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Abstract

Background: Not being well controlled by therapy with inhaled corticosteroids and

long‐acting β2 agonist bronchodilators is amajor concern for severe‐asthma patients.
The current treatment option for these patients is the use of biologicals such as anti‐
IgE treatment, omalizumab, as an add‐on therapy. Despite the accepted use of oma-
lizumab, patients do not always benefit from it. Therefore, there is a need to identify

reliable biomarkers as predictors of omalizumab response.

Methods: Two novel computational algorithms, machine‐learning based Recursive
Ensemble Feature Selection (REFS) and rule‐based algorithm Logic Explainable Net-

works (LEN), were used on open accessiblemRNAexpression data frommoderate‐to‐
severe asthma patients to identify genes as predictors of omalizumab response.

Results: With REFS, the number of features was reduced from 28,402 genes to 5

genes while obtaining a cross‐validated accuracy of 0.975. The 5 responsiveness

predictive genes encode the following proteins: Coiled‐coil domain‐ containing pro-
tein 113 (CCDC113), Solute Carrier Family 26 Member 8 (SLC26A), Protein Phos-

phatase 1 Regulatory Subunit 3D (PPP1R3D), C‐Type lectin Domain Family 4member
C (CLEC4C) and LOC100131780 (not annotated). The LEN algorithm found 4 identical

genes with REFS: CCDC113, SLC26A8 PPP1R3D and LOC100131780. Literature

research showed that the 4 identified responsiveness predicting genes are associated

with mucosal immunity, cell metabolism, and airway remodeling.

Conclusion and clinical relevance: Both computational methods show 4 identical

genes as predictors of omalizumab response in moderate‐to‐severe asthma pa-

tients. The obtained high accuracy indicates that our approach has potential in

clinical settings. Future studies in relevant cohort data should validate our

computational approach.
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1 | INTRODUCTION

Asthma is a common chronic respiratory disease, affecting more than

300 million individuals worldwide.1 Around 50%–70% of the total

asthmatic population represents individuals with moderate‐to‐severe
asthma.2,3 This form of asthma is difficult to treat, resulting in

frequent asthma exacerbations, hospitalizations, and even death.4,5

Patients diagnosed with moderate‐to‐severe asthma cannot always

control their disease with long acting inhaled β 2‐agonists and cor-

ticosteroids.6 As an add‐on therapy for these patients, a biological

such as omalizumab7 can be prescribed. This anti‐IgE agent specif-

ically binds free IgE and prevents IgE binding to the high affinity IgE

receptor FcεRI expressed on immune cells such as mast cells, baso-
phils and antigen‐presenting cells.8 It reduces allergic airway

inflammation by decreasing IgE levels in blood, and by consequent

downregulation of the expression of FcεRI on airway inflammatory

cells and lowers eosinophil counts.9–11

Despite omalizumab's widely accepted use, moderate‐to‐severe
asthma patients do not always benefit from this anti‐IgE therapy.

Because there are also other biologicals such as anti‐IL‐5 (mepoli-

zumab and reslizumab),12 anti‐IL‐5R (benralizumab)13 and anti‐IL‐4R
(dupilimab)14 available prediction of treatment response will support

choosing the best biological for the individual patient. This will

reduce the burden of disease and health care costs that arise due to

the use of improper or suboptimal medications. However, predictors

of response to omalizumab are still limited.15–17 Therefore, it is of

clinical significance to identify reliable biomarkers as predictors of

omalizumab response that can match individual moderate‐to‐severe
asthma patients with the most effective medication.

Finding accurate biomarkers for omalizumab response is difficult

as these biomarker studies are diverse and complex. Various studies

have explored potential biomarkers to predict omalizumab respon-

siveness, such as genes18 or clinical measurements (e.g., total serum

IgE, FEV1).19–21But the availablebiomarkers are limited in number and

accuracy. Consequently, there is no consensus on the best set of bio-

markersofomalizumab therapy for thosewhodobenefit fromthedrug.

Machine learning (ML), a branch of artificial intelligence, provides

a set of techniques that can potentially deal with complex omics data

to find the right biomarkers. Typically, omics datasets contain thou-

sands of features (such as genetic variations, mRNA expression,

miRNAs expression or metabolites concentrations) in a relatively

small number of samples, making it difficult to analyse using standard

univariate techniques.22,23

Using ML gene cluster analysis, Upchurch et al. (2020)6 identified

transcriptional differences between omalizumab responders and

non‐responders. The study showed 3867 genes which were differ-

entially expressed between healthy controls, responders, and non‐
responders. However, this set of response‐predictive genes is too

large to be effectively used in a clinical setting. With Recursive

Ensemble Feature Selection (REFS)͵22 a more accurate and robust

gene signature can be found over the gene cluster analysis method

that was used by Upchurch. Feature selection (REFS) method shows

unbiased gene interactions in contrast to clustering of over/under

expressed genes dependent on annotated pathway functions or a

single algorithm.24,25 REFS allows the identification of compact gene

signatures. Logic explained networks (LEN), an advanced computa-

tional algorithm, gives in contrast to other algorithms26 an inter-

pretable result by providing an explanation for the possible

relationships between the features. It simplifies how to read the

mRNA expression as a set of logical rules which may serve to take

clinical action/decision. Measuring mRNA expression in patients'

whole blood could provide a direction for omalizumab therapy

responsiveness based on LEN rules.

In this study, we use two ML techniques, REFS and LEN, to

reduce the number of features to a more compact size, which is

effective for use in a clinical setting.24,25

We implemented the two‐state‐of‐art computational algorithm
in ML that is, the REFS algorithm and LEN algorithm, on mRNA

expression profiles in whole blood of moderate‐to‐severe asthma

patients. We used the same samples as those used by Upchurch et al.

(2020)6 to find predictors of omalizumab response. Single Response‐
predictive genes were identified through ML‐based REFS and vali-

dated with 10‐fold cross‐validation.24,25 In addition, we used LEN26

which identifies gene groups and their interrelationship as predictors

of omalizumab response. The LEN algorithm provides rules on sets of

mRNA expression compared with healthy controls. The biological

context and pathway annotation of REFS and LEN overlapping

omalizumab response‐predictive genes were validated through

literature research to gain a better understanding of mechanisms

involved in omalizumab responsiveness.

2 | METHODS

2.1 | Patient samples and data

Data on individual moderate‐to‐severe adult asthma patients, whole
blood mRNA profiles and clinical information was retrieved from the

publicly available database ‘Gene Expression Omnibus’ (GEO) with

accession code GSE134544. This dataset was published by Upchurch

et al. (2020).6

The GSE134544 database has 239 blood mRNA samples from 40

moderate‐to‐severe adult asthmatic patients, and 17 non‐asthmatic
healthy controls. Of the 40 patients, 30 were defined as re-

sponders and 10 as non‐responders. For the LEN analysis, besides

the whole blood mRNA expression of patients, 17 healthy controls

were also included. Patients were prescribed omalizumab (Xolair®,

Genentech) and were dosed as per the manufacturer's dosing table

(according to serum IgE and body weight).

The blood transcriptome included all blood cell types. For every

patient, the sample contained 28,402 gene expression levels. Whole

blood mRNA expression profiles measured 1 week before the start of

treatment of the 40 moderate‐to‐severe asthmatics were used for

the REFS analysis.

Patients were not eligible for the study if they were pregnant,

under the age of 18 or recently on omalizumab. mRNA expression
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was measured using an Illumina HumanHT‐12 V4.0 beadchip plat-

form containing genes for approximately 20,000 transcripts.

2.2 | Definition of disease severity and responders/
non‐responders

Upchurch et al. (2020)6 selected asthmatic patients who had un-

controlled asthma despite treatment with inhaled corticosteroids

(ICS) and/or long‐acting β‐agonists (LABA). Patients and non‐
asthmatic healthy controls6 were recruited under protocols

approved by the Institutional Review Board.

According to the Global Initiative for Asthma guideline,27 mod-

erate asthma patients are well‐controlled with low or medium dose

ICS and/or LABA, and severe asthma patients were defined as those

that remain uncontrolled despite optimized treatment with high dose

ICS‐LABA, or that require high dose ICS‐LABA to prevent asthma

from becoming uncontrolled.

Disease severity was based on a combination of asthma control

test (ACT), low lung function (FEV1 < 80%) and symptom frequency,

including total number of days with symptoms per week and of night‐
time awakenings per week.6

Omalizumab responsiveness was defined by Upchurch et al

(2020)6 as improvements in asthma control, with non‐responders’
not able to achieve asthma control. Uncontrolled asthma was defined

as a combination of factors including ACT score (<19), asthma‐
related symptoms in number of days in previous week, use of

short‐acting β‐agonists (≥2 � per week) and night‐time sleep

disruption (≥2 per week), unchanged asthma control through medi-

cation, and indications of little/no improvements in asthma by

physicians.6

2.3 | Feature selection

To analyze the mRNA expression data, genes from the microarray

platform Illumina were converted to gene IDs using the web probe

conversion tool in the Ensembl Genome Browser.28 This step was

done only with the final short list of genes. Next, the data were

normalized with z‐score normalization.29

Non‐responders were labelled as 0 (n = 10), and responders

were labelled as 1 (n = 30).

2.3.1 | Algorithm 1: REFS

REFS30 is an algorithm to discover features (genes) in our study. REFS

was used to identify a gene signature in moderate‐to‐severe asthma
patients to separate omalizumab responders from non‐responders.
The REFS algorithm decreases the number of genes in the dataset to

the most important genes associated with treatment outcome. REFS

uses 8 different classifier algorithms: Gradient boosting, Passive

Aggressive, Logistic Regression, Support Vector Machine classifier

(SVC), Random Forest, Stochastic Gradient Descent, Ridge and

Bagging. REFS merges the results of these individual classifiers. From

these classifiers (metrics for algorithm performance), important

genes are extracted, ranked and the lowest‐scoring genes are

removed.

The REFS algorithm gives each gene associated with treatment

outcome a ‘score’ based on how each different classifier algorithm

uses it. For instance, in a tree‐based algorithm, the score is based on
how many times a feature/gene was found in the tree. In the case of a

coefficient‐based algorithm, the scoring depends on the coefficient

value, with the highest weight being the most relevant.

As REFS is a stochastic algorithm, it was iterated 10 times.

Running the algorithm several times with the same settings produces

slightly different results and is thus a method to obtain more reliable

results. After every iteration, the most relevant gene‐signature for

therapy response is selected until the algorithm reaches 1 feature

with a 20% step reduction and a first cut‐off of 1000 features.
The REFS algorithm was implemented on 28,402 genes and

validated through 10‐fold cross‐validation.
To visualize the diagnostic ability of classifiers and evaluate the

performance of learning models, Receiver Operating Characteristic

(ROC) and area under the curve (AUC) were used.

2.4 | Logic explained networks

While REFS is designed to directly perform feature selection for

classification, the idea behind LENs is to automatically extract a set of

rules that use a minimal number of features. In other words, REFS

sees feature selection and classification as separate, while LEN at-

tempts to perform both classification and feature selection in a single

step. LEN was used to create a set of rules for predicting respon-

siveness to omalizumab on the same GSE134544 dataset.

2.4.1 | Algorithm 2: LEN

The LENs algorithm31 was implemented on 28,402 genes. LENs

provide rules on sets of mRNA expression compared with healthy

controls. It uses healthy controls as the baseline.

The LENs algorithmuses logic to transformgene expression values

into qualitative descriptors that can be evaluated using a set of rules.

LENs are a special family of concept‐based neural networks providing
first‐order logic explanations for their decisions.31 Concept‐based
models provide reasoning as in human‐interpretable symbols (the

concepts). As an example, a concept‐based explanation to describe the
category (human) can be through its characteristics (head AND hand),

which leads to the explanation ‘a human has hands and a head’.

Logic‐based explanations may be merged to describe groups of

observations. For instance, in an image dataset of humans, an image

showing the anterior side of the face, a possible explanation to

describe the category (human) can be through the attributes (nose

AND lips), which reads ‘being human implies having a nose AND lips.

KIDWAI ET AL. - 3 of 11
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Similarly, another image showing the posterior side of the human can

be described through the attributes (feet AND hair AND ears). An

explanation for the class human is then ‘being human implies having

feet AND hair AND ears. Both explanations can then be merged using

the attributes ‘(nose AND lips) OR (feet AND hair AND ears)’. The

merged explanation reads then as ‘being human implies having a

‘(nose AND lips) OR (feet AND hair AND ears)’.

The quality of logic‐based explanations can be quantitatively

measured to check their correctness and completeness (measur-

ability). For instance, once the explanation “(nose AND lips) OR (feet

AND hair AND ears)” is extracted for the class human, this logic

formula can be applied to a test set to check its generality in terms of

quantitative metrics like accuracy, and consistency.

In our research we compare responders and non‐responders and
data from healthy controls used from LENs. LENs algorithm predicts

a connected network of genes and their shared up/down regulated

gene expression in omalizumab treatment comparing responders and

non‐responders to mean mRNA expression of healthy controls. In

this work, we used an Entropy‐based LEN32 implemented in the py-

thon package pytorch_explain.33

2.5 | Biological context of gene signatures

To determine the biological context of the identified predictive genes

for omalizumab therapy response and explain the (un)responsiveness

to omalizumab, literature research was conducted. PubMed and

Google Scholar were used for the assessment of gene function of

each gene identified from REFS (Section 2.3.1) and LENs (Sec-

tion 2.4.1). Protein function was investigated in the context of asthma

pathology and omalizumab response.

3 | RESULTS

3.1 | Feature selection

The GSE134544 dataset containing 40 samples was used to run the

REFS algorithm ten times (see Figure 3). With the machine‐learning
REFS approach (Section 2.3.1) the total number of genes was

reduced from 28,402 to 5 genes associated with therapeutic respon-

siveness. The optimal selection of genes depends on the classification

accuracy of the binary problem (responders/non‐responders). The 5‐
gene signature corresponds to the highest peak in accuracy over all 8

classifiers in the REFS ensemble (See, Figure S1). The gene expression

values of responders, non‐responders and non‐asthmatic controls are
shown in Figure 2.

3.2 | Genes of interest

REFS (Section 2.3.1) identified 5 individual genes as predictors of

omalizumab response: CCDC113, SLC26A, PPP1R3D, CLEC4C and

LOC100131780. The mRNA expression levels of the identified 5

genes in non‐responder patients' samples compared to responders

are shown in Figure 1. Figure 1 shows that moderate‐to‐severe

F I GUR E 1 Heatmap of normalized gene expressions for the 5 selected genes in all samples identified by the Recursive Ensemble Feature

Selection (REFS) algorithm (Section 2.3.1). The heatmap legend displays a color gradient range where −2 denotes the lowest gene expression
and 4 the highest gene expression. Merely from visual inspection, samples can be differentiated into two groups: responders and non‐
responders to omalizumab treatment.
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asthma patients who did not respond well to omalizumab have a

higher mRNA expression of 4 out of 5 identified genes when

compared to responders: LOC100131780, CCDC113, SLC26A and

PPP1R3D. The mRNA expression of one gene, CLEC4C, is down-

regulated in non‐responders compared to responders.

3.3 | ROC analysis of gene signature

The AUC of the ROC curve was used to verify the efficacy/perfor-

mance of the identified 5‐gene signature over all 8 classifiers in 10‐
fold cross validation. As shown in Figure 2, the AUC of 0.99 was

obtained using the Passive Aggressive classifier, a performance

metric, which represents the best discriminatory accuracy for our

model.34,35

3.4 | Relationship with treatment outcome: LEN

In parallel to the REFS algorithm (Section 2.3.1), a LEN on the same

GSE134544 dataset was used to compare results (See, Figure 3).

As can be seen from Figure 3, the LEN algorithm returns three

simple rules to explain why identified genes from the algorithm

predict responsiveness to omalizumab.

The LEN rules 1, 2 or 3 predict the best responsiveness of

omalizumab in moderate‐to‐severe asthma patients.

F I GUR E 2 Receiver Operating Characteristic (ROC) curve over

all 8 classifiers from Recursive Ensemble Feature Selection (REFS)
to validate the identified 5‐gene signature. The ROC curve shows
the binarization threshold from 0 (all moderate‐to‐severe asthma
patients as omalizumab responders and both the TPR and FPR = 1;
upper right corner of ROC) to 1 (all moderate‐severe asthma
patients classified as non‐responders to omalizumab and both TPR
and FPR = 0; lower left corner of ROC). The area under the curve
(AUC) is the area in the plot which stays under the ROC curve. The
Passive aggressive classifier which produced the blue ROC curve
shows the best predictive accuracy as it covers a larger area

compared to the straight ROC curve with the random classifier (red
dashed line).

F I GUR E 3 Summarized results of the two algorithms predicting treatment responsiveness of omalizumab in moderate‐to‐severe asthma.
Whole blood mRNA expression profiles in samples collected day 0 (1 week before the start of the treatment) were used for the Recursive
Ensemble Feature Selection (REFS) analysis (Section 2.3.1). In total, 40 moderate‐to‐severe asthmatic patients, n = 30 responders, and n = 10
non‐responders were included. For LEN analysis (Section 2.4.1), n = 17 healthy controls were also included. With REFS, five independent

responsiveness‐predictive genes were identified, whereas rule‐based LEN identified three gene groups that predicted responsiveness.
Comparing both approaches, an overlap of four genes was found. The relationship between responder status (R/NR) is shown in the heatmap.
The mRNA expression of responders compared with healthy controls is shown in the table.
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Rule 1 [LOC100131780, CCDC113 and SLC26A8] indicates a

combination of response‐predictive gene set 1. The first rule implies
that the mRNA expression of all genes in this trio is downregulated in

the responder group as compared to the average mRNA expression

of non‐asthmatic healthy controls.
Rule 2 [LOC100131780, SLC26A8 and PPP1R3D] indicates a

combination of response‐predictive gene set 2. The second rule im-
plies that the mRNA expression of all genes in this trio is down-

regulated in the responder group as compared to the average gene

expression of non‐asthmatic healthy controls.
Rule 3 [CCDC113, SLC26A8 and PPP1R3D] indicates a combi-

nation of response‐predictive gene set 3. The third rule implies that
the mRNA expression of all genes in this trio is downregulated in the

responder group as compared to the average gene expression of non‐
asthmatic healthy controls.

3.5 | Combined results of REFS and LEN

The REFS (Section 2.3.1) and the rule‐based LEN (Section 2.4.1) both

allow identification of compact gene signatures and provide a mean

accuracy of 97.5%. An overlap in the results from both algorithms

was found for 4 of the 5 genes identified by REFS. The following

genes are identified as omalizumab response‐predictive genes:

LOC100131780, CCDC113, SLC26A and PPP1R3D, which are all

upregulated in non‐responders and downregulated in responders.

This is summarized in Figure 3.

3.6 | Biological interpretation of the gene signature
predicting responsiveness to omalizumab

To determine the biological context of our findings, literature

research on the proteins encoded by the five identified genes was

conducted. Literature research showed that the identified response‐
predictive genes can be associated with Mucosal immunity, Cellular

energy, Airway hypersensitivity and remodeling. Details of the genes

are enlisted in Table 1 and described below.

CLEC4C, also denoted as the BDCA2 or CD303 gene, encodes a

member of the C‐type Lectin superfamily, C‐type lectin domain

family 4 member C. This Lectin‐type cell surface receptor is linked to
various functions including antigen‐uptake by dendritic cells39 for

internalization/presentation to T cells40 and attachment to serum

IgG.41 CLEC4C triggers the src‐family protein‐ tyrosine kinases

signaling pathways to inhibit the induction of IFN‐α/β expression in
plasmacytoid dendritic cells (pDC).30,39 This inhibition, in turn, leads

to the production of pro‐ or anti‐inflammatory cytokines and

consequently, fine‐tunes innate and adaptive immune responses to

viral infections. High mRNA expression of CLEC4C in whole blood has

been associated with low mRNA expression of Toll‐like receptor 7

(TLR 7) expression and increased risks for common colds in asthmatic

subjects. TLR‐7‐mediated induction of IFN‐ α/β, and inflammatory

cytokine production is critical in antiviral immune responses.42

Hence, impaired anti‐viral response in asthmatic patients may be

coordinated by CLEC4C.43 (See, Supporting Information S1) Taken

together, the present set of findings indicate that severe asthma

TAB L E 1 Restricted set of features to predict responsiveness of Omalizumab (anti‐IgE therapy).

Publication Gene Protein Cell Functional context Key findings

Chairakaki

et al., 2018

CLEC4C C‐type lectin domain
family 4 member C

pDC Mucosal and anti‐viral immunity
(src pathway)

Implicated in driving acute asthma

exacerbations

Tolerogenic effect in asthma by

inducing Treg cell differentiation
Vroman et al.,

2017

Firat‐Karalar
et al., 2014

CCDC113 Coiled‐coil domain‐
containing protein 113

Epithelial

cells

Mucociliary clearance Vital for ciliogenesis

Reduction in cilium formation in

knockdown models
Thomas, B

et al., 2010

Dirami, T et al.,

2013

SLC26A8 Solute carrier family 26

member 8

Sperm

cells

Male fertility Associated with sperm motility

Mutations may cause male infertility

Watson, C

et al., 2017

PPP1R3D Protein phosphatase 1

regulatory subunit 3D

Blood

cells

Cell metabolism (AMPK

pathway)

Regulates protein serine/threonine

phosphatase activity

Driver for acute peanut allergic

responses

Zariwala, M. A

et al., 2006

LOC100131780 Non‐annotated Epithelial

cells

Possible: Mucociliary clearance

and airway remodelling

Overlaps partially with gene DNAI1

May be linked to primary ciliary

dyskinesia
Lucas, J.S et al.,

2014

Note: Src family kinases (SFKs) are non‐receptor tyrosine kinases signaling coordinated cell proliferation, differentiation, apoptosis, migration, and
metabolism.36,37 5‐adenosine monophosphate (AMP)‐activated protein kinase (AMPK) signalling pathway coordinates cell growth, autophagy and

metabolism.38.
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patients suffering from frequent (viral) exacerbations may have

enhanced pDC (CLEC4C þ DC) expression. This conclusion seems

sensible as pDCs are critical mediators for anti‐viral responses. Our
results obtained from the REFS algorithm show that CLEC4C

expression in whole blood of non‐responders to omalizumab was

downregulated when compared to responders. Thus, for a proper

response to omalizumab, pDC may be central in improving asthma

symptoms.

CCDC113 gene encodes Coiled‐coil domain‐containing protein

113 (CCDC113), which is a centrosome‐associated protein critical for
cilia formation.44 This gene coordinates ciliary beating frequency, beat

direction and cilia stroke.45 CCDC113 has been shown to be overex-

pressed in the nasal brushes of asthmatic subjects when compared to

healthy controls.46 Upregulation of CCDC113 could possibly be a

rebound effect for ciliary defects or damage. The upregulation of

CCDC113 shown in our results from LENs and REF can be expected

based on the pathology of asthma. In the airways, cilia work along with

airwaymucus to facilitate mucociliary clearance acting as a pulmonary

defense.47,48 Therefore, it follows that ciliary dysfunction could lead to

impaired mucociliary clearance, making asthmatic patients more sus-

ceptible to airway infection or inflammation. Overexpression of

CCDC113mRNA in thewhole blood of non‐responders comparedwith
omalizumab responders might indicate ciliary defects in the airways of

non‐responders. Thus, asCCDC113 is involved in the ciliumassembly, it

may simply increase the severity of asthma.

The SLC26A8 gene encodes Testis anion transporter 1, which is a

sperm‐specific member of the SLC26 family of multifunctional anion
exchangers. SLC26A8 functional relevance is linked to sperm motility

and mutations appear to cause male infertility.49 In the whole blood

mRNA of severe asthmatics, upregulated SLC26A8 compared to

healthy controls has been reported.50 The presented LENs and REFS

approach showed similar results for non‐responders. Increased levels
of SLC26A8 are associated with asthma and lower sperm count/

sperm motility.51 Given the limited information, it is hypothesized

that SLC26A8 is merely an additional biomarker in non‐responders as
no logical context related to omalizumab therapy response can be

formulated.

PPP1R3D, encodes for Protein Phosphatase 1 (PP1) regulatory

Subunit 3D.52 This gene is associated with the cellular energy sensor

50 AMP‐activated protein kinase (AMPK).52 The interaction between

AMPK and PP1 is regulated by intracellular glycogen content.51

Upregulated mRNA expression of PPP1R3D in blood cells is associ-

ated with IgE‐mediated peanut allergies in children.53 Food allergies
are also associated with increased asthma severity in later life.54–56

Interestingly, PPP1R3D has been reported as a novel obesity candi-

date gene.57 Obese adults tend to have more severe asthma

compared to lean adults.58 Indeed, PPP1R3D was found to be over-

expressed by LENs and REFS in the non‐responder group. Based on
the limited information on this gene, it can be suggested that non‐
responders to omalizumab might exhibit a severe non‐IgE‐mediated
form of asthma or might be more obese than responders. Data on

body weight of asthmatic subjects were not available for inclusion in

the present study.

LOC100131780 is an illumina gene ID,which could not bematched

to a specific gene in the literature. As such, the association of

LOC100131780 with asthma remains obscure. Limited information

could be recovered computationally from its sequence overlap with

DNAI1 that codes for dynein axonemal intermediate chain 1.

LOC100131780 as CCDC113 also points to the important role of pri-

mary cilia.Mutations of the LOC100131780 gene59 have been linked to

primary ciliary dyskinesia (PCD), a rare inherited disease with

dysfunctional mucocilIary clearance eventually leading to airway

remodeling in thickened airway walls and obstruction.60,61 Elevated

levels of LOC100131780were found by LENs and REFS in omalizumab

non‐responders. Speculatively, PCD is a confounding condition that

mimics asthma symptoms. As PCD and asthma rarely co‐exist60 pa-
tients with overexpressed LOC100131780 classified as non‐
respondersmight bemisdiagnosedwith severe asthma instead of PCD.

4 | DISCUSSION

Pre‐therapeutic screening helps in unwarranted drug exposure in

patients suffering from severe forms of asthma. Treatment with a

biological agent is the most logical step for this group of patients.

However, different biologicals are available and biomarkers to

determine which biological would be appropriate for the individual

patient are lacking. Omaluzimab (anti‐IgE) is one of the commonly

used biologicals in asthma patients; however, patients do not respond

equally well to therapy with this drug.21,62,63 Studies examining

transcriptional expression profiles in whole blood and sputum of

asthmatic patients have identified gene signatures that may be

associated with asthmatic phenotypes64–66 or therapeutic respon-

siveness to ICS67,68 and omalizumab.6,18 However, no definitive set of

biomarkers for omalizumab therapy response has been found till

date, while omalizumab response prediction could be very beneficial

for proper disease management. Therefore, better predictive bio-

markers for omalizumab treatment response are needed to select the

best treatment strategy for severe asthma patients.

ML prediction can help to find a small and easy to measure a set

of biomarkers that predicts treatment responses. However, finding

accurate and robust response‐predictive genes using ML has proven

to be a challenge due to underpowered studies, poor explanatory

models and the use of single genes or gene sets with no or few

overlapping genes.22,23 REFS algorithm offers a solution for this

issue25,69 in terms of better accuracy and robustness. LEN can

explain why the algorithm arrives at a certain decision, such that the

results of the LEN algorithm can be interpreted by clinicians.

Explainability matters especially in a clinical context because pre-

dictions are useful when they can be understood for the acceptance

of the AI decisions by physicians. LENs26,31,32 is an interesting

approach to extract biologically meaningful gene associations and

thereby increase prediction model interpretability.

In thepresent study, a novel feature selection algorithmcombining

8 classifiers, REFS,was used on open accessiblemRNAexpression data

(GSE13544) from moderate‐to‐severe asthma patients to predict
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treatment responsiveness of omalizumab. In addition to REFS, the

entropy‐based LEN model26 was used, as it provides the highest flex-

ibility, generalization accuracy, and less complex logic formulas. The

machine‐learning‐based REFS algorithm returned a 5‐gene signature:
CLEC4C, CCDC113, SLC26A8, PPP1R3D and LOC100131780. The LEN

algorithm returned a short 4‐gene signature: CCDC113, SLC26A8,

PPP1R3D and LOC100131780. Groups of responsive predictive genes:

([LOC100131780, SLC26A8 and PPP1R3D]; [LOC100131780,

CCDC113 and SLC26A8]; [CCDC113, SLC26A8 and PPP1R3D]) were

found through the LEN algorithm. Four overlapping genes (CCDC113,

SLC26A8, PPP1R3D and LOC100131780) were found to be upregu-

lated innon‐responderswithbothmethodologies. The geneexpression
values of 5 selected genes across healthy controls, non‐responders,
and responders are shown in Figure S2. Our compact set of genes was

able to differentiate between responders and non‐responders with a
mean accuracy 0.975. As shown in Figure S2, after treatment with

omalizumab, the gene expression levels of the 5 identified genes of

responders were closer to the healthy controls.

Zhang et al (2021),18 used the same GEO dataset GSE134544

employed in this study. The study reported one useful genetic

biomarker, the T‐cell surface glycoprotein CD3 epsilon chain (CD3E)
using weighted gene co‐expression network analysis. This biomarker
was downregulated in non‐responders. However, a single biomarker
might be insufficient to capture interactions between other key

genes relevant to accurately predict patient responsiveness to

omalizumab treatment. For example, some patients exhibiting high

CD3E expression might still not respond to omalizumab, whereas

conversely, some patients with low CD3E expression could respond

to treatment. Identifying a short list of responsiveness predictive

genes as in our results could be useful in clinical settings to show

coordinated changes in gene expression that may impact the thera-

peutic response, which cannot be identified by a single biomarker.

With REFS/LENs method a mean accuracy of 0.975 was computed

and the proposed methodology outperformed Zhang et al. (2021)18

that reported an accuracy of 0.763. The utility and accuracy of REFS

in comparison to other methodologies has been previously demon-

strated in miRNA and mRNA datasets.24,25

Upchurch et al. (2020)6 identified biomarkers through gene

clustering but predicted a large set of response‐predictive genes on
GSE134544. With the REFS and LEN approach, a more compact set

of genes (4) in contrast to Upchurch et al. (2020)6 methodology

(1776) was identified. Overall, the results from REFS and LENs show

robustness and higher accuracy.

To validate the relevance of overlapping genes from both

computational methodologies and understand the mechanisms

involved in omalizumab responsiveness, biological functions of the

genes were investigated. From a clinical perspective, every single

gene in the predicted gene set by REFS is a potential biomarker for

omalizumab therapy response. How large the contribution of genes in

the predicted gene trios identified by LENs is, is a matter of debate.

As the mRNA of all genes are overexpressed in the non‐responder
group, it can mean that these combinations are of interest for

further research due to their supposed increased biological

significance in activating or overloading specific biological pathways

related to asthma pathogenesis and omalizumab response.

Co‐expression of response‐predictive genes does not simply

mean interaction between their associated proteins, but the results

may propose similarities in their regulation by transcription factors

such as NFκb which controls various aspects of innate and adaptive
immune functions and serves as a critical mediator of inflammatory

responses.70 In the current study, genes that were differentially co‐
expressed between responders and non‐responders were associ-

ated in pathways regulating diverse pathological processes in chronic

inflammatory conditions (the AMPK pathway PPP1R3D or tyrosine

kinase signaling pathway (CLEC4C) associated with disturbed mucosal

clearance (CCDC113 & LOC100131780) and tissue remodeling

(LOC100131780) (See, Table 1). These genes appear to be somewhat

connected in terms of function. It is possible that the upregulated

genes in non‐responders are associated with a more severe asthmatic
phenotype. That might be a reason why patients with severe asthma

might respond badly to omalizumab.

The severity of asthma could result from impaired immune

activation or dysregulation of the immune response. Zhang et al

(2021),18 hypothesized that omalizumab inhibits airway inflammation

by reducing the Th2 inflammation cascade. By calculating the im-

mune enrichment score, they found that CD4þ T and dendritic cell

numbers were lower in the blood of non‐responders. A low T‐cell
signature and high inflammatory gene cluster in non‐responders to
omalizumab was also reported by Upchurch et al. (2020).6 In the

patient cohort, it is possible that type 2 inflammation indicative for

IgE‐mediated asthma and non‐type 2 inflammation might not be

entirely mutually exclusive in responders and non‐responders as

found by Zhang et al (2021)18 or Upchurch et al. (2020).6 Although

we did not investigate this aspect in our study, mixed phenotypes

(type 2 and non‐type 2) might be associated in the same individual,
resulting in less likelihood of response to omalizumab.

One of the most intriguing results was the identification SLC26A8

linked to male infertility as an mRNA predictor in all LEN proposed

gene combinations. Although not much is known about this biological

function of this gene in asthma, it might play a pivotal role in regu-

lating gene expression changes observed in the airways of male non‐
responders to omalizumab therapy (See, Table 1). Determining the

interplay between asthma severity, gender and reproductive health

was beyond the scope of this study.

Our findings thus reflect that predicting response to omalizumab

therapy is powerful when identified genes are given a biological

context. However, our approach does have some limitations. Unfor-

tunately, we could not find an independent cohort dataset to validate

our gene signature. Not all pathways involved in our gene set have

been fully characterized in the literature. Consequently, our findings

depend on the current state of knowledge and pathway annotations

of genes may be sparse and skewed in comparison to well‐defined
gene sets. To complement our literature search, in vitro experi-

ments with whole blood samples might provide us with broader

insight regarding gene function and mechanisms associated with

response to omalizumab. For clinical applications, a simple blood test
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can be useful to assess the mRNA expression of the 4 overlapping

genes for future treatment with omalizumab. If mRNA expressions of

all 4 overlapping genes are found to be downregulated in the

responder group compared with healthy control mRNA expression,

anti‐IgE treatment might be beneficial for the patient.
In summary, we suggest that our small set of mRNA predictors

returned from two different algorithms is highly accurate and holds

potential value as clinical biomarkers for predicting omalizumab

treatment response in moderate‐to‐severe asthma. We conclude that

our work represents a first step towards a more tailored prediction of

omalizumab response. Future studies in other cohorts should validate

our computational approach. Furthermore, a prospective study is

necessary to test the clinical utility of the biomarkers. As a next step,

add‐on studies comparing biological medications could be valuable to
identify patients who should be treated with omalizumab versus

another biological. To support physicians' treatment decision for a

biological, we recommend confirming the diagnosis of severe asthma,

exclusion of conditions mimicking asthma symptoms such as PCD and

assessment of comorbidities associated with severe forms of asthma.

Patients who might attain incomplete benefit from omalizumab could

benefit from switching to a different biologic which targets an

alternative mechanism if GINA criteria are met. Alternatively, non‐
responders might benefit from add‐on therapy with a second

biologic.
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