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SUMMARY 38 

Sound emissions from human activities represent a pervasive environmental stressor. 39 

Individual responses in terms of behaviour, physiology or anatomy are well documented but 40 

whether they propagate through nested ecological interactions to alter complex communities 41 

needs to be better understood. This is even more relevant for freshwater ecosystems that 42 

harbour a disproportionate fraction of biodiversity but receive less attention than marine and 43 

terrestrial systems. We conducted a mesocosm investigation to study the effect of chronic 44 

exposure to motorboat noise on the dynamics of a freshwater community including 45 

phytoplankton, zooplankton, and roach as a planktivorous fish. As expected under the trophic 46 
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cascade hypothesis, roach predation induced structural changes in the planktonic 47 

communities. Surprisingly, although roach changed their feeding behaviour in response to 48 

noise, the dynamics of the roach-dominated planktonic communities did not differ between 49 

noisy and noiseless mesocosms. This suggests that the top-down structuring influence of 50 

roach on planktonic communities might be resilient to noise and reveals the difficulties on 51 

extrapolating impacts form individual responses to complex communities.  52 

 53 

1. INTRODUCTION 54 

 55 

The trophic cascade, one of the most influential concepts in ecology, specifies the effects of 56 

predators that propagate downward through food webs across multiple trophic levels [1,2]. 57 

Considering a series of nested consumer-resource interactions (i.e., a food chain), top 58 

predators have a direct negative effect on mesopredators and indirect positive and negative 59 

effects alternatively on lower trophic levels. Top-down cascade effects can result from 60 

changes in predator density (density-mediated trophic cascade) or behaviour (trait-mediated 61 

trophic cascade) and much attention has focused on identifying the intrinsic and extrinsic 62 

determinants of their strength [3,4]. In particular, this helped to better understand the 63 

structural impact of several anthropogenic stressors including warming, salinization, 64 

chemical pollution or habitat degradation [5–7].   65 

Noise emissions from transportation, cities, industry, military and recreational 66 

activities represent another pervasive anthropogenic stressor [8,9]. They span all ecosystems 67 

even in the most remote places [10] and have been shown to alter communication, social 68 

interactions, use of space, activity patterns, foraging and reproduction in a wide range of taxa 69 
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[11–13]. First evidence of the cascading effects of noise pollution came from the long-term 70 

investigations conducted in the natural gas fields of northwest New Mexico. Bird response to 71 

gas-well-compressor noise was found species-specific with some key seed dispersers 72 

(mountain bluebirds and Woodhouse’s scrub-jays) avoiding noisy areas where pollinators 73 

like hummingbirds had on the contrary higher reproductive success [14]. Long-term 74 

consequences include alterations in plant communities that persist after removal of the noise 75 

source [15]. The propensity of anthropogenic noise to indirectly affect species, and typically 76 

primary producers, through a series of nested direct interactions had also been suggested 77 

experimentally. Barton et al.[16] exposed a three-level terrestrial food chain to various 78 

soundscapes for 14 days in plant growth chambers and found that urban sounds and rock 79 

music made lady beetles less effective predators, reducing the strength of top-down control 80 

on aphids, whose density increased. More aphids ultimately resulted in reduced soybean 81 

biomass. Although freshwaters harbour a disproportionate fraction of earth’s biodiversity 82 

[17] and suffer a greater decline in species richness compared to terrestrial and marine 83 

habitats [18,19], they often receive less attention, and research on the impacts of noise 84 

pollution is no exception. For instance, we known that fish responses to noise include 85 

changes in behaviour and abundances [20–23] but whether these effects spread along food 86 

webs to alter planktonic communities through cascading effects remains to be investigated. 87 

Similarly, the response of freshwater plankton to noise is largely overlooked. Available 88 

evidence to date comes from water fleas, Daphnia spp., which are widespread pelagic 89 

crustaceans (Cladocera) and an important source of food for upper trophic levels [24,25]. 90 

Surprisingly, knowing that marine invertebrates of similar size were found to adjust their 91 

swimming activity in response to natural or artificial sounds [26], water fleas exposed to 92 
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band-pass filtered white noise either continuous or intermittent did not show any alteration in 93 

swimming speed or depth [27,28]. However, long-term effects of chronic exposure on their 94 

survival and reproductive success have yet to be explored, and overall, we lack knowledge on 95 

the dynamics of plankton under anthropogenic noise. Here we conducted a mesocosm 96 

investigation to study the temporal dynamics of a zooplankton – phytoplankton system under 97 

the presence or absence of a planktivorous fish, with and without exposure to motorboat 98 

noise. We used the roach Rutilus rutilus as top predator: a widespread Eurasian cyprinid fish 99 

whose response to motorboat noise has been documented. Roach have specialized hearing 100 

structures, the Weberian ossicles, that conduct sound from the swim-bladder to the inner ear 101 

and provide high sensitivity to sound pressure [29–31]. They can detect sounds between 10 102 

Hz and 5 kHz with a maximum sensitivity of 60 dB re. 1 µPa between 500 and 1000 Hz [32]. 103 

Roach have been found to respond to authentical motorboat sounds with fewer feeding 104 

attempts, higher latency to enter the open area and longer time spent in the vegetation, and 105 

these effects persisted after five days of exposure suggesting the absence of habituation [33]. 106 

After our mesocosm investigation, and in order to get insights into fish growth and behaviour, 107 

the roach have been collected, weighted, and measured, and moved to aquaria to assess prey 108 

consumption, mobility and group cohesion in the presence or absence of boat noise. Given 109 

the lack of knowledge on how freshwater plankton respond to chronic noise exposure, we had 110 

no clear prediction on the effect of boat noise on the dynamics of the zooplankton – 111 

phytoplankton system without fish. Under the trophic cascade hypothesis, we expected roach 112 

presence to reduce the top-down control of phytoplankton by zooplankton. Considering that 113 

motorboat noise was found to negatively influence foraging in roach [33], we predicted a 114 

decrease in the strength of top-down cascading effect. Concerning roach behaviour, we 115 
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expected behavioural alterations consistent with the weakening of the trophic cascade in the 116 

noisy mesocosms.  117 

 118 

2. MATERIALS AND METHOD 119 

 120 

The investigation has been conducted at the PLANAQUA experimental platform of the 121 

CEREEP-Ecotron Île-de-France research station (48° 16'10.92 N, 2° 43'50.879 E, Seine et 122 

Marne, France) and lasted six weeks (August 31 – October 14, 2020), which corresponds to a 123 

prolonged exposure to motorboat noise following Johansson et al. (2016). We assigned three 124 

mesocosms to one of four treatments (N = 3 replicates, 12 mesocosms in total): (1) no fish - 125 

no noise, (2) no fish - noise, (3) fish – no noise, and (4) fish – noise.  126 

 127 

2.1 Preparation of the mesocosms and animal collection  128 

 129 

Each mesocosm (3.4 m diameter, 1.1 m depth) was filled with 9,079 L of water from the 130 

storage lakes of the field station that naturally host zooplankton and phytoplankton 131 

communities. An underwater loudspeaker (Electrovoice UW30) was submerged five cm 132 

below the surface in the center of each mesocosm. It was connected to an amplifier (Dynavox 133 

CS-PA 1MK) and then to an audio player (Handy's H4n zoom), both placed inside a 134 

waterproof electric box next to the mesocosm. To promote the growth of phytoplankton, we 135 

added 30 mL of Algoflash® (41.4 µg of phosphorus, nitrogen, and potassium per liter) at the 136 

beginning of the investigation (August 20) and 50 additional mL at the middle of the 137 

investigation (September 19) after we detected a drop in the amount of chlorophyll in the 138 
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mesocosms using a multiparameter probe (YSI ExO-2). From March to April 2020, we used 139 

fish traps to gradually collect roach from the storage lakes of the PLANAQUA platform, and 140 

we stored them in a pond containing the same planktonic communities as the mesocosms. 141 

These fish were the descendants of roach used in previous investigations conducted on the 142 

platform. They grew in quiet conditions and had never experienced motorboat noise before. 143 

At Day 0, 96 roach of similar size (8.54 ± 2.32 cm for standard length, SL) were randomly 144 

collected from the storage pond using a seine net, measured, and weighted to the nearest 0.01 145 

cm and 1 g, and distributed in groups of 16 between the six mesocosms (fish – no noise and 146 

fish – noise treatments) so as to homogenize size distribution and total biomass between the 147 

mesocosms. We placed anti-bird nets on top of the mesocosms to avoid avian predation. 148 

 149 

2.2 Plankton dynamics  150 

 151 

To assess plankton dynamics, we sampled the mesocosms 13 times from Day 0 to Day 42 152 

and every two or four days. The temporal variation of phytoplankton was assessed through 153 

the quantification of green algae, cyanobacteria, and diatom densities. We sampled eight 154 

liters of water per mesocosm using a 2-L sampling bottle (Uwitec) at four different positions. 155 

Analyses were made in the laboratory using a BBE FluoroProbeTM spectrofluorometer (BBE 156 

Moldaenke GmbH, Schwentinental) on a 125-mL subsample previously kept in the dark for 157 

one hour. For detecting potential top-down effects on zooplankton, we choose to focus on 158 

mesoplankton organisms (Cladocera, copepodits and adults of Copepods, and Chaoborus 159 

larvae), which appeared as the most responsive organisms in previous mesocosm experiments 160 

realized in comparable conditions [34]. To assess their temporal variation in zooplankton, we 161 
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sampled 24 liters of water using a 2-L sampling bottle at twelve different positions and 162 

depths in each mesocosm. Water was filtered with a 50-µm nylon filter and zooplankton 163 

fixed in 15-mL of 90% ethanol. Taxa identification and counting was made on a 3-mL 164 

subsample following [35] for cladocerans and copepods (nauplii not counted), and [36] for 165 

aquatic insects. 166 

 167 

2.3 Fish growth and behaviour 168 

 169 

The behavioural tests took place in an experimental room of the PLANAQUA platform 170 

thermo-regulated at 17°C. We equipped four 110-L aquaria (80 cm length x 35 cm width x 40 171 

cm height) with an underwater loudspeaker (Electrovoice UW30) in the middle of the left end 172 

surrounded by acoustic foam (1.5-cm thick) to attenuate vibrations, a neon light, and a 173 

camera (HD-TVI ABUS TVVR33418) above, and black plastic boards outside to avoid 174 

visual contacts with the experimenters that may provide stress. The speaker was connected to 175 

an amplifier (Dynavox CS-PA 1MK) and to an audio player (Handy's H4n zoom). The 176 

aquaria were filled with water from the control mesocosms (no fish – no noise treatment) 177 

filtered through a 50-µm nylon mesh filter to remove zooplankton. This experimental design 178 

allowed us to run four tests simultaneously with one treatment per aquarium depending on 179 

the noise condition in the mesocosm and later in the aquarium (“mesocosm – aquarium” 180 

noise conditions): (1) no noise – no noise, (2) no noise – noise, (3) noise – no noise and (4). 181 

Between two consecutive runs of tests, each aquarium was assigned another treatment to 182 

avoid an effect of the aquarium, while water was changed to remove chemical cues.  183 
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At the end of the mesocosm investigation (Day 44), roach were removed from the 184 

mesocosms using a seine net and measured and weighted to the nearest 0.01 cm and 1 g. We 185 

matched these values with the weights and lengths measured at the beginning of the 186 

mesocosm investigation to recognize fish and calculate individual growth. Roach were then 187 

randomly assigned to groups of three individuals and moved into one of the four 188 

experimental aquaria. In total, we formed 28 groups (N = 7 replicates per treatment) with two 189 

or three groups per mesocosm. Once in the aquarium, they first experienced ambient noise 190 

during an acclimatization period of one hour, and then 40 minutes of either ambient noise or 191 

ambient noise supplemented with motorboat sounds, depending on the treatment (see section 192 

2.4 for further detail on the playback tracks). At the middle of the exposure period (i.e. after 193 

20 min), we introduced 50 Chaoborus larvae (Diptera) and 50 Daphnia sp. (Crustacera: 194 

Cladocera), previously collected from the control mesocosms using a 2-L sampling bottle and 195 

50-µm nylon mesh filter. Both invertebrates are common prey of roach, differ in terms of size 196 

and mobility, and were found in the mesocosms. Although Chaoborus larvae are natural 197 

predators of Daphnia [37], we expected no predation events considering the short duration of 198 

the experiment. At the end of the experiment, roach and invertebrates were removed from the 199 

aquarium, counted, and returned to the storage pond. The videos were analyzed using 200 

Kinovea v. 0.9.4 to get the xy coordinates of each fish each second and during each boat 201 

sound (for a total of 691s and corresponding to ambient noise for the other treatment), and 202 

then the following parameters were calculated: (1) the cumulative swimming distance (total 203 

distance covered by the three individuals) as a proxy of mobility, (2) the distance between the 204 

barycenter of each group and the center of the speaker as a proxy of aversion to noise, and (3) 205 

the area occupied by the group as a proxy of group cohesion. 206 
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Group’s barycenter was calculated using individual coordinates as follows: 207 

Xbarycenter= (Xfish1+ Xfish2+ Xfish3) / 3                                           208 

Ybarycenter= (Yfish1+ Yfish2+ Yfish3) / 3                                            209 

The distance between the barycenter and the loudspeaker (D in cm) was calculated as 210 

follows: 211 

D =  √((Xbarycenter - Xloudspeaker)
2 + (Ybarycenter - Yloudspeaker)

2)) 212 

Group’s area (A in cm2) was calculated as follows: 213 

A= √ ((P*(P-dfish1-fish2)*(P-dfish1-fish3)*(P-dfish2-fish3))) 214 

Where d corresponds to the distance between two fish in cm and P to the perimeter of the 215 

group in cm with: 216 

P= ½ (dfish1-fish2 + dfish1-fish3 + dfish2-fish3) 217 

Group barycenter and area were calculated every second during the boat sounds and then 218 

averaged. 219 

The behavioural tests took place from 8 am to 6 pm and needed two consecutive days with 220 

four mesocosms (two from the fish – no noise treatment and two from the fish – noise 221 

treatment) processed on Day 43 and the two others (one per treatment) on Day 44. We also 222 

conducted four additional tests (two per noise condition) without roach to control for 223 

Chaoborus predation on Daphnia and overall invertebrate mortality in the absence of 224 

predation.  225 

  226 

2.4 Noise treatments 227 

 228 
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We used Audacity 2.2.1 to generate the audio tracks and an Aquarian Audio H2A-HLR 229 

hydrophone (frequency response from 10 to 100 kHz) connected to a ZOOM H4next Handy 230 

recorder for all the recordings. The level of background noise did not differ between the 231 

mesocosms and ranged from 90 to 95 dB re. μPa. In the mesocosms without boat noise, a 1-232 

hr audio track of silence was looped continuously. In the mesocosms with boat noise, we 233 

used the audio tracks described in [38] where 150 sounds of small recreational boats have 234 

been distributed over the nine consecutive 1-hr audio tracks of silence going from 9 a.m. to 6 235 

p.m. so as to mimic the daily activity of a small leisure base (Fig. 1A and Supp. Mat. 1, see 236 

Rojas et al. 2021 for more details on the audio tracks and the original recordings). We 237 

broadcasted silence the rest of the time. We applied a linear fading on both ends of the boat 238 

sounds to make them emerge from background noise and adjusted their levels with Audacity 239 

to obtain naturally occurring signal-to-noise ratios (SNR) ranging from 4.81 to 27 dB. We 240 

used the SNR function of the seewave R package [39]: 241 

SNR = 20log10(RMSboat sound/RMSbackground noise) 242 

where RMS is the root-mean-square sound pressure of either the re-recordings of the boat 243 

sounds in the mesocosm or the recording of background noise.  244 

In the aquaria without boat noise and to encompass the 1-h acclimatization period and 245 

the 40-min exposure period, we used a 100-min audio track of background noise previously 246 

recorded in the center of one mesocosm from the no noise – no fish treatment. We adjusted 247 

sound level to match that of the mesocosms. In the aquaria with boat noise, we used the 100-248 

min audio track of background noise to which we added twelve boat sounds randomly 249 

selected from those broadcasted in the mesocosms. We randomly distributed the sounds over 250 

the 40-min exposure period and adjusted their level to match the range of SNR values we had 251 
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in the mesocosms (approx. 4.81 to 27 dB). In terms of boat traffic, this acoustic regime was 252 

representative of the highest activity that roach experienced within a day in the mesocosms 253 

(Fig. 1B and Supp. Mat. 1). 254 

 255 

2.5 Data analysis 256 

 257 

All the statistics were performed using R [40] with a significance level of 0.05. We used the 258 

Principal Response Curve (PRC, prc function of the vegan R package [41]) to study how the 259 

planktonic communities exposed to roach, boat noise, or both, have diverged over time 260 

compared to control communities (i.e. from the no fish – no noise treatment). PRC is a 261 

special case of redundancy analysis including time-series data particularly suited to the study 262 

of community dynamics in mesocosms [42]. It typically results in a diagram with one curve 263 

for each treatment, the time on the x-axis, the first major component of the community effects 264 

on the left y-axis and the weights of the taxa on the right y-axis. The more the weight 265 

deviates from zero the more the corresponding taxon contributes to the deviation from the 266 

control. We used Hellinger-transformed taxa (square root of the relative abundance) to reduce 267 

the influence of both rare (low abundances and/or many zeros) and abundant taxa [43].  268 

Significance in the PRC was tested using a permutation test (anova.cca function of the vegan 269 

R package) accounting for the non-independence of data due to repeated measurements on 270 

the same mesocosm. Significance in the difference between each treatment and the control 271 

was assessed with a multiple comparison test (multiconstrained function of the BiodiversityR 272 

R package). 273 

Roach’ growth rate (G) was computed using the formulae:  274 

G = (Lfinal - Linitial) / Linitial *100 275 

where Lfinal and Linitial are the final and initial SL of roach, respectively. 276 
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Because growth data met the normality and homoscedasticity assumptions (Shapiro-Wilk and 277 

Bartlett tests, all p values > 0.05), we used a linear mixed-effect model (lme4 R package [44]) 278 

with the noise condition as fixed factor and the mesocosm as random factor to test for 279 

significance of the difference in growth rate between the treatments. 280 

The effects of noise and pre-exposure to noise on roach predation were assessed in 281 

two ways. First, we used a generalized linear mixed-effect model assuming a Poisson 282 

distribution to explain the total number of prey eaten as a function of the noise condition in 283 

the mesocosm, the noise condition in the aquarium and their interaction as fixed factors, and 284 

the mesocosm ID as random factor. Second, we estimated the preference of roach for 285 

Daphnia over Chaoborus larvae using the Manly’s alpha (α) preference index [45,46]: 286 

αdaphnia = ln(50 – Ndaphnia) / ( ln(50 – Ndaphnia) + ln(50 – Nchaoborus)) 287 

where 50 is the initial number of each prey, and Ndaphnia and Nchaoborus the numbers of daphnia 288 

and Chaoborus larvae eaten. The Manly’s alpha accounts for prey depletion during the 289 

predation test and ranges from zero when only the alternative prey (here Chaoborus larvae) is 290 

eaten to one when only the focal prey (here Daphnia) is eaten. The value of 0.5 indicates a 291 

lack of preference. As recommended by [47], we compared obtained values to the theoretical 292 

value of 0.5 using t tests except for the “no fish – noise” treatment where we used a Wilcoxon 293 

test to deal with the non-normality of data. 294 

Roach behaviour was analyzed with model averaging and an information-theory 295 

approach. We used linear mixed-effect models to model each of the three response variables 296 

(cumulative swimming distance, distance to the speaker and area of the group) as a function 297 

of the noise condition in the mesocosm, the noise condition in the aquarium, the time, and 298 

taking the mesocosm ID as random factor as several groups came from the same mesocosm. 299 

Because the noise condition that roach have experienced in the mesocosm might have 300 

changed their response to boat noise in the aquarium and because the effect of time may vary 301 
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with the noise condition, we also included the interactions between the two noise treatments 302 

and between each noise treatment and time in the predictors. All predictors were centered and 303 

scaled using the standardization function of the arm R package. We ranked all the submodels 304 

based on small sampled-corrected AIC values (AICc, dredge and get.models functions of the 305 

MuMln Rpackage [48]) and performed model averaging on a confidence set of models using 306 

a cut-off of 10 AICc (model.avg function of the AICcmodavg R package). The predictors 307 

whose parameter estimate had a 95% confidence interval (CI) that included the value of zero 308 

were considered as having no significant effect. 309 

 310 

3. RESULTS 311 

 312 

The pelagic zooplankton communities of the mesocosms included four cladoceran families 313 

(Bosminidae, Daphniidae, Sididae and Chydoridae), cyclopoid and calanoid copepods, 314 

dipteran larvae of the genus Chaoborus, and some ostracods captured in the pelagic zone 315 

although being mainly benthic organisms. The diagram of the PRC analysis illustrates how 316 

adding roach, boat noise or both make the planktonic communities gradually deviate over 317 

time from those of the no fish – no noise treatment (i.e., control) considered as the baseline 318 

(Fig. 2). Adding boat noise made the communities deviate from the control and adding roach 319 

induced a larger deviation without variation between the two noise conditions (i.e., similar 320 

trajectories, Fig. 2). Table 1A shows that 30% of total variance was attributed to time and 321 

34% to the treatment regime, including its interaction with time. On the basis of the 322 

permutation tests, the treatment regime as well as time and their interaction had a significant 323 

influence on the community dynamics (Table 1B). The pairwise comparisons revealed that 324 

the difference between the two treatments with roach (with or without noise) was the only to 325 
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be not significant (Table 1C). Bosminidae and in a lesser extent Chydoridae, both copepod 326 

taxa and green algae are indicated with a positive taxon weight in the PRC, suggesting they 327 

were expected to increase in abundance with the treatments relative to the control and in 328 

proportion to their weight. On the other hand, Daphniidae and, to a lesser extent ostracod, 329 

Sididae and Chaoborus larvae exhibited negative species weights and were expected to 330 

decrease in abundance with the treatments. The taxa weights of diatoms and cyanobacteria 331 

were the smallest and close to zero (Fig. 2).  332 

Individual fish growth did not significantly differ between the noise conditions (�
�

� = 333 

1.4813 and p = 0.2236, Fig. 3). In the absence of roach, prey survival in the aquaria was 334 

100% for both prey in the absence of boat noise, and 100% for Chaoborus larvae and 98% 335 

for Daphnia in the presence of boat noise. We therefore considered prey mortality during the 336 

predation tests to be the result of fish predation only. The effect of noise on the total number 337 

of consumed prey depended on the noise condition in the mesocosms, with significantly less 338 

prey consumed only for roach coming from the noiseless mesocosms (�
�

� = 18.36 and p < 339 

0.001 for the interaction between the two noise conditions, Fig. 4A). Whatever the noise 340 

condition in the mesocosm, the Manly's alpha index did not differ from the theoretical value 341 

of 0.5 in noiseless aquaria (t = 1.36 and p = 0.22 for ambient noise, t = -0.32 and p = 0.76 for 342 

boat noise) but was significantly higher with boat noise (V = 27 and p = 0.03 for ambient 343 

noise, t = 3.10 and p = 0.02 for boat noise, Fig. 4B). Concerning the cumulative swimming 344 

distance and the distance to the speaker, the 95% CI of the parameter estimate included the 345 

value of zero for all the predictors. Concerning the area occupied by the group, boat noise in 346 

the aquarium and time were the only predictors whose parameter estimate 95% CI did not 347 

include the value of zero, with significantly positive values (Fig. 5). 348 
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 349 

4. DISCUSSION 350 

 351 

Exposure to anthropogenic noise is known to elicit physiological or behavioural responses in 352 

individual organisms [8,11–13,22]. But to what extent these alterations spread across 353 

ecological interactions to alter community dynamics and ecosystem functions is not clear. We 354 

conducted a mesocosm investigation to study the impact of chronic exposure to motorboat 355 

noise on the dynamics of a zooplankton – phytoplankton system either alone or dominated by 356 

a planktivorous fish. Although we detected alterations in fish feeding and behaviour, the 357 

strength of top-down control and its consequences on the structure of the planktonic 358 

communities were resilient to motorboat noise. This suggests that individual responses to 359 

noise do not necessarily result in ecological effects at the level of communities.   360 

The pelagic mesoplankton communities of our mesocosms were dominated by 361 

cladocerans and copepods, two major groups of herbivorous microcrustaceans widespread in 362 

freshwater bodies. In smaller proportions, they also included ostracods (coming from the 363 

benthic areas of the mesocosms), and predatory larvae of the Chaoborus genus, known to 364 

feed on small zooplankton [49]. In fishless mesocosms, daphnid cladocerans gradually 365 

became the most abundant taxa. Compared to copepods, cladocerans have higher 366 

reproduction rates. Moreover, because daphnids are the largest cladocerans, they suffer 367 

smaller predation risk by Chaoborus larvae than the other cladocerans [50]. The presence of 368 

roach made the planktonic communities gradually deviate from those of the fishless 369 

communities with a shift in the dominant taxon of zooplankton from daphnids to bosminids 370 

whose abundance greatly increased. Visual-feeding fish like roach tend to prefer large 371 
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zooplankton [51] and it might be that selective predation on the two largest taxa: Chaoborus 372 

larvae and daphnids, has released bosminids from predation and competition. Alteration in 373 

the daphnids – bosminids balance is symptomatic of fish presence [52]. To a lesser extent, 374 

copepods and Chydoridae have also benefited from the roach-induced decrease in daphnids. 375 

This might be explained by the greater availability of food resources like green algae, which 376 

slightly increased in the presence of roach, but also rotifers that represent another important 377 

taxon of freshwater zooplankton. Due to their small size, we did not count the number of 378 

rotifers but they are known to increase in the presence of fish because of the removal of large 379 

cladocerans [53]. The slight increase in green algae in the presence of roach is consistent with 380 

the trophic cascade hypothesis: fish have a negative direct effect on zooplankton (here 381 

daphnids) and indirectly benefit phytoplankton that is released from grazing [34]. Another 382 

way roach can influence the planktonic communities is through the modulation of diel 383 

migration patterns. Indeed, some taxa migrate to the bottom under chemical cues by predators 384 

and become less frequent in the pelagic realm [54].  385 

Motorboat noise did not alter the top-down structuring effect of roach on the 386 

planktonic communities and particularly the shift from daphnids to bosminids. This suggests 387 

that chronic exposure to noise had no effect on the feeding behaviour of roach, which is 388 

consistent with the absence of difference in growth rate between the two noise conditions. 389 

This is also consistent with the total number of prey eaten recorded during the predation tests, 390 

which was significantly reduced by motorboat noise for the roach that never experienced boat 391 

noise before but not for those pre-exposed to boat noise in the mesocosms. Weakening of the 392 

response to noise after repeated exposure has been reported in other fish species [38,55,56], 393 

and might reflect habituation through associative learning: naïve animals first allocate 394 
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attention to noise at the expense of other activities like feeding, and then resume normal 395 

behaviour as they learn that it is not associated with any threat. However, when looking 396 

closer to what has been eaten, we found motorboat noise to elicit selective preference for 397 

daphnids over Chaoborus larvae even for roach pre-exposed to boat noise in the mesocosm. 398 

This persistent response could find its origin in behaviour. Concerning invertebrates, 399 

although we did not record their behaviour, we know from past investigations that motorboat 400 

noise did not alter the mobility of daphnids [27] but triggers body rotations in Chaoborus 401 

larvae [38], interpreted as an anti-predatory response [57,58] that could have driven the 402 

choice of roach towards daphnids. Concerning roach behaviour, we found no alteration in 403 

mobility and no evidence for any avoidance of the sound source, but the area occupied by the 404 

three individuals was larger under motorboat noise. This effect seems to be persistent as it 405 

was also observed with the roach pre-exposed to boat noise in the mesocosms. Similarly, 406 

playback of pile driving was found to make juveniles of seabass les cohesive [59]. Noise 407 

could mask the perception of nearest neighbours’ movements through the lateral line or 408 

impair the ability to process sensory information as a consequence of stress and/or distraction 409 

[59]. Compared to stress or distraction, masking does not weaken with repeated exposure. 410 

This could explain why the reduced group cohesion was also observed in the roach that 411 

experienced motorboat noise in the mesocosms. Disruption of group cohesion could 412 

ultimately compromise the benefits of grouping associated with the dilution and confusion 413 

effects [60]. Regarding feeding, we can expect the strength of intra-specific competition to 414 

decrease with the distance between individuals. Together with the lesser catchability of 415 

moving Chaoborus larvae, this could explain why the roach showed selective preference for 416 

daphnids under motorboat noise. At the level of communities, a selective preference for 417 
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daphnids, which were the main grazers, should have strengthened the trophic cascade, what 418 

we did not observe. The change in feeding we found in the aquaria may not have been strong 419 

enough to be detected in the mesocosms or maybe does not occur in a larger and more 420 

complex environment where other prey items are available.  421 

In the fishless mesocosms, adding motorboat noise induced a small but detectable 422 

deviation from the control communities. This is interesting but also tricky to interpret since 423 

very little is known on the response of freshwater plankton to chronic anthropogenic noise. 424 

Chaoborus larvae occupied the highest trophic level of the fishless communities and we 425 

know that they are sensitive to motorboat sounds with more body rotations [38], interpreted 426 

as an anti-predatory response [58]. If noise also interferes with prey processing and reduces 427 

the capture efficiency of Chaoborus larvae, then it could be beneficial to small zooplankton. 428 

Noise could also trigger vertical migration to the bottom, as chemical cues from predators do 429 

[54], making some taxa like ostracods less detectable in the pelagic realm. Additional long-430 

term investigations in mesocosms but also in situ are needed to better understand the response 431 

of planktonic communities to chronic anthropogenic noise. 432 

Our investigation illustrates how extrapolating the impact of anthropogenic noise 433 

from individual responses to complex communities if far from obvious. Although we 434 

observed persistent alterations in roach behaviour with less group cohesion and altered 435 

feeding preference, these effects did not propagate downward along the food chain through 436 

trait-mediated cascading effects. A valuable perspective would be to study the dynamics of 437 

roach under chronic anthropogenic noise to test whether the behavioural responses we 438 

observed ultimately decrease survival and/or reproductive success [61], and result in density-439 

mediated cascading effects. 440 
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 466 

FIGURE LEGENDS 467 

 468 

Figure 1: Sound spectra of the two noise conditions (control: dashed lines, boat noise: one 469 

solid lines for each hour from 9 am to 6 pm) broadcasted in A) the mesocosms and B) the 470 

aquaria. Spectra were made from 1-hour recordings in the mesocosms and 20-min recordings 471 

in the aquaria.  472 

 473 

Figure 2: Principal Response Curve (PRC) showing the effects of adding fish (squares), 474 

motorboat noise (dots) or both (triangles) on freshwater plankton communities compared to 475 

control communities (no fish – no noise, horizontal line, see text for further detail). Species 476 

weights are on the left axis (bos: Bosminidae, cyclo: cyclopoid copepods, cala: calanoid 477 

copepods, chydo: Chydoridae, green: green algae, diat: diatoms, cyano: cyanobacteria, sidi: 478 

Sididae, chao: Chaoborus larvae, ostra: ostracods, daph: Daphniidae). See Table 1 for the 479 

percentages of variance accounted for and the significance levels. 480 

 481 

Figure 3: Fish growth rates (medians and interquartile ranges) in the mesocosms depending 482 

on the noise condition (white box: ambient, grey box: boat noise, n = 48 per condition). 483 

 484 
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Figure 4: Results of the predation tests in aquaria with A) the total number of prey eaten per 485 

group of three fish (n=7 groups per acoustic mesocosm-aquarium treatment) presented to 50 486 

Daphnia and 50 Chaoborus larvae and B) the Manly’s alpha preference index for Daphnia 487 

over Chaoborus larvae (medians and interquartile ranges) as a function of the noise condition 488 

previously experienced in the mesocosms and the noise condition in the aquaria (white box: 489 

ambient, grey box: boat noise).  490 

 491 

Figure 5: Model-averaged coefficient estimates and 95% confidence intervals for the 492 

predictors included in the confidence set of models explaining the behaviour of roach Rutilus 493 

rutilus in groups of three individuals when feeding on Daphnia and Chaoborus larvae during 494 

the predation tests in aquaria. We used as response variables A) the area of the group, B) the 495 

cumulative swimming distance and C) the distance to the speaker. Predictors correspond to 496 

the noise condition in the mesocosms (boat noise or ambient noise as control), the noise 497 

condition in the aquaria of the predation tests (boat noise or ambient noise as control), the 498 

time, and the two-way interactions between time and the noise condition in the two 499 

experimental units and between the noise conditions of the two experimental units.  500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 
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 508 

 509 

 510 

 511 

 512 

 513 

 514 

TABLE 515 

 516 

Table 1: Results of the Principal Response Curve (PRC) for the effect of motorboat noise 517 

(absence / presence) and fish (absence / presence, for a total of four treatments) on freshwater 518 

planktonic communities. A) Proportion of the total variance explained by the constraints: 519 

time, treatment, and their interaction, captured by the canonical 1st axis of the PRC. B) 520 

Significance of the PRC diagram on the basis on the permutation test for Constrained 521 

Correspondence Analysis (CCA, 999 permutations). C) Pairwise comparisons for all the 522 

possible treatment combinations following a CCA analysis.  523 

 524 

A) 525 

 Inertia Proportion Rank 

Total 0.236 1  

Conditional 

(% of the total variance explained by time) 

0.071 0.30 12 

Constrained 

(% of the total variance explained by time*treatment) 

0.085 0.36 11 

Unconstrained  0.080 0.34 11 
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(% of the total variance not explained by predictors) 

 526 

B) 527 

 Df Variance F Pr(>F) 

Treatment 3 0.04 19.28 0.001 *** 

Time 1 0.06 77.32 0.001 *** 

Treatment*Time 3 0.02 8.98 0.001  *** 

 528 

C) 529 

Pairwise comparison Df Sum of 

Sqs 

F Pr(>F) 

no fish - no noise 

fish - no noise 

1 0.054 23.856 0.001 *** 

no fish - no noise 

no fish - noise 

1 0.011 4.801  0.003 ** 

no fish - no noise 

fish - noise 

1 0.059 22.593 0.001 *** 

fish - no noise  

no fish - noise 

1 0.022 8.902 0.001 *** 

fish - no noise 

fish - noise 

1 0.005 1.624  0.177 

no fish - noise  

fish - noise 

1 0.027 9.523 0.001 *** 

 530 

 531 
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