algebraic question is based on the known relation (see [START_REF] Gasharov | The lcm-lattice in monomial resolutions[END_REF]) between Betti numbers β ij (S/I) and homologies of the lattice of least common multiples L = L(I) of order complexes Ľ<m given by

β ij (S/I) = m∈L(I) deg(m)=j dim H i-2 ( Ľ<m ),
where homology is homology with K-coecients. Moreover, every nonempty simplicial complex contains naturally an empty set, and therefore homology is naturally reduced homology. Thus if t i 1 +i 2 > 0 then H i 1 +i 2 -2 ( Ľ<m ) ̸ = 0 for some monomial m of degree ℓ := t i 1 +i 2 . If Question 1.1 has a positive answer then there are monomials n 1 and n 2 in our lattice such that H i 1 -2 ( Ľ<n 1 ) ̸ = 0 and H i 2 -2 ( Ľ<n 1 ) ̸ = 0 and ℓ is bounded from above by the degree of the lcm of n 1 and n 2 . Hence, the positive answer to the question for monomial ideals is implied by the following theorem.

Theorem 1.2. Let L be a lattice 2 with an element m such that

H i 1 +i 2 -2 ( Ľ<m ) ̸ = 0.
Then there are elements n 1 , n 2 ∈ L such that

H i 1 -2 ( Ľ<n 1 ) ̸ = 0 and H i 2 -2 ( Ľ<n 2 ) ̸ = 0 and n 1 ∨ n 2 ≥ m.
Here ∨ denotes the join of two elements. Of course, we may assume that m = 1 for this result. Let us note that this statement is natural, and is immediate for several classes of lattices, such as face lattices of strongly regular CW complexes.

To prove this theorem, we shall introduce a new way to generate the cohomology of a poset, and the cohomology ring of a lattice. We close this paper by concluding some further algebraic consequences of this vanishing theorem.
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We speak of order chains to distinguish them from chains in homology.
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Posets, homology and the shuffle product in lattices

For a poset P we call a order multichain c = (c 0 ≤ c 1 ≤ • • • ≤ c k ) of elements of P a order multichain of length k or a order k-multichain. The empty multichain c = () is the unique multichain of length -1.

By M k (P) we denote kth (reduced) chain group of P with coecients in K; i.e. the free abelian group generated by the order k-multichains for k ∈ Z with the usual boundary operator. Of course, its homology is nothing but the simplicial homology of the underlying poset. Now, the next step is to understand how the join leads to a cup-product in the case of lattices; the Eilenberg-Zilber shue product [START_REF] Eilenberg | On the groups H(Π, n)[END_REF], which for lattices takes the following form: Let L be a partially ordered set which is a lattice. We dene τ : L k+1 → M k (L) as the operator which takes the (k + 1)-tuple (a 0 , . . . , a k ) ∈ L k+1 into the k-multichain (a 0 , a 0 ∨ a 1 , . . . , a 0 ∨ • • • ∨ a k ). For a permutation σ of {0, . . . , k} and a (k + 1)-tuple a = (a 0 , . . . , a k ) ∈ L k+1 we write a σ for (a σ(0) , . . . , a σ(n) ). We will consider an i-multichain c in L as an element of L i+1 . For an i-multichain c and a j-multichain c ′ we write c • c ′ for (i + j + 2) tuple in L i+j+1 that is the concatenation of c and c ′ . We say a permutation σ of {0, 1, . . . , i + j + 1} is an (i, j)-shue if σ(a) < σ(b) for all a and b such that either 0 ≤ a < b ≤ i or i + 1 ≤ a < b ≤ i + j + 1. We write S i,j for the set of all (i, j)-shues inside the set of permutations of {0, 1, . . . , i + j + 1}.

The shue operator ¡ : M i (L) × M j (L) → M i+j+1 (L) is then dened as the linear extension of the map sending an i-multichain c and a j-multichain

c ′ to c ¡ c ′ := σ∈S i,j sgn(σ)τ (c • c ′ ) σ .

Note that if

i = -1 then c ¡ c ′ = c ′ . Consider the second tensor power (D * (L), δ * ) = ( M * , ∂ * ) ⊗ ( M * , ∂ * ) of the chain complex ( M * , ∂ * ), with dierential δ n = i+j+1=n ((∂ i , id) + (-1) i+1 (id, ∂ j )). Since M i (L)⊗ M j (L)
has a basis consisting of the elementary tensors c ⊗ c ′ for poset i-multichains c and poset j-multichains c ′ , it follows that c⊗c ′ → c¡c ′ induces a map of free abelian groups ¡ : D n (L) → M n (L).

Proposition 2.1. For n ≥ 0 and α ∈ D n (L) we have

∂ n (¡(α)) = ¡(δ n (α)).
Proof. It suces to check the identity for α = c ⊗ c ′ where c is a poset i-multichain, c ′ a poset j-multichain and i

+ j = n + 1. Let c = (c 0 ≤ • • • ≤ c i ) and c ′ = (c i+1 ≤ • • • ≤ c i+j+1 ).
For a σ ∈ S i,j ) we write σ 1 (ℓ) for max{{0, . . . , i} ∩ {σ(0), . . . , σ(ℓ)}} and σ 2 (ℓ) for max{{i + 1, . . . , i + j + 1} ∩ {σ(0), . . . , σ(ℓ)}} where we consider the maximum over the empty set as -∞.

With this and setting

c -∞ = c ′ -∞ = 0 we get for σ ∈ S i,j that that τ ((c • c ′ ) σ ) = (c σ 1 (0) ∨ c ′ σ 2 (0) , . . . , c σ 1 (i+j+1) ∨ c ′ σ 2 (i+j+1) ).
Then

c ¡ c ′ = σ∈S i,j sgn(σ)τ ((cc ′ ) σ ) = σ∈S i,j sgn(σ)(c σ 1 (0) ∨ c ′ σ 2 (0) ≤ • • • ≤ c σ 1 (i+j+1) ∨ c ′ σ 2 (i+j+1) ).

Hence

(1)

∂ i+j+1 (c ¡ c ′ ) = i+j+1 ℓ=0 (-1) ℓ σ∈S i,j sgn(σ)g(c, c ′ , σ)
where

g(c, c ′ , σ) = (c σ 1 (0) ∨c ′ σ 2 (0) ≤ • • • ≤ c σ 1 (ℓ) ∨ c ′ σ 2 (ℓ) ≤ • • • ≤ c σ 1 (i+j+1) ∨c ′ σ 2 (i+j+1) ).
Fix some σ ∈ S i,j and 0 ≤ ℓ ≤ i + j.

Case: σ(ℓ) ∈ {0, . . . , i} and σ(ℓ

+ 1) ∈ {i + 1, • • • , i + j + 1}.
In this situation the permutation σ ′ dened by σ ′ (k) = σ(k) for k ̸ = ℓ, ℓ+1 and σ ′ (ℓ) = σ(ℓ+1), σ ′ (ℓ+1) = σ(ℓ) lies again in S i,j and sgn(σ) = -sgn(σ ′ ). Hence on the right hand side of (1) the terms:

(c σ 1 (0) ∨ c ′ σ 2 (0) ≤ • • • ≤ c σ 1 (ℓ) ∨ c ′ σ 2 (ℓ) ≤ • • • ≤ c σ 1 (i+j+1) ∨ c ′ σ 2 (i+j+1) )
and

(c σ ′ 1 (0) ∨ c ′ σ ′ 2 (0) ≤ • • • ≤ c σ ′ 1 (ℓ) ∨ c ′ σ ′ 2 (ℓ) ≤ • • • ≤ c σ ′ 1 (i+j+1) ∨ c ′ σ ′ 2 (i+j+1) )
cancel. Case: σ(ℓ + 1) ∈ {0, . . . , i} and σ(ℓ

) ∈ {i + 1, • • • , i + j + 1}.
With a similar argumentation as in the previous case one can show cancellation. Thus one is left with the terms

(c σ 1 (0) ∨ c ′ σ 2 (0) ≤ • • • ≤ c σ 1 (ℓ) ∨ c ′ σ 2 (ℓ) ≤ • • • ≤ c σ 1 (i+j+1) ∨ c ′ σ 2 (i+j+1) ) (2) 
where σ(ℓ), σ(ℓ + 1) lie both in {0, . . . , i} or both in {i + 1, . . . , i + j + 1}.

We will show that these terms are exactly the terms appearing

¡(δ i+j+1 (c ⊗ c ′ )) = ¡(∂ i (c) ⊗ c ′ + (-1) i+1 c ⊗ ∂ j (c ′ )
and they appear with the same sign.

Consider the case where σ(ℓ), σ(ℓ + 1) both lie in {0, . . . , i}. We dene ρ : {0, . . . , i + j} → {0, . . . , i + j} by setting

ρ(k) = σ(k) if σ(k) < σ(ℓ) and ρ(k) = σ(k) -1 if σ(k) > σ(ℓ). It is easily checked that indeed ρ ∈ S i-1,j .
The inversions of ρ are in bijection with the inversions of σ not involving ℓ. Since σ is an (i, j)-shue this is #{σ(0), . . . , σ(ℓ -1)} ∩ {i + 1, . . . , i + j + 1}. Since {0, 1, . . . , σ(ℓ -1)} ⊆ {σ(0), σ(1), . . . , σ(ℓ -1)}, it follows that

#{σ(0), . . . , σ(ℓ -1)} ∩ {i + 1, . . . , i + j + 1} = ℓ -σ(ℓ)
and

sgn(ρ) = sgn(σ) • (-1) ℓ-σ(ℓ) .
(3) Set

c ′′ = (c ′′ 0 ≤ • • • ≤ c ′′ i-1 ) = (c 0 ≤ • • • ≤ c σ(ℓ) ≤ • • • c i ).
The term (2) appears as

(c ′′ ρ 1 (0) ∨ c ′ ρ 2 (0) ≤ • • • ≤ c σ 1 (ℓ) ∨ c ′ σ 2 (ℓ) ≤ • • • ≤ c ′′ ρ 1 (i+j) ∨ c ′ ρ 2 (i+j) ) in ∂ i (c) ¡ c ′ = ¡(∂ i (c) ⊗ c ′ ).
The chain c ′′ appears in ∂ i (c) with sign (-1) σ(ℓ) . Hence (2) appears in

∂ i (c) ¡ c ′ with sign sgn(ρ) • (-1) σ(ℓ) (3) = sgn(σ) • (-1) ℓ-σ(ℓ) • (-1) σ(ℓ) = (-1) ℓ • sgn(σ)
and by denition with the same sign in ∂ i+j+1 (c ¡ c ′ ).

A similar argumentation holds for the case σ(ℓ), σ(ℓ + 1)

∈ {i + 1, . . . , i + j + 1}.
Since all terms in ¡(δ i+j+1 (c ⊗ c ′ )) are of the form (2), we conclude. □ Corollary 2.2. For α ∈ M i (L) and β ∈ M j (L) we have

(∂ i α) ¡ β + (-1) i+1 α ¡ (∂ j β) = ∂ i+j+1 (α ¡ β).
Proof. By Proposition 2.1 we have

∂ i+j+1 (α ¡ β) = ∂ i+j+1 ¡ (α ⊗ β) = ¡ δ i+j+1 (α ⊗ β) = ¡ ∂ i (α) ⊗ β) + (-1) i+1 α ⊗ ∂ j (β) = ∂ i (α) ¡ β + (-1) i+1 α ¡ ∂ j (β). □ Corollary 2.3. For α ∈ M i (L) and an element v ∈ L we have α -(v ¡ (∂ i α)) = ∂ i+1 (v ¡ α).
Proof. We can consider v as an element of M 0 (L). Then by Corollary 2.2

∂ i+1 (v ¡ α) = ∂ 0 (v) ¡ α + (-1) 1 v ⊗ ∂ i (α) = () ¡ α -v ¡ ∂ i (α) = α -v ¡ ∂ i (α). □

Synors and relaxed chains

For this chapter we return to the situation where P is a poset, and we consider an ecient way to generate their homology. We do so using the notion of synors that is naturally inspired by the main theorem. An i-synor is an element x in P such that P <x has nontrivial (i -1)-st homology, and a synor is an element that is an i-synor for some i. It is not hard to see that P synors , the subposet of synors, and P are homologically equivalent, that is, the inclusion induces an isomorphism of homology groups (this is a trivial consequence, for instance, of Quillen's Theorem A [START_REF] Quillen | Homotopy properties of the poset of nontrivial p-subgroups of a group[END_REF].)

Let us be more explicit, and construct a chain complex, synor complex S(P) and associated synor homology using only these synors. We will construct this as a subspace of the simplicial chain complex, so that the boundary operator need not be specied; it is simply the simplicial boundary operator. We should note that this construction leaves us some freedom, and is not entirely unique in general.

As for the subspace, we construct it inductively, and with the property that the restriction of a synor complex to any ideal is a synor complex of that ideal.

On the empty poset {∅}, not to be confused with the empty set, we have the natural chain complex 0 -→ K -→ 0.

Given P any nonempty poset, we may assume we have constructed, for x any maximum of P, the chain complexes S(P -x) and S(P <x ) by induction.

We consider the nontrivial synor homology cycles of P <x , called principal (synor) cycles, and the cones over them: given a simplicial i-chain γ, we denote by x * γ the (i + 1)-chain obtained by appending x to every simplex 3 .

We call the chains of the form x * ζ, where ζ is a principal cycle, the principal (synor) chains. Now, we consider a principal cycle basis Z of the synor homology of P <x . Then

S(P) = S(P -x) ⊕ K[Z * x].
where K[A] is the free K group over a set A. Naturally, we should think of K[x * Z] as S(P, P -x).

3

Of course, this is but a more ecient way to write x ¡γ if we consider x as a 0-chain.

For instance, we obtain that S 0 (P) is the free group over minimal elements of P.

We obtain immediately:

Proposition 3.1. The natural inclusion of chain complexes S • (P) into C • (P) induces an isomorphism between synor and simplicial homology.

Proof. The restriction of a synor chain complex to an ideal is a synor chain complex again. Hence, by inductive assumption, the statement is true for P -x and P <x . The rest follows as a quasiisomorphism of the long exact sequence in homology induced by 0 -→ S(P -x) -→ S(P) -→ S(P, P -

x) ∼ = K[x * Z] -→ 0. □
We have a useful corollary: We can extend this notion to chains: if γ is a chain, a weak relaxation is a chain γ in the simplicial chain complex of the poset such that the boundary ∂γ is a relaxation of ∂γ and the deformations are realized in the respective ideals; it is also a relaxation if γ is a relative cycle in (S • (P), S • (P ≤∂γ )).

Formally: A (weak) relaxation of a chain γ is a (weak) relaxation of the relative cycle γ in (P, P ≤∂γ ) whose boundary is also a (weak) relaxation of ∂γ. This relaxation always exists as well, simply by introducing relative homology and repeating the arguments of Proposition 3.1 with pairs (P, a), where a is any ideal in P. Again, formally: Proposition 3.3. Given a poset P and an ideal a within, the natural inclusion of chain complexes S • (P) into C • (P) induces an isomorphism between synor and simplicial homology of the pair (P, a).

Moreover, this process of relaxation behaves well with respect to shue products if we ignore cancellations. Given two subsets A, B in a lattice, we denote by A ∨ B the ideal generated by elements a ∨ b, where a ∈ A and b ∈ B.

As we only move downwards in the poset, and the shue is supported in joins, the shue with a (weak) relaxation is a weak relaxation in the following sense. Proposition 3.4. Consider a lattice L and a cycle of the form α ¡β := ∂α ¡ β + (-1) i+1 α ¡ ∂β within Ľ (with sign from Corollary 2.2, that is, i being the length of order chains in α resp. its dimension). If β ′ is a weak relaxation of β then α ¡β ′ is homologous to α ¡β in the ideal α ∨ ∂β ∪ β ∨ ∂α. The analogous statement applies to the chain α¡β, which is homologous to

α¡β ′ in (α ∨ β, α ∨ ∂β ∪ β ∨ ∂α).
Proof. This is essentially just an application of associativity of the shue product. The chain β, seen as a relative cycle in (P, P ≤∂β ), is homologous to its relaxation β; their dierence is boundary to a chain E. Then the cycles α ¡β and α ¡β ′ are homologous via

∂α ¡ E + (-1) i+1 α ¡ (∂E -β + β ′ ).
Similarly, the homology equivalence of α¡β to α¡β ′ , as relative cycles, is realized via the chain α¡E.

□

Shuffling elements into cycles

Let us note another useful fact that the synor chain complex provides: Consider a simplicial d-dimensional cycle ζ in a simplicial chain complex, and let us consider any (d -1)-dimensional face τ . Then where λ σ,τ is the oriented coecient of ζ at σ with respect to τ .

In other words, if we look at τ , and all the coecients of ζ added by shuing in one element. To understand why this observation is true is a trivial exercise: simply apply the boundary operator and consider the terms that support τ.

What about cycles in posets P? Of course, the same holds, but it is a mess. Indeed,

ζ = λ σ σ
where λ σ is a scalar as before and σ is a order chain

σ 0 > σ 1 > • • • > σ d . Consider now τ = (τ 0 > τ 1 > • • • > τ d-1 ) another order chain. Of course σ d-simplex containing τ λ σ,τ = 0,
but it is chaos, as the elements of σ \ τ are shued into the order chain all over the place; in rst, last or any other place. Let us consider the subsum

ζ τ,i := σ d-simplex containing τ σ i =τ λ σ,τ = 0,
where σ i is the removal of the i-th entry of σ. Of course

σ d-simplex containing τ λ σ,τ = d+1 i=1 ζ τ,i = 0.
But the individual ζ τ,i may not vanish in the simplicial chain complex of P.

The synor chain complex xes that. Proof. The proof is by induction on d. The case d = 0 is trivial. Then

σ d-simplex containing τ λ σ,τ = d+1 i=1 ζ τ,i = 0.
Moreover, for i ̸ = 1, that is, when shuing an element into τ not in the rst place, then, of course, we obtain only contributions from the principal d-synor chains at τ 0 , which is of course the cone over a cycle. Hence

ζ τ,i = 0
for all i ̸ = 1 by induction applied to the principle synor d-chain at τ 0 obtained as restriction of ζ to

K[Z * τ 0 ] = S(P ≤τ 0 , P <τ 0 ).
Hence ζ τ,1 = 0 as well.

□

Synor representations and final steps

For this section, let us consider for a lattice L the subset L obtained by removing the minimal element 0. Assume that 1 is a m-synor, that is there is a principal synor (m -1)-cycle ζ in Ľ, and the associated principal relative synor cycle γ = 1 * ζ in S(L, Ľ).

Consider any element v in L; think of it as a 0-chain. The following observation is trivial, and our starting point.

Proposition 5.1. v ¡ ζ is homologous to 1 * ζ in S(L, Ľ).
This is obvious: Both chains have the same boundary, and L is contractible so both chains are homologous.

Let us rethink what was done here: We presented the m-chain as a shue product of an synor (m -1)-cycle and a 0-chain; canonically, 1 ¡ ζ.

We can go further and write

γ = χ X χ ¡ ζ χ
where the sum is over χ described as follows:

• χ is an order chain in L of the form

1 = x m > x m-1 > • • • > x m-ℓ+1
where x i is an i-synor,

• X χ = ¡(x i ) χ , where we think of the x i as simplicial 0-chains, and

• ζ χ are principal synor (m -ℓ)-cycles in L <x m-ℓ+1 .
Consider now an index j between 1 and ℓ, just for a second. We x one χ as above and consider the sum χ ′ = j χ ζ χ ′ where χ ′ = j χ simply denotes the fact that χ and χ ′ coincide except possibly in the j-th, that is, the entry x m-j+1 .

Lemma 5.2. χ ′ = j χ ζ χ ′ = 0 unless j = 1. Proof. We might as well nish the process of writing γ. Then γ = χ λ χ X χ , where the χ are now chains of length m + 1, starting with 1, and λ χ are scalars. Then the sum transforms to

χ ′ = j,m-ℓ,... χ λ χ ′ X χ ′ \χ ′ = χ ′ = j χ ζ χ ′
where of course χ ′ = j,m-ℓ,... χ denotes that both order chains coincide in all but the indexed entries.

As all χ ′ contain 1, we may remove that element without aecting the vanishing; then we have a representation of the cycle

ζ = χ (X χ ) 1 . Because ζ is a cycle, Lemma 4.2 gives χ ′ = j,m-ℓ,... χ λ χ ′ (X χ ′ ) 1,j = 0
Now, removing common elements from the top of these order chains does not aect vanishing, so we can also remove the remaining indices of χ. We obtain

χ ′ = j,m-ℓ,... χ λ χ ′ (X χ ′ ) 1,j = χ ′ = j,m-ℓ,... χ λ χ ′ X χ ′ \χ ′ = 0
as desired.

□

Let us nish: We dene a map

ρ k : K[L k ] -→ S k-1 (L)
inductively as follows:

• ρ 0 sends {∅} to the unique -1-chain.

• ρ k (V ) is a relaxation of the chain ¡V with boundary ρ(∂V ).

Such a map exists by the existence of a relaxed state Proposition 3.3; that is all that is necessary for us to know.

Hence, we can write, similar to Proposition 3.4, the homologous equivalence

Lemma 5.3. γ ∼ χ X χ ¡ ζ χ ∼ χ ρ(X χ ) ¡ ζ χ in (L, Ľ).
Proof. To see this, it suces to prove that

∂γ = ∂ χ X χ ¡ ζ χ and ∂ χ ρ(X χ ) ¡ ζ χ
are homologous in Ľ; the claimed homology equivalence then follows from contractibility of L. Now, we can assume that we have inductively proven the equivalence for smaller ℓ. Then

∂ χ ρ(X χ ) ¡ ζ χ = χ (∂ρ(X χ )) ¡ ζ χ + (-1) ℓ χ ρ(X χ ) ¡ ∂ζ χ Now, χ ρ(X χ ) ¡ ∂ζ χ = 0
by associativity and because ∂ζ χ = 0. Hence, we are left with

χ (∂ρ(X χ )) ¡ ζ χ = χ   ℓ j=1 (-1) j ρ((X χ ) j )   ¡ ζ χ ,
where (X χ ) j denotes the omission of the j-th element in the chain

x m > x m-1 > • • • > x m-ℓ+1 . Now, we have χ ρ((X χ ) 1 ) ¡ ζ χ ∼ χ (X χ ) 1 ¡ ζ χ ∼ ∂γ by induction.
For j ̸ = 1, declare χ = j χ ′ if they coincide in all but the j-th entry as in Lemma 5.2. Consider the equivalence classes Λ. Then

χ ρ(X χ ) j ¡ ζ χ = Λ ρ(X χ ) j ¡ χ∈Λ ζ χ ,
which is well-dened because ρ(X χ ) j only depends on the equivalence class Λ. But the last sum is 0 by Lemma 5.2. Hence χ ρ((X χ ) j ) ¡ ζ χ = 0 for j ̸ = 1 which nishes the proof.

□

We obtained:

Theorem 5.4. Consider a lattice L, and assume that 1 is an m-synor. Let ℓ ≤ m be a nonnegative integer.

Then any principal m-synor γ at 1 in L is homologous to a chain of the form λα ¡ β where λ are scalars, α are principal (m-ℓ)-chains and β are principal (ℓ-1)chains.

We obtain the proof of the Main Theorem: Assume that that L is a lattice such that Ľ has nontrivial (m -1)-homology. Then the associated principal synor chain is of the form as above. Hence, one of the summands must involve 1, which means that one of the (m -ℓ)-synors and one of the (ℓ -1)-synors has join 1. This nishes the proof.

Further applications

It is likely that we can achieve many more results regarding the Betti table just from this result. Let us give two more applications of the proven vanishing results: Corollary 6.1. Suppose z ∈ L is an (a + b -k)-synor for k ≤ a, b. Then z = x ∨ y for some a, b-synors x, y respectively, and hence t a+b-k ≤ t a + t b .

Proof. Suppose 1 is an (a + b -k)-synor, and let ζ be a principal synor (a + b -k -1) cycle in Ľ. By Lemma 5.3, we can express γ = 1 * ζ up to homologous equivalence in (L, Ľ) as γ ∼ χ ρ(X χ ) ¡ζ χ with ρ(X χ ) (a -1)synor chains and ζ χ (b -k) synor cycles, so for some order chain χ 0 we get 1 appearing as a join of synors in ρ(X χ 0 ) ¡ ζ χ 0 . We can similarly write γ ∼ χ ′ ρ(X χ ′ ) ¡ζ χ ′ with ρ(X χ ′ ) (a -k)-synors and ζ χ ′ (b -1)-synor cycles, with the order chains χ ′ containing b-synors in the (a -k + 1) th position. As χ and χ ′ agree in the rst (a -k + 1) positions, all order chains χ will contain a b-synor. Hence all the (b -k)-synors appearing in ζ χ 0 will have some b-synor above them in the lattice. As some synors from ζ χ 0 and ρ(X χ 0 ) have 1 as their join, so will the b-synors above ζ χ 0 and ρ(X χ 0 ). □ Corollary 6.2. Let a k denote the number of distinct shifts in homological degree k. If s ≤ t, then a s+t ≤ a s a t .

Proof. By the main theorem we know every (s + t)-synor is a join of an ssynor and a t-synor, and there are a s a t distinct pairs of s-and t-synors in L. Hence we get at most a s a t possibilities for distinct (s + t)-synors.

□

We note that subadditivity is a sharp inequality: for example the ideals I a = (x a 1 , . . . , x a n ) with a ≥ 1 in k[x 1 , . . . , x n ] satisfy t k = ak for all 0 ≤ k ≤ pd(I a ).

  Lemma 4.1. σ d-simplex containing τ λ σ,τ = 0.

Lemma 4. 2 .

 2 Consider ζ a d-cycle in S(P), and τ an order chain of length d. Then ζ τ,i = 0 for all i.

  Corollary 3.2. Consider a poset P and a simplicial homology cycle ζ within it. Then the ideal generated by ζ contains a synor cycle ζ in S(P) homologous to ζ, and the homology equivalence is realized within the ideal, that is, ζ and

ζ are homologous in P ≤ζ .

We say ζ is the relaxation of ζ. A weak relaxation is any simplicial homology cycle in the ideal P ≤ζ homologous to ζ in P ≤ζ ; intuitively it corresponds to nding a representative of a cycle somewhere lower in the poset. Let us note though that this does not induce a poset order on cycles as cycles can be weak relaxations of each other without being equal. Formally, a weak relaxation is any cycle ζ ′ homologous to ζ in P ≤ζ .
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