

From behaviour to complex communities: Resilience to anthropogenic noise in a fish-induced trophic cascade

Emilie Rojas, Mélanie Gouret, Simon Agostini, Sarah Fiorini, Paulo Fonseca,

Gérard Lacroix, Vincent Médoc

▶ To cite this version:

Emilie Rojas, Mélanie Gouret, Simon Agostini, Sarah Fiorini, Paulo Fonseca, et al.. From behaviour to complex communities: Resilience to anthropogenic noise in a fish-induced trophic cascade. Environmental Pollution, 2023, 335, pp.122371. 10.1016/j.envpol.2023.122371. hal-04307714

HAL Id: hal-04307714 https://hal.science/hal-04307714v1

Submitted on 23 Feb 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 TITLE

- 2 From behaviour to complex communities: Resilience to anthropogenic noise in a fish-induced
- 3 trophic cascade

4

5 AUTHORS & AFFILIATION

- 6 Emilie Rojas¹*, Mélanie Gouret¹, Simon Agostini², Sarah Fiorini², Paulo Fonseca³, Gérard
- 7 Lacroix², Vincent Médoc¹
- 8 ¹Equipe Neuro-Ethologie Sensorielle ENES / CRNL, CNRS, INSERM, University of Lyon /
- 9 Saint-Etienne, F-42023, Saint-Etienne, France
- 10 ²Centre de Recherche en Ecologie Expérimentale et Prédictive (CEREEP Ecotron Ile De
- 11 France), Ecole Normale Supérieure, CNRS-UMS 3194, PSL Research University, Saint-
- 12 Pierre-lès-Nemours, France
- ³Departamento de Biologia Animal, Faculdade de Cie□ncias, cE3c-Centre for Ecology,
- 14 Evolution and Environmental Changes, Universidade de Lisboa, Lisbon, Portugal
- 15
- 16 ORCID VM: 0000-0002-4888-1914
- 17 ORCID ER: 0000-0001-8236-0517
- 18 ORCID SF: 0000-0002-4882-9315
- 19
- 20 emilie.rojas@univ-st-etienne.fr
- 21 gouretmelanie@gmail.com
- 22 simon.agostini@bio.ens.psl.eu
- 23 sarah.fiorini@bio.ens.psl.eu

- 24 gerard.lacroix@bio.ens.psl.eu
- 25 pjfonseca@fc.ul.pt
- 26 vincent.medoc@univ-st-etienne.fr

27

28 CONTACT INFORMATION

- 29 *corresponding author: Emilie Rojas, Equipe Neuro-Ethologie Sensorielle ENES / CRNL,
- 30 CNRS, INSERM, University of Lyon / Saint-Etienne, Bâtiment K, 23 rue Paul Michelon,
- 31 42023 Saint-Etienne cedex 02, France
- 32 emilie.rojas@univ-st-etienne.fr
- 33 ORCID 0000-0001-8236-0517
- 34

35 KEY WORDS: chronic noise pollution, freshwater plankton, predation, mesocosms, Rutilus

36 *rutilus*, cascading effect

37

38 SUMMARY

39 Sound emissions from human activities represent a pervasive environmental stressor.

40 Individual responses in terms of behaviour, physiology or anatomy are well documented but

- 41 whether they propagate through nested ecological interactions to alter complex communities
- 42 needs to be better understood. This is even more relevant for freshwater ecosystems that
- 43 harbour a disproportionate fraction of biodiversity but receive less attention than marine and
- 44 terrestrial systems. We conducted a mesocosm investigation to study the effect of chronic
- 45 exposure to motorboat noise on the dynamics of a freshwater community including
- 46 phytoplankton, zooplankton, and roach as a planktivorous fish. As expected under the trophic

47	cascade hypothesis, roach predation induced structural changes in the planktonic
48	communities. Surprisingly, although roach changed their feeding behaviour in response to
49	noise, the dynamics of the roach-dominated planktonic communities did not differ between
50	noisy and noiseless mesocosms. This suggests that the top-down structuring influence of
51	roach on planktonic communities might be resilient to noise and reveals the difficulties on
52	extrapolating impacts form individual responses to complex communities.
53	
54	1. INTRODUCTION
55	
56	The trophic cascade, one of the most influential concepts in ecology, specifies the effects of
57	predators that propagate downward through food webs across multiple trophic levels [1,2].
58	Considering a series of nested consumer-resource interactions (i.e., a food chain), top
59	predators have a direct negative effect on mesopredators and indirect positive and negative
60	effects alternatively on lower trophic levels. Top-down cascade effects can result from
61	changes in predator density (density-mediated trophic cascade) or behaviour (trait-mediated
62	trophic cascade) and much attention has focused on identifying the intrinsic and extrinsic
63	determinants of their strength [3,4]. In particular, this helped to better understand the
64	structural impact of several anthropogenic stressors including warming, salinization,
65	chemical pollution or habitat degradation [5–7].
66	Noise emissions from transportation, cities, industry, military and recreational
67	activities represent another pervasive anthropogenic stressor [8,9]. They span all ecosystems
68	even in the most remote places [10] and have been shown to alter communication, social
69	interactions, use of space, activity patterns, foraging and reproduction in a wide range of taxa

70	[11–13]. First evidence of the cascading effects of noise pollution came from the long-term
71	investigations conducted in the natural gas fields of northwest New Mexico. Bird response to
72	gas-well-compressor noise was found species-specific with some key seed dispersers
73	(mountain bluebirds and Woodhouse's scrub-jays) avoiding noisy areas where pollinators
74	like hummingbirds had on the contrary higher reproductive success [14]. Long-term
75	consequences include alterations in plant communities that persist after removal of the noise
76	source [15]. The propensity of anthropogenic noise to indirectly affect species, and typically
77	primary producers, through a series of nested direct interactions had also been suggested
78	experimentally. Barton et al.[16] exposed a three-level terrestrial food chain to various
79	soundscapes for 14 days in plant growth chambers and found that urban sounds and rock
80	music made lady beetles less effective predators, reducing the strength of top-down control
81	on aphids, whose density increased. More aphids ultimately resulted in reduced soybean
82	biomass. Although freshwaters harbour a disproportionate fraction of earth's biodiversity
83	[17] and suffer a greater decline in species richness compared to terrestrial and marine
84	habitats [18,19], they often receive less attention, and research on the impacts of noise
85	pollution is no exception. For instance, we known that fish responses to noise include
86	changes in behaviour and abundances [20-23] but whether these effects spread along food
87	webs to alter planktonic communities through cascading effects remains to be investigated.
88	Similarly, the response of freshwater plankton to noise is largely overlooked. Available
89	evidence to date comes from water fleas, Daphnia spp., which are widespread pelagic
90	crustaceans (Cladocera) and an important source of food for upper trophic levels [24,25].
91	Surprisingly, knowing that marine invertebrates of similar size were found to adjust their
92	swimming activity in response to natural or artificial sounds [26], water fleas exposed to

93	band-pass filtered white noise either continuous or intermittent did not show any alteration in
94	swimming speed or depth [27,28]. However, long-term effects of chronic exposure on their
95	survival and reproductive success have yet to be explored, and overall, we lack knowledge on
96	the dynamics of plankton under anthropogenic noise. Here we conducted a mesocosm
97	investigation to study the temporal dynamics of a zooplankton – phytoplankton system under
98	the presence or absence of a planktivorous fish, with and without exposure to motorboat
99	noise. We used the roach Rutilus rutilus as top predator: a widespread Eurasian cyprinid fish
100	whose response to motorboat noise has been documented. Roach have specialized hearing
101	structures, the Weberian ossicles, that conduct sound from the swim-bladder to the inner ear
102	and provide high sensitivity to sound pressure [29–31]. They can detect sounds between 10
103	Hz and 5 kHz with a maximum sensitivity of 60 dB re. 1 μ Pa between 500 and 1000 Hz [32].
104	Roach have been found to respond to authentical motorboat sounds with fewer feeding
105	attempts, higher latency to enter the open area and longer time spent in the vegetation, and
106	these effects persisted after five days of exposure suggesting the absence of habituation [33].
107	After our mesocosm investigation, and in order to get insights into fish growth and behaviour,
108	the roach have been collected, weighted, and measured, and moved to aquaria to assess prey
109	consumption, mobility and group cohesion in the presence or absence of boat noise. Given
110	the lack of knowledge on how freshwater plankton respond to chronic noise exposure, we had
111	no clear prediction on the effect of boat noise on the dynamics of the zooplankton –
112	phytoplankton system without fish. Under the trophic cascade hypothesis, we expected roach
113	presence to reduce the top-down control of phytoplankton by zooplankton. Considering that
114	motorboat noise was found to negatively influence foraging in roach [33], we predicted a
115	decrease in the strength of top-down cascading effect. Concerning roach behaviour, we

- 116 expected behavioural alterations consistent with the weakening of the trophic cascade in the
- 117 noisy mesocosms.
- 118

119 2. MATERIALS AND METHOD

- 120
- 121 The investigation has been conducted at the PLANAQUA experimental platform of the
- 122 CEREEP-Ecotron Île-de-France research station (48° 16'10.92 N, 2° 43'50.879 E, Seine et
- 123 Marne, France) and lasted six weeks (August 31 October 14, 2020), which corresponds to a
- 124 prolonged exposure to motorboat noise following Johansson et al. (2016). We assigned three
- 125 mesocosms to one of four treatments (N = 3 replicates, 12 mesocosms in total): (1) no fish -
- 126 no noise, (2) no fish noise, (3) fish no noise, and (4) fish noise.
- 127
- 128 2.1 Preparation of the mesocosms and animal collection
- 129

- 131 storage lakes of the field station that naturally host zooplankton and phytoplankton
- 132 communities. An underwater loudspeaker (Electrovoice UW30) was submerged five cm
- 133 below the surface in the center of each mesocosm. It was connected to an amplifier (Dynavox
- 134 CS-PA 1MK) and then to an audio player (Handy's H4n zoom), both placed inside a
- 135 waterproof electric box next to the mesocosm. To promote the growth of phytoplankton, we
- 136 added 30 mL of Algoflash® (41.4 µg of phosphorus, nitrogen, and potassium per liter) at the
- 137 beginning of the investigation (August 20) and 50 additional mL at the middle of the
- 138 investigation (September 19) after we detected a drop in the amount of chlorophyll in the

139	mesocosms using a multiparameter probe (YSI ExO-2). From March to April 2020, we used
140	fish traps to gradually collect roach from the storage lakes of the PLANAQUA platform, and
141	we stored them in a pond containing the same planktonic communities as the mesocosms.
142	These fish were the descendants of roach used in previous investigations conducted on the
143	platform. They grew in quiet conditions and had never experienced motorboat noise before.
144	At Day 0, 96 roach of similar size $(8.54 \pm 2.32 \text{ cm} \text{ for standard length}, \text{SL})$ were randomly
145	collected from the storage pond using a seine net, measured, and weighted to the nearest 0.01
146	cm and 1 g, and distributed in groups of 16 between the six mesocosms (fish – no noise and
147	fish – noise treatments) so as to homogenize size distribution and total biomass between the
148	mesocosms. We placed anti-bird nets on top of the mesocosms to avoid avian predation.
149	
150	2.2 Plankton dynamics
151	
152	To assess plankton dynamics, we sampled the mesocosms 13 times from Day 0 to Day 42
153	and every two or four days. The temporal variation of phytoplankton was assessed through
154	the quantification of green algae, cyanobacteria, and diatom densities. We sampled eight
155	liters of water per mesocosm using a 2-L sampling bottle (Uwitec) at four different positions.
156	Analyses were made in the laboratory using a BBE FluoroProbe TM spectrofluorometer (BBE
157	Moldaenke GmbH, Schwentinental) on a 125-mL subsample previously kept in the dark for

158 one hour. For detecting potential top-down effects on zooplankton, we choose to focus on

- 159 mesoplankton organisms (Cladocera, copepodits and adults of Copepods, and *Chaoborus*
- 160 larvae), which appeared as the most responsive organisms in previous mesocosm experiments
- 161 realized in comparable conditions [34]. To assess their temporal variation in zooplankton, we

162	sampled 24 liters of water using a 2-L sampling bottle at twelve different positions and
163	depths in each mesocosm. Water was filtered with a 50- μ m nylon filter and zooplankton
164	fixed in 15-mL of 90% ethanol. Taxa identification and counting was made on a 3-mL
165	subsample following [35] for cladocerans and copepods (nauplii not counted), and [36] for
166	aquatic insects.
167	
168	2.3 Fish growth and behaviour
169	
170	The behavioural tests took place in an experimental room of the PLANAQUA platform
171	thermo-regulated at 17°C. We equipped four 110-L aquaria (80 cm length x 35 cm width x 40
172	cm height) with an underwater loudspeaker (Electrovoice UW30) in the middle of the left end
173	surrounded by acoustic foam (1.5-cm thick) to attenuate vibrations, a neon light, and a
174	camera (HD-TVI ABUS TVVR33418) above, and black plastic boards outside to avoid
175	visual contacts with the experimenters that may provide stress. The speaker was connected to
176	an amplifier (Dynavox CS-PA 1MK) and to an audio player (Handy's H4n zoom). The
177	aquaria were filled with water from the control mesocosms (no fish - no noise treatment)
178	filtered through a 50- μ m nylon mesh filter to remove zooplankton. This experimental design
179	allowed us to run four tests simultaneously with one treatment per aquarium depending on
180	the noise condition in the mesocosm and later in the aquarium ("mesocosm – aquarium"
181	noise conditions): (1) no noise – no noise, (2) no noise – noise, (3) noise – no noise and (4).
182	Between two consecutive runs of tests, each aquarium was assigned another treatment to
183	avoid an effect of the aquarium, while water was changed to remove chemical cues.

184	At the end of the mesocosm investigation (Day 44), roach were removed from the
185	mesocosms using a seine net and measured and weighted to the nearest 0.01 cm and 1 g. We
186	matched these values with the weights and lengths measured at the beginning of the
187	mesocosm investigation to recognize fish and calculate individual growth. Roach were then
188	randomly assigned to groups of three individuals and moved into one of the four
189	experimental aquaria. In total, we formed 28 groups ($N = 7$ replicates per treatment) with two
190	or three groups per mesocosm. Once in the aquarium, they first experienced ambient noise
191	during an acclimatization period of one hour, and then 40 minutes of either ambient noise or
192	ambient noise supplemented with motorboat sounds, depending on the treatment (see section
193	2.4 for further detail on the playback tracks). At the middle of the exposure period (i.e. after
194	20 min), we introduced 50 Chaoborus larvae (Diptera) and 50 Daphnia sp. (Crustacera:
195	Cladocera), previously collected from the control mesocosms using a 2-L sampling bottle and
196	50-µm nylon mesh filter. Both invertebrates are common prey of roach, differ in terms of size
197	and mobility, and were found in the mesocosms. Although Chaoborus larvae are natural
198	predators of Daphnia [37], we expected no predation events considering the short duration of
199	the experiment. At the end of the experiment, roach and invertebrates were removed from the
200	aquarium, counted, and returned to the storage pond. The videos were analyzed using
201	Kinovea v. 0.9.4 to get the xy coordinates of each fish each second and during each boat
202	sound (for a total of 691s and corresponding to ambient noise for the other treatment), and
203	then the following parameters were calculated: (1) the cumulative swimming distance (total
204	distance covered by the three individuals) as a proxy of mobility, (2) the distance between the
205	barycenter of each group and the center of the speaker as a proxy of aversion to noise, and (3)
206	the area occupied by the group as a proxy of group cohesion.

207 Group's barycenter was calculated using individual coordinates as follows:

208
$$X_{\text{barycenter}} = (X_{\text{fish1}} + X_{\text{fish2}} + X_{\text{fish3}}) / 3$$

209
$$Y_{\text{barycenter}} = (Y_{\text{fish1}} + Y_{\text{fish2}} + Y_{\text{fish3}}) / 3$$

210 The distance between the barycenter and the loudspeaker (D in cm) was calculated as

211 follows:

212
$$D = \sqrt{((X_{\text{barycenter}} - X_{\text{loudspeaker}})^2 + (Y_{\text{barycenter}} - Y_{\text{loudspeaker}})^2))}$$

213 Group's area (A in cm²) was calculated as follows:

214
$$A = \sqrt{((P^*(P - d_{\text{fish1-fish2}})^*(P - d_{\text{fish1-fish3}})^*(P - d_{\text{fish2-fish3}}))))}$$

215 Where *d* corresponds to the distance between two fish in cm and *P* to the perimeter of the

216 group in cm with:

217
$$P = \frac{1}{2} \left(d_{\text{fish1-fish2}} + d_{\text{fish1-fish3}} + d_{\text{fish2-fish3}} \right)$$

218 Group barycenter and area were calculated every second during the boat sounds and then

averaged.

220 The behavioural tests took place from 8 am to 6 pm and needed two consecutive days with

221 four mesocosms (two from the fish – no noise treatment and two from the fish – noise

treatment) processed on Day 43 and the two others (one *per* treatment) on Day 44. We also

223 conducted four additional tests (two per noise condition) without roach to control for

224 Chaoborus predation on Daphnia and overall invertebrate mortality in the absence of

predation.

226

227 2.4 Noise treatments

228

229	We used Audacity 2.2.1 to generate the audio tracks and an Aquarian Audio H2A-HLR
230	hydrophone (frequency response from 10 to 100 kHz) connected to a ZOOM H4next Handy
231	recorder for all the recordings. The level of background noise did not differ between the
232	mesocosms and ranged from 90 to 95 dB re. μ Pa. In the mesocosms without boat noise, a 1-
233	hr audio track of silence was looped continuously. In the mesocosms with boat noise, we
234	used the audio tracks described in [38] where 150 sounds of small recreational boats have
235	been distributed over the nine consecutive 1-hr audio tracks of silence going from 9 a.m. to 6
236	p.m. so as to mimic the daily activity of a small leisure base (Fig. 1A and Supp. Mat. 1, see
237	Rojas et al. 2021 for more details on the audio tracks and the original recordings). We
238	broadcasted silence the rest of the time. We applied a linear fading on both ends of the boat
239	sounds to make them emerge from background noise and adjusted their levels with Audacity
240	to obtain naturally occurring signal-to-noise ratios (SNR) ranging from 4.81 to 27 dB. We
241	used the SNR function of the seewave R package [39]:
242	$SNR = 20log_{10}(RMS_{boat \ sound}/RMS_{background \ noise})$
243	where RMS is the root-mean-square sound pressure of either the re-recordings of the boat
244	sounds in the mesocosm or the recording of background noise.
245	In the aquaria without boat noise and to encompass the 1-h acclimatization period and
246	the 40-min exposure period, we used a 100-min audio track of background noise previously
247	recorded in the center of one mesocosm from the no noise – no fish treatment. We adjusted
248	sound level to match that of the mesocosms. In the aquaria with boat noise, we used the 100-
249	min audio track of background noise to which we added twelve boat sounds randomly
250	selected from those broadcasted in the mesocosms. We randomly distributed the sounds over

the 40-min exposure period and adjusted their level to match the range of SNR values we had

in the mesocosms (approx. 4.81 to 27 dB). In terms of boat traffic, this acoustic regime was
representative of the highest activity that roach experienced within a day in the mesocosms
(Fig. 1B and Supp. Mat. 1).

255

256 2.5 Data analysis

257

258 All the statistics were performed using R [40] with a significance level of 0.05. We used the 259 Principal Response Curve (PRC, prc function of the vegan R package [41]) to study how the 260 planktonic communities exposed to roach, boat noise, or both, have diverged over time 261 compared to control communities (i.e. from the no fish - no noise treatment). PRC is a 262 special case of redundancy analysis including time-series data particularly suited to the study 263 of community dynamics in mesocosms [42]. It typically results in a diagram with one curve 264 for each treatment, the time on the x-axis, the first major component of the community effects 265 on the left y-axis and the weights of the taxa on the right y-axis. The more the weight 266 deviates from zero the more the corresponding taxon contributes to the deviation from the 267 control. We used Hellinger-transformed taxa (square root of the relative abundance) to reduce 268 the influence of both rare (low abundances and/or many zeros) and abundant taxa [43]. 269 Significance in the PRC was tested using a permutation test (*anova.cca* function of the *vegan* 270 R package) accounting for the non-independence of data due to repeated measurements on 271 the same mesocosm. Significance in the difference between each treatment and the control 272 was assessed with a multiple comparison test (multiconstrained function of the BiodiversityR 273 R package).

274 Roach' growth rate (*G*) was computed using the formulae:

275
$$G = (L_{\text{final}} - L_{\text{initial}}) / L_{\text{initial}} *100$$

where L_{final} and L_{initial} are the final and initial SL of roach, respectively.

Because growth data met the normality and homoscedasticity assumptions (Shapiro-Wilk and

Bartlett tests, all p values > 0.05), we used a linear mixed-effect model (*lme4* R package [44])

279 with the noise condition as fixed factor and the mesocosm as random factor to test for

280 significance of the difference in growth rate between the treatments.

277

- 281 The effects of noise and pre-exposure to noise on roach predation were assessed in
- two ways. First, we used a generalized linear mixed-effect model assuming a Poisson
- 283 distribution to explain the total number of prey eaten as a function of the noise condition in
- the mesocosm, the noise condition in the aquarium and their interaction as fixed factors, and
- the mesocosm ID as random factor. Second, we estimated the preference of roach for
- 286 *Daphnia* over *Chaoborus* larvae using the Manly's alpha (α) preference index [45,46]:

287
$$\alpha_{daphnia} = \ln(50 - N_{daphnia}) / (\ln(50 - N_{daphnia}) + \ln(50 - N_{chaoborus}))$$

where 50 is the initial number of each prey, and N_{daphnia} and $N_{\text{chaoborus}}$ the numbers of daphnia

and *Chaoborus* larvae eaten. The Manly's alpha accounts for prey depletion during the

290 predation test and ranges from zero when only the alternative prey (here *Chaoborus* larvae) is

291 eaten to one when only the focal prey (here *Daphnia*) is eaten. The value of 0.5 indicates a

lack of preference. As recommended by [47], we compared obtained values to the theoretical
value of 0.5 using *t* tests except for the "no fish – noise" treatment where we used a Wilcoxon

test to deal with the non-normality of data.

Roach behaviour was analyzed with model averaging and an information-theory approach. We used linear mixed-effect models to model each of the three response variables (cumulative swimming distance, distance to the speaker and area of the group) as a function of the noise condition in the mesocosm, the noise condition in the aquarium, the time, and taking the mesocosm ID as random factor as several groups came from the same mesocosm. Because the noise condition that roach have experienced in the mesocosm might have changed their response to boat noise in the aquarium and because the effect of time may vary

302	with the noise condition, we also included the interactions between the two noise treatments
303	and between each noise treatment and time in the predictors. All predictors were centered and
304	scaled using the standardization function of the arm R package. We ranked all the submodels
305	based on small sampled-corrected AIC values (AIC _c , <i>dredge</i> and <i>get.models</i> functions of the
306	MuMln Rpackage [48]) and performed model averaging on a confidence set of models using
307	a cut-off of 10 AIC _c (model.avg function of the AICcmodavg R package). The predictors
308	whose parameter estimate had a 95% confidence interval (CI) that included the value of zero
309	were considered as having no significant effect.
310	
311	3. RESULTS

The pelagic zooplankton communities of the mesocosms included four cladoceran families

312

313

- - -

314 (Bosminidae, Daphniidae, Sididae and Chydoridae), cyclopoid and calanoid copepods, 315 dipteran larvae of the genus Chaoborus, and some ostracods captured in the pelagic zone 316 although being mainly benthic organisms. The diagram of the PRC analysis illustrates how 317 adding roach, boat noise or both make the planktonic communities gradually deviate over 318 time from those of the no fish – no noise treatment (i.e., control) considered as the baseline 319 (Fig. 2). Adding boat noise made the communities deviate from the control and adding roach 320 induced a larger deviation without variation between the two noise conditions (i.e., similar 321 trajectories, Fig. 2). Table 1A shows that 30% of total variance was attributed to time and 322 34% to the treatment regime, including its interaction with time. On the basis of the 323 permutation tests, the treatment regime as well as time and their interaction had a significant 324 influence on the community dynamics (Table 1B). The pairwise comparisons revealed that 325 the difference between the two treatments with roach (with or without noise) was the only to

326	be not significant (Table 1C). Bosminidae and in a lesser extent Chydoridae, both copepod
327	taxa and green algae are indicated with a positive taxon weight in the PRC, suggesting they
328	were expected to increase in abundance with the treatments relative to the control and in
329	proportion to their weight. On the other hand, Daphniidae and, to a lesser extent ostracod,
330	Sididae and Chaoborus larvae exhibited negative species weights and were expected to
331	decrease in abundance with the treatments. The taxa weights of diatoms and cyanobacteria
332	were the smallest and close to zero (Fig. 2).
333	Individual fish growth did not significantly differ between the noise conditions (χ_1^2 =
334	1.4813 and $p = 0.2236$, Fig. 3). In the absence of roach, prey survival in the aquaria was
335	100% for both prey in the absence of boat noise, and 100% for Chaoborus larvae and 98%
336	for Daphnia in the presence of boat noise. We therefore considered prey mortality during the
337	predation tests to be the result of fish predation only. The effect of noise on the total number
338	of consumed prey depended on the noise condition in the mesocosms, with significantly less
339	prey consumed only for roach coming from the noiseless mesocosms ($\chi_1^2 = 18.36$ and $p <$
340	0.001 for the interaction between the two noise conditions, Fig. 4A). Whatever the noise
341	condition in the mesocosm, the Manly's alpha index did not differ from the theoretical value
342	of 0.5 in noiseless aquaria ($t = 1.36$ and $p = 0.22$ for ambient noise, $t = -0.32$ and $p = 0.76$ for
343	boat noise) but was significantly higher with boat noise ($V = 27$ and $p = 0.03$ for ambient
344	noise, $t = 3.10$ and $p = 0.02$ for boat noise, Fig. 4B). Concerning the cumulative swimming
345	distance and the distance to the speaker, the 95% CI of the parameter estimate included the
346	value of zero for all the predictors. Concerning the area occupied by the group, boat noise in
347	the aquarium and time were the only predictors whose parameter estimate 95% CI did not
348	include the value of zero, with significantly positive values (Fig. 5).

349

350 4. DISCUSSION

351

352	Exposure to anthropogenic noise is known to elicit physiological or behavioural responses in
353	individual organisms [8,11–13,22]. But to what extent these alterations spread across
354	ecological interactions to alter community dynamics and ecosystem functions is not clear. We
355	conducted a mesocosm investigation to study the impact of chronic exposure to motorboat
356	noise on the dynamics of a zooplankton – phytoplankton system either alone or dominated by
357	a planktivorous fish. Although we detected alterations in fish feeding and behaviour, the
358	strength of top-down control and its consequences on the structure of the planktonic
359	communities were resilient to motorboat noise. This suggests that individual responses to
360	noise do not necessarily result in ecological effects at the level of communities.
361	The pelagic mesoplankton communities of our mesocosms were dominated by
362	cladocerans and copepods, two major groups of herbivorous microcrustaceans widespread in
363	freshwater bodies. In smaller proportions, they also included ostracods (coming from the
364	benthic areas of the mesocosms), and predatory larvae of the Chaoborus genus, known to
365	feed on small zooplankton [49]. In fishless mesocosms, daphnid cladocerans gradually
366	became the most abundant taxa. Compared to copepods, cladocerans have higher
367	reproduction rates. Moreover, because daphnids are the largest cladocerans, they suffer
368	smaller predation risk by Chaoborus larvae than the other cladocerans [50]. The presence of
369	roach made the planktonic communities gradually deviate from those of the fishless
370	communities with a shift in the dominant taxon of zooplankton from daphnids to bosminids
371	whose abundance greatly increased. Visual-feeding fish like roach tend to prefer large

372	zooplankton [51] and it might be that selective predation on the two largest taxa: Chaoborus
373	larvae and daphnids, has released bosminids from predation and competition. Alteration in
374	the daphnids – bosminids balance is symptomatic of fish presence [52]. To a lesser extent,
375	copepods and Chydoridae have also benefited from the roach-induced decrease in daphnids.
376	This might be explained by the greater availability of food resources like green algae, which
377	slightly increased in the presence of roach, but also rotifers that represent another important
378	taxon of freshwater zooplankton. Due to their small size, we did not count the number of
379	rotifers but they are known to increase in the presence of fish because of the removal of large
380	cladocerans [53]. The slight increase in green algae in the presence of roach is consistent with
381	the trophic cascade hypothesis: fish have a negative direct effect on zooplankton (here
382	daphnids) and indirectly benefit phytoplankton that is released from grazing [34]. Another
383	way roach can influence the planktonic communities is through the modulation of diel
384	migration patterns. Indeed, some taxa migrate to the bottom under chemical cues by predators
385	and become less frequent in the pelagic realm [54].
386	Motorboat noise did not alter the top-down structuring effect of roach on the
387	planktonic communities and particularly the shift from daphnids to bosminids. This suggests
388	that chronic exposure to noise had no effect on the feeding behaviour of roach, which is
389	consistent with the absence of difference in growth rate between the two noise conditions.
390	This is also consistent with the total number of prey eaten recorded during the predation tests,
391	which was significantly reduced by motorboat noise for the roach that never experienced boat
392	noise before but not for those pre-exposed to boat noise in the mesocosms. Weakening of the
393	response to noise after repeated exposure has been reported in other fish species [38,55,56],
394	and might reflect habituation through associative learning: naïve animals first allocate

395	attention to noise at the expense of other activities like feeding, and then resume normal
396	behaviour as they learn that it is not associated with any threat. However, when looking
397	closer to what has been eaten, we found motorboat noise to elicit selective preference for
398	daphnids over Chaoborus larvae even for roach pre-exposed to boat noise in the mesocosm.
399	This persistent response could find its origin in behaviour. Concerning invertebrates,
400	although we did not record their behaviour, we know from past investigations that motorboat
401	noise did not alter the mobility of daphnids [27] but triggers body rotations in Chaoborus
402	larvae [38], interpreted as an anti-predatory response [57,58] that could have driven the
403	choice of roach towards daphnids. Concerning roach behaviour, we found no alteration in
404	mobility and no evidence for any avoidance of the sound source, but the area occupied by the
405	three individuals was larger under motorboat noise. This effect seems to be persistent as it
406	was also observed with the roach pre-exposed to boat noise in the mesocosms. Similarly,
407	playback of pile driving was found to make juveniles of seabass les cohesive [59]. Noise
408	could mask the perception of nearest neighbours' movements through the lateral line or
409	impair the ability to process sensory information as a consequence of stress and/or distraction
410	[59]. Compared to stress or distraction, masking does not weaken with repeated exposure.
411	This could explain why the reduced group cohesion was also observed in the roach that
412	experienced motorboat noise in the mesocosms. Disruption of group cohesion could
413	ultimately compromise the benefits of grouping associated with the dilution and confusion
414	effects [60]. Regarding feeding, we can expect the strength of intra-specific competition to
415	decrease with the distance between individuals. Together with the lesser catchability of
416	moving Chaoborus larvae, this could explain why the roach showed selective preference for
417	daphnids under motorboat noise. At the level of communities, a selective preference for

418 daphnids, which were the main grazers, should have strengthened the trophic cascade, what 419 we did not observe. The change in feeding we found in the aquaria may not have been strong 420 enough to be detected in the mesocosms or maybe does not occur in a larger and more 421 complex environment where other prey items are available. 422 In the fishless mesocosms, adding motorboat noise induced a small but detectable 423 deviation from the control communities. This is interesting but also tricky to interpret since 424 very little is known on the response of freshwater plankton to chronic anthropogenic noise. 425 *Chaoborus* larvae occupied the highest trophic level of the fishless communities and we 426 know that they are sensitive to motorboat sounds with more body rotations [38], interpreted 427 as an anti-predatory response [58]. If noise also interferes with prey processing and reduces 428 the capture efficiency of *Chaoborus* larvae, then it could be beneficial to small zooplankton. 429 Noise could also trigger vertical migration to the bottom, as chemical cues from predators do 430 [54], making some taxa like ostracods less detectable in the pelagic realm. Additional long-431 term investigations in mesocosms but also *in situ* are needed to better understand the response 432 of planktonic communities to chronic anthropogenic noise. 433 Our investigation illustrates how extrapolating the impact of anthropogenic noise 434 from individual responses to complex communities if far from obvious. Although we 435 observed persistent alterations in roach behaviour with less group cohesion and altered 436 feeding preference, these effects did not propagate downward along the food chain through 437 trait-mediated cascading effects. A valuable perspective would be to study the dynamics of 438 roach under chronic anthropogenic noise to test whether the behavioural responses we 439 observed ultimately decrease survival and/or reproductive success [61], and result in density-

440 mediated cascading effects.

441

442 ACKNOWLEDGEMENTS

- 443 We thank the CEREEP Ecotron Ile-De-France (CNRS/ENS UMS 3194) for access to the
- 444 PLANAQUA experimental facilities and help during the experiments. A special thanks to
- 445 Beatriz Decencière and Jacques Mériguet for their help in the realization of the experiment.
- 446 We are also grateful to Mathieu Mullot for assistance during the PRC analysis.

447

448 ETHIC STATEMENTS

- All the procedures were conducted in accordance with appropriate European (Directive
- 450 2010/63/EU) and French national guidelines, permits, and regulations regarding animal care
- 451 and experimental use (Approval no. C42-218-0901).
- 452

453 FUNDING

- 454 The project was funded by the Université Jean Monnet Saint-Etienne. MG's gratifications
- 455 were funded by the Fondation pour la Recherche sur la Biodiversité (Appel Masters 2019).
- 456 PF's stay on the PLANAQUA platform was funded by the AQUACOSM network
- 457 (Transnational Access).
- 458

459 CONFLICT OF INTEREST

460 The authors declare that they have no conflicts of interest.

461

462 DATA AVAILABILITY

463 The data that support the findings of this study are open available in Zenodo at

464 https://doi.org/10.5281/zenodo.6760791.

465

466

467 FIGURE LEGENDS

468

469 Figure 1: Sound spectra of the two noise conditions (control: dashed lines, boat noise: one

470 solid lines for each hour from 9 am to 6 pm) broadcasted in A) the mesocosms and B) the

- 471 aquaria. Spectra were made from 1-hour recordings in the mesocosms and 20-min recordings
- in the aquaria.

473

```
474 Figure 2: Principal Response Curve (PRC) showing the effects of adding fish (squares),
```

475 motorboat noise (dots) or both (triangles) on freshwater plankton communities compared to

476 control communities (no fish – no noise, horizontal line, see text for further detail). Species

477 weights are on the left axis (bos: Bosminidae, cyclo: cyclopoid copepods, cala: calanoid

478 copepods, chydo: Chydoridae, green: green algae, diat: diatoms, cyano: cyanobacteria, sidi:

479 Sididae, chao: Chaoborus larvae, ostra: ostracods, daph: Daphniidae). See Table 1 for the

480 percentages of variance accounted for and the significance levels.

- 481
- 482 Figure 3: Fish growth rates (medians and interquartile ranges) in the mesocosms depending
- 483 on the noise condition (white box: ambient, grey box: boat noise, n = 48 per condition).

484

485	Figure 4: Results of the predation tests in aquaria with A) the total number of prey eaten <i>per</i>
486	group of three fish (n=7 groups per acoustic mesocosm-aquarium treatment) presented to 50
487	Daphnia and 50 Chaoborus larvae and B) the Manly's alpha preference index for Daphnia
488	over Chaoborus larvae (medians and interquartile ranges) as a function of the noise condition
489	previously experienced in the mesocosms and the noise condition in the aquaria (white box:
490	ambient, grey box: boat noise).
491	
492	Figure 5: Model-averaged coefficient estimates and 95% confidence intervals for the
493	predictors included in the confidence set of models explaining the behaviour of roach Rutilus
494	rutilus in groups of three individuals when feeding on Daphnia and Chaoborus larvae during
495	the predation tests in aquaria. We used as response variables A) the area of the group, B) the
496	cumulative swimming distance and C) the distance to the speaker. Predictors correspond to
497	the noise condition in the mesocosms (boat noise or ambient noise as control), the noise
498	condition in the aquaria of the predation tests (boat noise or ambient noise as control), the
499	time, and the two-way interactions between time and the noise condition in the two
500	experimental units and between the noise conditions of the two experimental units.
501	
502	
503	
504	
505	
506	
507	

 509 510 511 512 513 514 514 515 TABLE 516 517 Table 1: Results of the Principal Response Curve (PRC) for the effect of motorboat noise 518 (absence / presence) and fish (absence / presence, for a total of four treatments) on freshwater 519 planktonic communities. A) Proportion of the total variance explained by the constraints: 520 time, treatment, and their interaction, captured by the canonical 1st axis of the PRC. B) 521 Significance of the PRC diagram on the basis on the permutation test for Constrained 522 Correspondence Analysis (CCA, 999 permutations). C) Pairwise comparisons for all the 523 possible treatment combinations following a CCA analysis. 524 	508	
 510 511 512 513 514 515 516 517 Table 1: Results of the Principal Response Curve (PRC) for the effect of motorboat noise 518 (absence / presence) and fish (absence / presence, for a total of four treatments) on freshwater 519 planktonic communities. A) Proportion of the total variance explained by the constraints: 520 time, treatment, and their interaction, captured by the canonical 1st axis of the PRC. B) 521 Significance of the PRC diagram on the basis on the permutation test for Constrained 522 Correspondence Analysis (CCA, 999 permutations). C) Pairwise comparisons for all the 523 possible treatment combinations following a CCA analysis. 	509	
 511 512 513 514 515 TABLE 516 517 Table 1: Results of the Principal Response Curve (PRC) for the effect of motorboat noise 518 (absence / presence) and fish (absence / presence, for a total of four treatments) on freshwater 519 planktonic communities. A) Proportion of the total variance explained by the constraints: 520 time, treatment, and their interaction, captured by the canonical 1st axis of the PRC. B) 521 Significance of the PRC diagram on the basis on the permutation test for Constrained 522 Correspondence Analysis (CCA, 999 permutations). C) Pairwise comparisons for all the 523 possible treatment combinations following a CCA analysis. 	510	
 512 513 514 515 TABLE 516 517 Table 1: Results of the Principal Response Curve (PRC) for the effect of motorboat noise 518 (absence / presence) and fish (absence / presence, for a total of four treatments) on freshwater 519 planktonic communities. A) Proportion of the total variance explained by the constraints: 520 time, treatment, and their interaction, captured by the canonical 1st axis of the PRC. B) 521 Significance of the PRC diagram on the basis on the permutation test for Constrained 522 Correspondence Analysis (CCA, 999 permutations). C) Pairwise comparisons for all the 523 possible treatment combinations following a CCA analysis. 	511	
 513 514 515 TABLE 516 517 Table 1: Results of the Principal Response Curve (PRC) for the effect of motorboat noise 518 (absence / presence) and fish (absence / presence, for a total of four treatments) on freshwater 519 planktonic communities. A) Proportion of the total variance explained by the constraints: 520 time, treatment, and their interaction, captured by the canonical 1st axis of the PRC. B) 521 Significance of the PRC diagram on the basis on the permutation test for Constrained 522 Correspondence Analysis (CCA, 999 permutations). C) Pairwise comparisons for all the 523 possible treatment combinations following a CCA analysis. 	512	
 514 515 TABLE 516 517 Table 1: Results of the Principal Response Curve (PRC) for the effect of motorboat noise 518 (absence / presence) and fish (absence / presence, for a total of four treatments) on freshwater 519 planktonic communities. A) Proportion of the total variance explained by the constraints: 520 time, treatment, and their interaction, captured by the canonical 1st axis of the PRC. B) 521 Significance of the PRC diagram on the basis on the permutation test for Constrained 522 Correspondence Analysis (CCA, 999 permutations). C) Pairwise comparisons for all the 523 possible treatment combinations following a CCA analysis. 	513	
 TABLE Table 1: Results of the Principal Response Curve (PRC) for the effect of motorboat noise (absence / presence) and fish (absence / presence, for a total of four treatments) on freshwater planktonic communities. A) Proportion of the total variance explained by the constraints: time, treatment, and their interaction, captured by the canonical 1st axis of the PRC. B) Significance of the PRC diagram on the basis on the permutation test for Constrained Correspondence Analysis (CCA, 999 permutations). C) Pairwise comparisons for all the possible treatment combinations following a CCA analysis. 	514	
 516 517 Table 1: Results of the Principal Response Curve (PRC) for the effect of motorboat noise 518 (absence / presence) and fish (absence / presence, for a total of four treatments) on freshwater 519 planktonic communities. A) Proportion of the total variance explained by the constraints: 520 time, treatment, and their interaction, captured by the canonical 1st axis of the PRC. B) 521 Significance of the PRC diagram on the basis on the permutation test for Constrained 522 Correspondence Analysis (CCA, 999 permutations). C) Pairwise comparisons for all the 523 possible treatment combinations following a CCA analysis. 	515	TABLE
 Table 1: Results of the Principal Response Curve (PRC) for the effect of motorboat noise (absence / presence) and fish (absence / presence, for a total of four treatments) on freshwater planktonic communities. A) Proportion of the total variance explained by the constraints: time, treatment, and their interaction, captured by the canonical 1st axis of the PRC. B) Significance of the PRC diagram on the basis on the permutation test for Constrained Correspondence Analysis (CCA, 999 permutations). C) Pairwise comparisons for all the possible treatment combinations following a CCA analysis. 	516	
 (absence / presence) and fish (absence / presence, for a total of four treatments) on freshwater planktonic communities. A) Proportion of the total variance explained by the constraints: time, treatment, and their interaction, captured by the canonical 1st axis of the PRC. B) Significance of the PRC diagram on the basis on the permutation test for Constrained Correspondence Analysis (CCA, 999 permutations). C) Pairwise comparisons for all the possible treatment combinations following a CCA analysis. 	517	Table 1: Results of the Principal Response Curve (PRC) for the effect of motorboat noise
 planktonic communities. A) Proportion of the total variance explained by the constraints: time, treatment, and their interaction, captured by the canonical 1st axis of the PRC. B) Significance of the PRC diagram on the basis on the permutation test for Constrained Correspondence Analysis (CCA, 999 permutations). C) Pairwise comparisons for all the possible treatment combinations following a CCA analysis. 	518	(absence / presence) and fish (absence / presence, for a total of four treatments) on freshwater
 time, treatment, and their interaction, captured by the canonical 1st axis of the PRC. B) Significance of the PRC diagram on the basis on the permutation test for Constrained Correspondence Analysis (CCA, 999 permutations). C) Pairwise comparisons for all the possible treatment combinations following a CCA analysis. 	519	planktonic communities. A) Proportion of the total variance explained by the constraints:
 521 Significance of the PRC diagram on the basis on the permutation test for Constrained 522 Correspondence Analysis (CCA, 999 permutations). C) Pairwise comparisons for all the 523 possible treatment combinations following a CCA analysis. 524 	520	time, treatment, and their interaction, captured by the canonical 1st axis of the PRC. B)
 522 Correspondence Analysis (CCA, 999 permutations). C) Pairwise comparisons for all the 523 possible treatment combinations following a CCA analysis. 524 	521	Significance of the PRC diagram on the basis on the permutation test for Constrained
523 possible treatment combinations following a CCA analysis.524	522	Correspondence Analysis (CCA, 999 permutations). C) Pairwise comparisons for all the
524	523	possible treatment combinations following a CCA analysis.
	524	

525 A)

	Inertia	Proportion	Rank
Total	0.236	1	
Conditional	0.071	0.30	12
(% of the total variance explained by time)			
Constrained	0.085	0.36	11
(% of the total variance explained by time*treatment)			
Unconstrained	0.080	0.34	11

(% of the total variance not explained by predictors)		

526

527 B)

	Df	Variance	F	Pr(>F)
Treatment	3	0.04	19.28	0.001 ***
Time	1	0.06	77.32	0.001 ***
Treatment*Time	3	0.02	8.98	0.001 ***

528

529 <u>C)</u>

Pairwise comparison	Df	Sum of	F	Pr(>F)
		Sqs		
no fish - no noise	1	0.054	23.856	0.001 ***
fish - no noise				
no fish - no noise	1	0.011	4.801	0.003 **
no fish - noise				
no fish - no noise	1	0.059	22.593	0.001 ***
fish - noise				
fish - no noise	1	0.022	8.902	0.001 ***
no fish - noise				
fish - no noise	1	0.005	1.624	0.177
fish - noise				
no fish - noise	1	0.027	9.523	0.001 ***
fish - noise				

530

531

532	
533	
534	
535	
536	
530	
537	
538	
539	REFERENCES
540	
541	1. Fretwell SD. 1987 Food Chain Dynamics: The Central Theory of Ecology? <i>Oikos</i> 50 ,
542	291–301. (doi:10.2307/3565489)
543	2. Ripple WJ <i>et al.</i> 2016 What is a Trophic Cascade? <i>Trends in Ecology & Evolution</i> 31 ,
544	842-849. (doi:10.1016/j.tree.2016.08.010)
545	3. Schmitz OJ, Krivan V, Ovadia O. 2004 Trophic cascades: the primacy of trait-
546	mediated indirect interactions. Ecology Letters 7, 153-163. (doi:10.1111/j.1461-
547	0248.2003.00560.x)
548	4. Su H, Feng Y, Chen J, Chen J, Ma S, Fang J, Xie P. 2021 Determinants of trophic
549	cascade strength in freshwater ecosystems: a global analysis. Ecology 102, e03370.
550	(doi:10.1002/ecy.3370)
551	5. Hebblewhite M. 2005 Predation by Wolves Interacts with the North Pacific
552	Oscillation (NPO) on a Western North American Elk Population. Journal of Animal Ecology
553	74, 226–233.
554	6. Cheng BS, Grosholz ED. 2016 Environmental stress mediates trophic cascade
555	strength and resistance to invasion. Ecosphere 7, e01247. (doi:10.1002/ecs2.1247)
556	7. Duchet C <i>et al.</i> 2018 Pesticide-mediated trophic cascade and an ecological trap for
557	mosquitoes. Ecosphere 9, e02179. (doi:10.1002/ecs2.2179)
558	8. Sordello R, Ratel O, Flamerie De Lachapelle F, Leger C, Dambry A, Vanpeene S.
559	2020 Evidence of the impact of noise pollution on biodiversity: a systematic map.
560	Environmental Evidence 9, 20. (doi:10.1186/s13750-020-00202-y)
561	9. Duarte CM <i>et al.</i> 2021 The soundscape of the Anthropocene ocean. <i>Science</i> 371 ,
562	eaba4658. (doi:10.1126/science.aba4658)

- 563 10. Buxton RT, McKenna MF, Mennitt D, Fristrup K, Crooks K, Angeloni L, Wittemyer
- 564 G. 2017 Noise pollution is pervasive in U.S. protected areas. *Science* **356**, 531–533.
- 565 (doi:10.1126/science.aah4783)
- 566 11. Kight CR, Swaddle JP. 2011 How and why environmental noise impacts animals: an
- 567 integrative, mechanistic review. Ecology Letters 14, 1052–1061. (doi:10.1111/j.1461-
- 568 0248.2011.01664.x)
- 569 12. Francis CD, Barber JR. 2013 A framework for understanding noise impacts on
- 570 wildlife: an urgent conservation priority. Frontiers in Ecology and the Environment 11, 305–
- 571 313. (doi:10.1890/120183)
- 572 13. Shannon G et al. 2016 A synthesis of two decades of research documenting the
- 573 effects of noise on wildlife. *Biological Reviews* **91**, 982–1005. (doi:10.1111/brv.12207)
- 574 14. Francis CD, Kleist NJ, Ortega CP, Cruz A. 2012 Noise pollution alters ecological
- 575 services: enhanced pollination and disrupted seed dispersal. Proceedings of the Royal Society
- 576 *B: Biological Sciences* **279**, 2727–2735. (doi:10.1098/rspb.2012.0230)
- 577 15. Phillips JN, Termondt SE, Francis CD. 2021 Long-term noise pollution affects
- 578 seedling recruitment and community composition, with negative effects persisting after
- 579 removal. Proceedings of the Royal Society B: Biological Sciences 288, 20202906.
- 580 (doi:10.1098/rspb.2020.2906)
- 581 16. Barton BT, Hodge ME, Speights CJ, Autrey AM, Lashley MA, Klink VP. 2018
- 582 Testing the AC/DC hypothesis: Rock and roll is noise pollution and weakens a trophic
- 583 cascade. *Ecology and Evolution* **8**, 7649–7656. (doi:10.1002/ece3.4273)
- 584 17. Dudgeon D et al. 2006 Freshwater biodiversity: importance, threats, status and
- 585 conservation challenges. *Biological Reviews* **81**, 163–182.
- 586 (doi:10.1017/S1464793105006950)
- 587 18. Dudgeon D. 2019 Multiple threats imperil freshwater biodiversity in the
- 588 Anthropocene. *Current Biology* **29**, R960–R967. (doi:10.1016/j.cub.2019.08.002)
- 589 19. Maasri A *et al.* 2022 A global agenda for advancing freshwater biodiversity research.
- 590 *Ecology Letters* **25**, 255–263. (doi:10.1111/ele.13931)
- 591 20. Slabbekoorn H, Bouton N, van Opzeeland I, Coers A, ten Cate C, Popper AN. 2010 A
- 592 noisy spring: the impact of globally rising underwater sound levels on fish. *Trends in Ecology*
- 593 & Evolution 25, 419–427. (doi:10.1016/j.tree.2010.04.005)
- 594 21. Kunc HP, McLaughlin KE, Schmidt R. 2016 Aquatic noise pollution: implications for
- 595 individuals, populations, and ecosystems. Proceedings of the Royal Society B: Biological
- 596 *Sciences* **283**, 20160839. (doi:10.1098/rspb.2016.0839)

- 597 22. Cox K, Brennan LP, Gerwing TG, Dudas SE, Juanes F. 2018 Sound the alarm: A
- 598 meta-analysis on the effect of aquatic noise on fish behavior and physiology. *Global Change*
- 599 *Biology* **24**, 3105–3116. (doi:10.1111/gcb.14106)
- 600 23. Mickle MF, Higgs DM. 2018 Integrating techniques: a review of the effects of
- anthropogenic noise on freshwater fish. Canadian Journal of Fisheries and Aquatic Sciences
- 602 **75**, 1534–1541. (doi:10.1139/cjfas-2017-0245)
- 603 24. Lampert W. 2006 Daphnia: model herbivore, predator and prey. *Polish Journal of*
- 604 *Ecology* **54**, 607–620.
- 605 25. Reynolds CS. 2011 Daphnia: Development of Model Organism in Ecology and
- 606 Evolution 2011. Freshwater Reviews 4, 85–87. (doi:10.1608/FRJ-4.1.425)
- 607 26. Tidau S, Briffa M. 2016 Review on behavioral impacts of aquatic noise on
- crustaceans. *Proceedings of Meetings on Acoustics* 27, 010028. (doi:10.1121/2.0000302)
- 609 27. Sabet SS, Neo YY, Slabbekoorn H. 2015 The effect of temporal variation in sound
- 610 exposure on swimming and foraging behaviour of captive zebrafish. *Animal Behaviour* 107,
- 611 49–60. (doi:10.1016/j.anbehav.2015.05.022)
- 612 28. Sabet SS, Karnagh SA, Azbari FZ. 2019 Experimental test of sound and light
- 613 exposure on water flea swimming behaviour. Proceedings of Meetings on Acoustics 37,
- 614 010015. (doi:10.1121/2.0001270)
- 615 29. Hawkins A, Myrberg A. 1983 Hearing and sound communication underwater.
- 616 Bioacoustics, a comparative approach, Academic Press, London, 347–405.
- 617 30. Popper AN, Fay RR. 2011 Rethinking sound detection by fishes. *Hearing Research*
- 618 **273**, 25–36. (doi:10.1016/j.heares.2009.12.023)
- 619 31. Andersson MH, Dock-Akerman E, Ubral-Hedenberg R, Ohman MC, Sigray P. 2007
- 620 Swimming behavior of roach (Rutilus rutilus) and three-spined stickleback (Gasterosteus
- 621 aculeatus) in response to wind power noise and single-tone frequencies. *Ambio* **36**, 636–638.
- 622 (doi:10.1579/0044-7447(2007)36[636:sborrr]2.0.co;2)
- 623 32. Amoser S, Wysocki LE, Ladich F. 2004 Noise emission during the first powerboat
- 624 race in an Alpine lake and potential impact on fish communities. *The Journal of the*
- 625 Acoustical Society of America **116**, 3789–3797. (doi:10.1121/1.1808219)
- 626 33. Magnhagen C, Johansson K, Sigray P. 2017 Effects of motorboat noise on foraging
- 627 behaviour in Eurasian perch and roach: a field experiment. *Marine Ecology Progress Series*
- 628 **564**, 115–125. (doi:10.3354/meps11997)
- 629 34. Bertolo A, Lacroix G, Lescher-Moutouš F, Sala S. 1999 Effects of physical refuges
- on fish-plankton interactions. Freshwater Biology 41, 795-808. (doi:10.1046/j.1365-

631 2427.1999.00424.x)

- 632 35. Haney JF, et al. 2013 'An-Image-based Key to the Zooplankton of North America'
- 633 version 5.0 released in 2013. University of New Hampshire Center for Freshwater Biology.
- 634 See http://cfb.unh.edu/cfbkey/html/index.html.
- 635 36. Winterbourn MJ, Winterbourn G, Katharine L, Katharine D, Heath C. 1989 Guide to
- 636 *the aquatic insects of New Zealand*. Entomological Society of New Zealand Auckland.
- 637 37. Spitze K. 1991 Chaoborus predation and life-history evolution in Daphnia pulex:
- temporal pattern of population diversity, fitness, and mean life history. *Evolution* **45**, 82–92.
- 639 (doi:10.1111/j.1558-5646.1991.tb05268.x)
- 640 38. Rojas E, Thévenin S, Montes G, Boyer N, Médoc V. 2021 From distraction to
- habituation: Ecological and behavioural responses of invasive fish to anthropogenic noise.
- 642 *Freshwater Biology* **66**, 1606–1618. (doi:10.1111/fwb.13778)
- 643 39. Sueur J, Aubin T, Simonis C. 2008 Seewave, a free modular tool for sound analysis
- and synthesis. *Bioacoustics* **18**, 213–226. (doi:10.1080/09524622.2008.9753600)
- 645 40. R Core Team. 2021 R: A Language and Environment for Statistical Computing.
- 646 Vienna, Austria: R Foundation for Statistical Computing. See https://www.R-project.org/.
- 647 41. Oksanen J et al. 2013 vegan: Community Ecology Package. Community ecology
- 648 *package, version* **2**, 1–295.
- 649 42. Van den Brink PJ, Braak CJFT. 1999 Principal response curves: Analysis of time-
- 650 dependent multivariate responses of biological community to stress. *Environmental*
- 651 *Toxicology and Chemistry* **18**, 138–148. (doi:10.1002/etc.5620180207)
- 43. Legendre P, Gallagher ED. 2001 Ecologically meaningful transformations for
- ordination of species data. *Oecologia* **129**, 271–280. (doi:10.1007/s004420100716)
- 44. Bates D, Maechler M, Bolker B, Walker S. 2015 Fitting Linear Mixed-Effects Models
- Using lme4. Journal of Statistical Software 67, 1–48. (doi:10.18637/jss.v067.i01)
- 45. Manly BFJ. 1974 A Model for Certain Types of Selection Experiments. *Biometrics*
- 657 **30**, 281–294. (doi:10.2307/2529649)
- 658 46. Chesson J. 1983 The Estimation and Analysis of Preference and Its Relatioship to
 659 Foraging Models, *Ecology* 64, 1297–1304. (doi:10.2307/1937838)
- 659 Foraging Models. *Ecology* **64**, 1297–1304. (doi:10.2307/1937838)
- 660 47. Manly BFJ. 1995 A Note on the Analysis of Species Co-Occurrences. *Ecology* **76**,
- 661 1109–1115. (doi:10.2307/1940919)
- 48. Barton K. 2009 MuMIn: Multi-Model Inference. See http://r-forge. r-project.
- 663 org/projects/mumin/.
- 664 49. Elser MM, Ende CN von, Sorrano P, Carpenter SR. 1987 Chaoborus populations:

- 665 response to food web manipulation and potential effects on zooplankton communities.
- 666 *Canadian Journal of Zoology* **65**, 2846–2852. (doi:10.1139/z87-433)
- 667 50. Jäger IS, Hölker F, Flöder S, Walz N. 2011 Impact of Chaoborus flavicans -Predation
- on the Zooplankton in a Mesotrophic Lake a Three Year Study. *International Review of*
- 669 *Hydrobiology* **96**, 191–208. (doi:10.1002/iroh.201011253)
- 51. Jarolím O, Kubečka J, Čech M, Vašek M, Peterka J, Matěna J. 2010 Sinusoidal
- 671 swimming in fishes: the role of season, density of large zooplankton, fish length, time of the
- 672 day, weather condition and solar radiation. *Hydrobiologia* **654**, 253–265.
- 673 (doi:10.1007/s10750-010-0398-1)
- 52. Post JR, McQueen DJ. 1987 The impact of planktivorous flsh on the structure of a
- 675 plankton community. Freshwater Biology 17, 79–89. (doi:10.1111/j.1365-
- 676 2427.1987.tb01030.x)
- 677 53. Gilbert JJ. 1988 Suppression of rotifer populations by Daphnia: A review of the
- evidence, the mechanisms, and the effects on zooplankton community structure1. *Limnology*
- 679 *and Oceanography* **33**, 1286–1303. (doi:10.4319/lo.1988.33.6.1286)
- 680 54. Cohen JH, Forward RB. 2016 Zooplankton diel vertical migration A review of
 681 proximate control. *Oceanography and marine biology* 47, 89–122.
- 55. Nedelec SL, Mills SC, Lecchini D, Nedelec B, Simpson SD, Radford AN. 2016
- 683 Repeated exposure to noise increases tolerance in a coral reef fish. *Environmental Pollution*
- 684 **216**, 428–436. (doi:10.1016/j.envpol.2016.05.058)
- 56. Neo YY, Hubert J, Bolle LJ, Winter HV, Slabbekoorn H. 2018 European seabass
- respond more strongly to noise exposure at night and habituate over repeated trials of sound
- 687 exposure. Environmental Pollution 239, 367–374. (doi:10.1016/j.envpol.2018.04.018)
- 688 57. Berendonk TU, O'Brien WJ. 1996 Movement response of Chaoborus to chemicals
- from a predator and prey. *Limnology and Oceanography* **41**, 1829–1832.
- 690 (doi:10.4319/lo.1996.41.8.1829)
- 691 58. Burrows M, Dorosenko M. 2014 Rapid swimming and escape movements in the
- 692 aquatic larvae and pupae of the phantom midge Chaoborus crystallinus. Journal of
- 693 *Experimental Biology* **217**, 2468–2479. (doi:10.1242/jeb.102483)
- 694 59. Herbert-Read JE, Kremer L, Bruintjes R, Radford AN, Ioannou CC. 2017
- 695 Anthropogenic noise pollution from pile-driving disrupts the structure and dynamics of fish
- 696 shoals. *Proceedings of the Royal Society B: Biological Sciences* **284**, 20171627.
- 697 (doi:10.1098/rspb.2017.1627)
- 698 60. Krause J, Ruxton GD, Ruxton G, Ruxton IG. 2002 Living in groups. Oxford

- 699 University Press.
- 700 61. Amorim MCP et al. 2022 Boat noise impacts Lusitanian toadfish breeding males and
- reproductive outcome. *Science of The Total Environment* **830**, 154735.
- 702 (doi:10.1016/j.scitotenv.2022.154735)
- 703
- 704
- 705
- 706
- 707

Days

Fig. 2

- /10

739