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Well-posedness of the Prandtl equation

without any structural assumption

Helge Dietert∗ David Gérard-Varet∗ †

November 26, 2023

Abstract

We show the local in time well-posedness of the Prandtl equation for data with Gevrey
2 regularity in x and H1 regularity in y. The main novelty of our result is that we do not
make any assumption on the structure of the initial data: no monotonicity or hypothesis on
the critical points. Moreover, our general result is optimal in terms of regularity, in view of
the ill-posedness result of [9].

1 Introduction

We are interested in the 2D Prandtl equation

∂tU
P + UP∂xU

P + V ∂yU
P − ∂2yU

P = ∂tU
E + UE∂xU

E , ∂xU
P + ∂yV

P = 0, (1)

set in the domain Ω = T× R+, completed with boundary conditions

UP |y=0 = V P |y=0 = 0, lim
y→+∞

UP = UE. (2)

This equation is a degenerate Navier-Stokes model, introduced by Prandtl in 1904 to describe the
boundary layer, which is the region of high velocity gradients that forms near solid boundaries
in incompressible flows at high Reynolds number. It can be derived from the Navier-Stokes
equation under the formal asymptotics

(uν , vν)(t, x, z) ≈ (UP (t, x, z/
√
ν),

√
νV P (t, x, z/

√
ν)), (UP , V P ) = (UP , V P )(t, x, y), (3)

where ν is the inverse Reynolds number, and (uν , vν) is the Navier-Stokes solution. This asymp-
totics is supposed to apply to the flow in the boundary layer region: the typical scale

√
ν of the

boundary layer in this model is inspired by the heat part of the Navier-Stokes equation. Away
from the boundary, one rather expects an inviscid asymptotics of the type

(uν , vν)(t, x, z) = (uE , vE)(t, x, z),

where (uE , vE) is the solution of the Euler equation. In order to match the two asymptotic
expansions, one must impose the condition

lim
y→+∞

UP (t, x, y) = UE(t, x) := uE(t, x, 0),
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which yields the boundary condition for y → ∞ in (2). The other two boundary conditions at
y = 0 express the usual no-slip condition at the boundary. We refer to [6] for a more detailed
derivation. Let us stress that the pressure in the Prandtl model is independent of y: its value
is given by the pressure in the Euler flow at z = 0. This explains the right-hand side of (1),
which depends only on t, x, and is coherent with the third boundary condition in (2).

The Prandtl system (1)-(2) is very classical, as it appears in most textbooks on fluid dy-
namics. Still, it is well-known from physicists that its range of applications is narrow, due to
underlying instabilities. Among those instabilities, one can mention the phenomenon of separa-
tion, which is related to the development of a reverse flow in the boundary layer [8, 4]. Another
example is the so-called Tollmien-Schlichting wave, that is typical of viscous flows at high but
finite Reynolds number [5, 15]. Of course, such instability mechanisms create difficulties at the
PDE level, making the mathematical analysis of boundary layer theory an interesting topic.
The two main problems that one needs to address are the well-posedness of the reduced model
(1), and the validity of the asymptotics (3). We shall focus on the former in the present paper.
About the validity of boundary layer expansions in the unsteady setting, there are many pos-
sible references, among which [31, 14, 32, 11, 26, 16]. About the steady setting, see the recent
works [19, 10, 17].

To analyse the well-posedness of the Prandtl model is uneasy, even at the level of local in
time smooth solutions. The key difference with Navier-Stokes is that there is no time evolution
for the vertical velocity, which is recovered only through the divergence-free condition. Hence,
the term v∂yu can be seen as a first order nonlinear operator in x. Moreover, this operator is not
skew-symmetric in Hs. As the diffusion in (1) is only transverse, this prevents the derivation
of standard Sobolev estimates. The first rigorous study of the Prandtl equation goes back to
Oleinik [29], who tackled the case of data U |t=0 that are monotonic in y. She established local
well-posedness of the system using the so-called Crocco transform, a tricky change of variables
and unknowns. Let us stress that such monotonicity assumption excludes the phenomenon of
reverse flow and therefore prevents boundary layer separation. More recently, the local well-
posedness result of Oleinik was revisited using the standard Eulerian form of the equation, see
[1, 27, 21] for the local theory in Sobolev spaces.

The analysis of non-monotonic data is much more recent, and has experienced some strong
impetus over the last years. Surprisingly, it was shown in [9] that the Prandtl system is ill-posed
in the Sobolev setting (cf. [13, 18, 24] for improvements). Specifically, paper [9] centers on the
linearization of (1)-(2) around shear flows, given by (U, V ) = (Us(y), 0). The linearized system
reads

∂tu+ Us∂xu+ U ′
sv − ∂2yu = 0,

∂xu+ ∂yv = 0,

u|y=0 = v|y=0 = 0, lim
y→+∞

u = 0.

(4)

In the case where Us has one non-degenerate critical point, one can show that (4) has unstable
solutions of the form u(t, x, y) = eikxeσktuk(y) for k arbitrarily large and ℜσk ∼ λ

√
k. Such

high frequency instability forbids the construction of Sobolev solutions. To obtain positive
results, one must start from initial data uin that are strongly localized in Fourier, typically
for which |û0(k, y)| . e−δ|k|γ for some positive δ > 0, γ ≤ 1. Such localization condition
corresponds to Gevrey regularity in x (Gevrey class 1/γ). The first result in this direction is
due to Sammartino and Caflisch [30], who established existence of local in time solutions in the
analytic setting (γ = 1). See also the nice paper [22]. Note that the requirement for analyticity
is natural in view of standard estimates. For instance, at the level of the linearized equation
(4), one gets directly by testing against u that

∂t‖û(t, k, ·)‖L2
y
≤ C|k| ‖û(t, k, ·)‖L2

y
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so that ‖û(t, k, ·)‖L2
y
≤ eC|k|t‖û0(k, ·)‖L2

y
. Hence, if ‖û0(k, ·)‖L2

y
. e−δ|k|, a uniform control will

be provided as long as t ≤ δ/C.
To relax the analyticity condition is much harder. In the special case where uin has for

each value of x a single non-degenerate critical point in y, the first author and N. Masmoudi
proved the local well-posedness of system (1)-(2) for data that are in Gevrey class 7/4 with
respect to x [12]. Well-posedness was extended to Gevrey class 2 in article [23], for data that
are small perturbations of a shear flow with a single non-degenerate critical point. Note that
this exponent (corresponding to γ = 1/2) is optimal in view of the instability mechanism of [9].

All the recent results mentioned above rely heavily on the structure of the initial data:
monotonicity for the Sobolev setting, single non-degenerate critical points for the Gevrey setting.
It is therefore natural to ask about the optimal regularity under which local well-posedness of
the Prandtl equation holds, without additional structural assumption. This is the problem
that we solve in the present paper: we establish the short-time well-posedness of the Prandtl
equation for general data with Gevrey 2 regularity in x and H1 regularity in y. We recall once
more that such regularity framework is the best possible. Indeed, from the results of [9], high
frequency modes k in x may experience exponential growth with rate

√
k. This means that to

hope for short time stability, the amplitude of these modes should be O(e−C
√
k), which is the

Fourier translation of a Gevrey 2 requirement.

2 Result

Let γ ≥ 1, τ > 0, r ∈ R. For functions f = f(x) of one variable, we define the Gevrey norm

|f |2γ,τ,r =
∑

j∈N

(

τ j+1(j+1)r

(j!)γ

)2

‖f (j)‖2L2(T) (5)

and for functions f = f(x, y) of two variables, the norm

‖f‖2γ,τ,r =
∑

j∈N

(

τ j+1(j+1)r

(j!)γ

)2

‖∂jxf‖2j , (6)

where ‖ · ‖j , j ≥ 0, denotes a family of weighted L2 norms. Namely,

‖f‖2j =
∫

T×R+

|f(x, y)|2ρj(y) dxdy, (7)

where ρj, j ≥ 0, is the family of weights given by

ρ0(y) = (1 + y)2m, ρj(y) =
ρj−1(y)
(

1 + y
jα

)2 = ρ0(y)

j
∏

k=1

(

1 +
y

kα

)−2
, j ≥ 1,

for fixed constants α ≥ 0 andm ≥ 0 chosen later (m large enough and αmatching the constraints
found from the estimates). The need for this family of weights will be clarified later. Let us
note that locally in y, this family of norms is comparable to more classical families such as

|||f |||2γ,τ,r =
∑

j∈N

(

τ j+1(j+1)r

(j!)γ

)2

‖∂jxf‖2L2 . (8)

For instance, for functions f which are zero for |y| ≥M , one has

‖f‖γ,τ,r ≤ CM |||f |||γ,τ,r, |||f |||γ,τ,r ≤ CM,τ ′‖f‖γ,τ ′,r for any τ ′ > τ.

3



The only difference is when y goes to infinity, where the family of weights ρj puts less constraints
on the decay of the derivatives compared to a fixed weight ρ0 for derivatives of any order.

With these spaces, we can now state our main result.

Theorem 1. There exists m and α such that: for all 0 < τ1 < τ0, r ∈ R, for all T0 > 0, for all
UE satisfying

sup
[0,T0]

|∂tUE |2,τ0,r + |UE |2,τ0,r < +∞, sup
[0,T0]

max
l=0,...,3

‖∂lt(∂t + UE∂x)U
E‖H6−2l(T) < +∞

for all UP
in satisfying

‖UP
in − UE|t=0‖2,τ0,r < +∞, ‖(1 + y)∂yU

P
in‖2,τ0,r < +∞, ‖(1 + y)m+6∂yU

P
in‖H6(T×R+) < +∞

and under usual compatibility conditions (see the last remark below), there exists 0 < T ≤ T0
and a unique solution UP of (1)-(2) over (0, T ) with initial data UP

in that satisfies

sup
t∈[0,T ]

‖UP (t)−UE(t)‖22,τ1,r + sup
t∈[0,T ]

‖(1+ y)∂yUP (t)‖22,τ1,r +
∫ T

0
‖(1+ y)∂2yUP (t)‖22,τ1,r dt < +∞

Remarks.

• The main novelty of the theorem is that we reach the optimal Gevrey regularity although
no structural assumption is made on the data: no monotonicity, or hypothesis on the
number and order of the critical points is needed. Only Gevrey regularity of the data and
natural compatiblity conditions are required.

• Our method of proof, explained below, is inspired by the hyperbolic part of the Prandtl
equation. It is based on both a tricky change of unknown and appropriate choice of
test function. This method would also allow to recover the Sobolev well-posedness of
the hyperbolic version of the Prandtl system by means of energy methods. As far as we
know, the well-posedness of this inviscid Prandtl equation had been only established in
Ck spaces using the method of characteristics: see [20] for more. This part will be detailed
elsewhere. In the case of the usual Prandtl equation studied here, our methodology has
to be slightly modified to handle in an optimal way the diffusion term. Still, commutators
are responsible for the loss of Sobolev regularity: only Gevrey 2 smoothness in x can be
established.

• There is a loss on the Gevrey radius τ of the solutions through time, going from τ0 to τ1.
This loss, which appears technical in the paper, is actually unavoidable. This is due to
the instabilities described in [9]: exponential growth of perturbations at rate

√
k causes a

decay of the Gevrey radius linearly with time.

• Besides the regularity requirements mentioned in Theorem 1, the initial data must satisfy
compatibility conditions. It is typical of parabolic problems in domains with boundaries,
cf. [28, Chapter 3] for a general discussion. Here, the value of UP

in and of some of its
derivatives at y = 0 cannot be arbitrary: they must be related to UE accordingly to the
equation and to the amount of regularity asked for u (with respect to the y-variable). Let
us note that locally near y = 0, most of our estimates only involve UP − UE in L2

tH
2
y

(not mentioning the Gevrey regularity in x). Such estimates could be carried with the
single compatibility condition UP

in |y=0 = 0. Still, the low norm ‖(UP , V P )‖low introduced
in (19) involves more y-derivatives: its control through Lemma 15 implies therefore a few
more compatibility conditions. For the sake of brevity, we do not provide their explicit
expressions, and refer to [33, Proposition 2.3] for a detailed discussion on a variation of
the Prandtl equation.
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Outline of the strategy. As mentioned earlier, our analysis of the Prandtl equation relies
on the identification of new controlled quantities because the usual unknown u and kinetic
energy do not give enough information. To help to identify the relevant quantities, it is a good
idea to start from the study of the linearized system (4). After Fourier transform in x and
Laplace transform in time, we are left with the ODE

(λ+ ikUs)∂yΨ− ikU ′
sΨ− ∂3yΨ = uin (9)

where Ψ corresponds to the Fourier-Laplace transform of the stream function. At high frequen-
cies k, a natural idea (although not legitimate in the end) is to neglect the diffusion term. We
are then left with the first order ODE

(λ+ ikUs)∂yΨ− ikU ′
sΨ = uin. (10)

We note that the standard estimate (based on taking ∂yΨ as a test function) yields a control
of the type

ℜλ ‖∂yΨ‖2L2 . k‖∂yΨ‖L2‖U ′
sΨ‖L2 + ‖uin‖L2‖∂yΨ‖L2

. k‖∂yΨ‖2L2 + ‖uin‖L2‖∂yΨ‖L2

where the last line comes from the Hardy inequality (as soon as |U ′
s(y)| = O(y−1) at infinity).

Such bound ensures the solvability of the resolvent equation (10) only for λ ∼ k. This in turn
yields a semigroup bound of the type eCkt, only compatible with stability in the analytic setting.

To reach stability in lower regularity, an important point is to notice that the homogeneous
equation has Ψs = (λ+ikUs) as a special solution. With the integrating factor method in mind,
it is then natural to set Ψ = (λ+ ikUs)ψ. The first order equation (10) becomes

(λ+ ikUs)
2∂yψ = uin

which is much better than the original formulation. Indeed, we can test the equation against
φ = 1

λ+ikUs
∂yψ to obtain a control of ∂yψ in terms of uin, and from there a control of Ψ for any

λ > 0.
Back to the full resolvent equation (9) we find for the same unknown ψ

(λ+ ikUs)
2∂yψ − (λ+ ikUs)∂

3
yψ = uin + [λ+ ikUs, ∂

3
y ]ψ.

Testing again against φ = 1
λ+ikUs

∂yψ, the LHS allows the control

ℜλ ‖∂yψ‖2L2 + ‖∂2yψ‖2L2 .

In the commutator at the RHS, the worst error term is 3ik∂yUs∂
2
yψ, which is bounded as

C
k

|ℜλ|‖∂yψ‖L2‖∂2yψ‖L2 ≤ 1

2
‖∂2yψ‖2L2 +

C2k2

|ℜλ|2 ‖∂yψ‖
2
L2 .

We see that under the constraint ℜλ ∼ k2/3, the estimate can be closed, and this can be shown
to imply short time stability for data with Gevrey regularity 3/2. This estimate around a shear
flow is detailed as Lemma 4.1 in [3].

In order to reach the optimal Gevrey exponent 2, we need to get rid of the commutator
term containing ∂2yψ, which comes with a worse control than ∂yψ. To do so, we change a bit
our new unknown ψ: we now define ψ through the relation

Ψ = (λ+ ikUs − ∂2y)ψ (11)

5



including the diffusion term. Hence, (9) becomes

(λ+ ikUs − ∂2y)
2∂yψ + (λ+ ikUs − ∂2y)(ikU

′
sψ)− ikUs(λ+ ikUs − ∂2y)ψ = uin.

Testing this time against the solution φ of (λ + ikUs − ∂2y)φ = ∂yψ (again with the diffusion
term), the LHS yields the same control, but the error term is now

ℜ
∫

[λ+ ikUs − ∂2y , ikU
′
s]ψ φ.

From the definition of φ it can be shown that ‖φ‖ . λ−1‖∂yψ‖ so that the error can be bounded
by

k

|ℜλ|‖∂yψ‖
2
L2 .

The estimate can now be closed for ℜλ ∼ k1/2 yielding Gevrey regularity 2.
Obviously, such approach is no longer applicable as such to the nonlinear system (1)-(2): we

not only lose the linearity of the equations, but the coefficients are no longer of shear flow type.
They notably depend on t and x, which forbids an easy use of Fourier or Laplace transform.
Rather than turning to the characterization of Gevrey spaces in the Fourier variable k, we
consider norms based on the x-variable, see (5) and (6). Roughly, the idea is to work with time
dependent norms, that is with the quantities

‖(UP − UE)(t)‖γ,τ(t),r , τ(t) = τ0e
−βt.

By differentiating j-times the Prandtl equation, we can derive an equation on

uj(t) :=
τ(t)j+1(j+1)r

(j!)γ
∂jx
(

UP (t)− UE(t)
)

that can be written as

(∂t + β(j + 1))uj + UP∂xuj + V P∂yuj + vj∂yU
P − ∂2yuj = Fj , vj = −

∫ y

0
∂xuj . (12)

Roughly, inspired by the shear flow case, the idea will be to introduce as a new unknown
the solution ψj =

∫ y
0 Hj of

(∂t + β(j+1) + UP∂x − ∂2y)ψj =

∫ y

0
uj dz.

which is reminiscent of the Fourier relation (11). The test function φj should then solve the
reverse equation

(−∂t + β(j+1)− UP∂x − ∂2y)φj = ∂yψj

and be solved backward in time. Performing the same estimate as in the shear flow case, we
expect to find an inequality of the type

β(j+1)‖∂yψj‖2 + ‖∂2yψj‖2 .
1

β3(j+1)3
‖Fj‖2 +

1

β3(j+1)3
‖∂x∂yψj‖2

By exploiting a relation of the form ‖∂x∂yψj‖ ∼ jγ‖∂yψj+1‖ (that needs to be shown!) and
using that γ ≤ 2, we will then be able to sum over j and establish for large enough β a control
of
∑

j ‖∂yψj‖2 in terms of
∑

j ‖Fj‖2.
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In fact, in implementing this strategy, several refinements are necessary, and the relations
satisfied by ψj =

∫ y
0 Hj or φj need to be slightly modified. Particularly problematic is the

term V P∂y because V P ∼ −∂xUEy increases linearly with y: this prevents from closing an
energy estimate with a fixed weigth ρ = ρ(y). This difficulty appears in various places in the
literature on the Prandtl equation. This is for instance the reason why article [12] is limited
to the special case UE = 0 and decaying initial data. One can also mention [22], where this
difficulty is overcome by a clever change of variables, which is reminiscent of the method of
characteristics and allows to remove the bad part of the convection term from the equation.
Energy estimates can then be established in these new coordinates x′, y′, and yield some local
well-posedness result, with solutions that are analytic in x′ and L2 in y′. The disadvantage of
this approach is that the regularity of the solution in the original variables x and y is no longer
clear at positive times. Here, we stick to the eulerian variables, but overcome the difficulty by
introducing the family of weights ρj , j ≥ 0. These weights allow to trade a power of y against
a derivative in x, which is appropriate to the commutator terms. Moreover, they put very little
conditions on the derivatives of the solution, so that they provide a very general framework for
well-posedness. Note that the specific expression of ρj is important: it could not be for instance
replaced by the more natural guess (1+y)2(m−j), as commutators with the diffusion term would
not be under control. Note also that the strategy used in [27], where Sobolev well-posedness
is established under monotonicity assumptions by increasing the weight with the number of
y-derivatives, does not extend to the Gevrey framework in variable x.

The plan of the paper is as follows. In the next section, we first collect several properties of
the weight ρj. We then write the equations satisfied by the x-derivatives of the Prandtl solution
in a form analogue to (12). This means that we put most of the nonlinear terms at the right-hand
side, and consider those equations as linear. We finish the section by introducing the adapted
quantities Hj and φj . The main section is Section 4: a priori Gevrey estimates for the linear
equations are perfomed, that provide a control of the uj’s in terms of the nonlinear terms F ′

js.

Note that such estimates are obtained under a condition of the form β > C(1+‖(UP , V P )‖low)2,
where ‖(UP , V P )‖low is a low regularity norm of the solution. The treatment of the nonlinearity
Fj is then handled in Section 5. The last step in the derivation of a priori estimates is to recover
the control of the low regularity norm ‖(UP , V P )‖low, see Section 6. Finally, issues regarding
the construction and uniqueness of solutions are discussed in Section 7.

3 Preliminaries

The explicit form of the weights ρj is only needed in the Section 5. In the other parts, we just
need a sufficient control of the logarithmic derivative (Lemma 2), a bound for antiderivatives
(Lemma 3) and relate ρj to ρj+1 (Lemma 4).

Lemma 2. Let m ≥ 0 and α ≥ 0. There exists a constant Cl such that for all y ∈ R
+, j ∈ N

∣

∣

∣

∣

∂yρj(y)

ρj(y)

∣

∣

∣

∣

≤











Cl(j+1)1−α if α < 1

Cl log(j+1) if α = 1

Cl if α > 1

and

(1 + y)

∣

∣

∣

∣

∂yρj(y)

ρj(y)

∣

∣

∣

∣

≤ Cl (j+1).
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Proof. Given the explicit form of ρj, we can compute the logarithmic derivative of ρ directly as

∂yρj
ρj

= ∂y log ρj = ∂y log ρ0 − 2

j
∑

k=1

∂y log
(

1 +
y

kα

)

=
2m

1 + y
− 2

j
∑

k=1

1

kα
(

1 + y
kα

) .

From this expression the result follows directly.

Lemma 3. For m > 1
2 introduce the constant

Cm =

√

1

2m− 1
.

Then for all α ≥ 0, j ∈ N and all f = f(y),

sup
y≥0

(

ρj(y)

ρ0(y)

)1/2 ∫ y

0
|f(z)|dz ≤ Cm ‖f‖L2(ρj).

More generally, for 0 ≤ n ≤ j with n < m− 1
2 one has

sup
y≥0

(

ρj(y)

ρn(y)

)1/2 ∫ y

0
|f(z)|dz ≤ Cm−n ‖f‖L2(ρj).

Eventually, for all A = A(x, y) and B = B(x, y), the following inequality holds:

‖A
∫ y

0
B(z) dz‖j ≤ Cm‖A‖L∞

x L2
y(ρ0)

‖B‖j .

Proof. Note that ρj/ρn for j ≥ n is non-increasing. Hence

(

ρj(y)

ρn(y)

)1/2 ∫ y

0
|f(z)|dz ≤

∫ y

0

(

ρj(z)

ρn(z)

)1/2

|f(z)|dz ≤ ‖f‖L2(ρj)

(∫ y

0

1

ρn(z)
dz

)1/2

,

where we used the Cauchy-Schwarz inequality in the second inequality.
As α ≥ 0 we find directly that

1

ρn(y)
≤ (1 + y)−2m

j
∏

k=1

(

1 +
y

kα

)2
≤ 1

(1 + y)2m−2n

whose integral over y ∈ R
+ gives C2

m−n. This proves the first and second bounds. The remaining
estimate with A and B follows directly.

The weights are decaying so that ρj ≤ ρk for j ≥ k. As α ≥ 0, we have for j ∈ N that
(1 + y)2ρj+1 ≤ (j+1)2αρj and ρj+1 ≥ ρj

(1+y)2
. This shows:

Lemma 4. Let α ≥ 0. For j ∈ N, A = A(x, y) and B = B(x, y) it holds that for

‖A‖j+1 ≤ ‖A‖j , ‖(1 + y)A‖j+1 ≤ (j+1)α‖A‖j

and
∥

∥

∥

∥

A

(1 + y)

∥

∥

∥

∥

j

≤ ‖A‖j+1, ‖A
∫ y

0
B(z) dz‖j ≤ Cm‖(1 + y)A‖L∞

x L2
y(ρ0)

‖B‖j+1.

8



Let us insist again that most parts of the proof would work with constant weight ρ instead
of ρj. The dependency on j will be only needed to treat the commutator terms coming from
V P∂yU

P . The difficulty is that V P grows like y as soon as UE is non-constant. Here the crucial
property that we will use is that we can control ‖(1 + y)A‖j+1 by (j+1)α‖A‖j .

The Prandtl equation is given for (UP , V P ) with inhomogeneous boundary conditions at
y → ∞. In order to work with homogeneous boundary conditions at zero and infinity, we
introduce

U e(t, x, y) = (1− e−y)UE(t, x), V e(t, x, y) = −(y + e−y − 1)∂xU
E(t, x)

and set u = UP − U e, v = −
∫ y
0 ∂xu = V P − V e. Then,

∂tu+ (u∂x + v∂y)u+ (U e∂x + V e∂y)u+ (u∂x + v∂y)U
e − ∂2yu = f e (13)

where
f e = ∂tU

E + UE∂xU
E − ∂tU

e − U e∂xU
e − V e∂yU

e + ∂2yU
e. (14)

In the new variables (u, v) the boundary conditions are

u = v = 0 at y = 0, and lim
y→∞

u = 0. (15)

The condition at y → ∞ will be encoded in the functional space of u.
To prove Theorem 1, the point is to obtain good estimates for Gevrey norms of u of type

(6) for time-dependent radius τ = τ(t). More precisely, we give ourselves parameters m,α, γ, r,
to be fixed later, as well as the time-dependent radius τ(t) = τ0e

−βt, with β > 0 to be fixed
later. Then, for any function f = f(t, x) or f = f(t, x, y) and j ∈ N we set

fj(t, ·) := Mj ∂
j
xf(t, ·) with Mj :=

τ(t)j+1(j+1)r

(j!)γ
.

Taking j derivatives in x of (13) and multiplying by Mj yields

(

∂t + β(j+1) + UP∂x + (j+1)∂xU
P + V P∂y − ∂2y

)

uj + ∂yU
P vj + j∂xyU

P∂−1
x vj = Fj (16)

where Fj collects all terms with less than j derivatives in x as well as the weighted derivative
of the forcing f e. It is given by

Fj = f ej +Mj

[

u∂x, ∂
j
x

]

u+Mj ∂xu∂
j
xu

+Mj

[

∂yu, ∂
j
x

]

v +Mjj ∂xyu∂
j−1
x v +Mjv ∂

j
x∂yu

+Mj

[

U e∂x, ∂
j
x

]

u+Mjj ∂xU
e ∂jxu

+Mj

[

V e∂y, ∂
j
x

]

u

+Mj

[

∂xU
e, ∂jx

]

u

+Mj

[

∂yU
e, ∂jx

]

v +Mjj ∂xyU
e ∂j−1

x v.

We now introduce our crucial auxiliary functions Hj(t, x, y) defined by

(

∂t + β(j+1) + UP∂x + (j+1)∂xU
p + V P∂y − ∂2y

)

∫ y

0
Hj dz =

∫ y

0
uj dz,

Hj|t=0 = 0, ∂yHj|y=0 = 0, Hj|y→∞ = 0.

(17)

For the existence of Hj, one can consider (17) as a convection-diffusion equation for Aj =
∫ y
0 Hj dz, with boundary conditions Aj |y=0 = ∂yAj|y→∞ = 0, which has a solution by the
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classical theory of parabolic PDEs. The PDE (17) itself then implies that ∂2yAj |y=0 so that
taking Hj = ∂yAj gives the required solution.

We further introduce the corresponding test functions φj by

(

−∂t + β(j+1)− UP∂x + j∂xU
p − V P∂y − ∂yV

P − V P ∂yρj
ρj

−
(

∂y +
∂yρj
ρj

)2
)

φj = Hj,

φj|t=T = 0, φj |y=0 = 0, φj |y→∞ = 0.
(18)

Note here that the operator acting on φj is the formal adjoint operator of the operator acting
on
∫ y
0 Hj dz in (17), with respect to the L2(ρj) scalar product, denoted 〈 , 〉j . This is a backward

heat equation solved backward in time for t ∈ [0, T ].
Testing (18) against φj in ‖ · ‖j and integrating over [t, T ] yields

1

2
‖φj(t)‖2j + β(j+1)

∫ T

t
‖φj(s)‖2j ds+ (j+

1

2
)

∫ T

t
〈∂xUPφj , φj〉j ds

− 1

2

∫ T

t
〈
(

∂yV
P + V P ∂yρj

ρj

)

φj , φj〉j ds+
∫ T

t
‖∂yφj(s)‖2j ds+

∫ T

t
〈∂yρj
ρj

φj , ∂yφj〉j ds

=

∫ T

t
〈Hj, φj〉j ds.

Hence we find

1

2
‖φj(t)‖2j +

3β(j+1)

4

∫ T

t
‖φj(s)‖2j ds+

1

2

∫ T

t
‖∂yφj(s)‖2j ds

≤ 1

β(j+1)

∫ T

t
‖Hj(s)‖2j ds+

(

(j+
1

2
)‖∂xUP ‖∞ +

1

2

∥

∥

∥

∥

∂yV
P+V P ∂yρj

ρj

∥

∥

∥

∥

∞
+

1

2

∥

∥

∥

∥

∂yρj
ρj

∥

∥

∥

∥

2

∞

)

∫ T

t
‖φj(s)‖2j ds.

By Lemma 2, under the condition α ≥ 1
2 , we get the following control:

Lemma 5. Fix m ≥ 0 and α ≥ 1
2 . Then there exist a constant C = C(m,α) such that for all

j ∈ N it holds that

‖φj(t)‖2j + β(j+1)

∫ T

t
‖φj(s)‖2j ds+

∫ T

t
‖∂yφj(s)‖2j ds ≤

2

β(j+1)

∫ T

t
‖Hj(s)‖2j ds

if

β ≥ C
(

1 + ‖∂xUP ‖∞ + ‖∂yV P ‖∞ +

∥

∥

∥

∥

V P

1 + y

∥

∥

∥

∥

∞

)

.

Note that for α < 1
2 , the term with ‖∂yρj

ρj
‖2∞ could not have been absorbed. This a priori

estimate also ensure the existence of φj as solution of (18). A similar estimate holds for Hj

which ensures the existence of Hj as solution of (17).

4 Linear estimates

In this section we analyse the linearised equation (16) and obtain an estimate for the solution
in terms of the Fj containing the forcing and lower-order terms. For this, we shall first analyse
(16) for a fixed j. We will obtain a control of Hj in terms of the forcing Fj and an error term
∂xHj, which will be shown to be approximately (j+1)γHj+1. By summing over j, we will find
the following control.

10



Lemma 6. Fix m > 1
2 ,

1
2 ≤ α ≤ 1

2 + γ, 1 ≤ γ ≤ 2, r ∈ R. Then there exists a constant
C = C(m,α, γ, r) such that for all τ1, β and T such that

β ≥ C(1 + ‖(UP , V P )‖low) (1 +
1

τ1
+ ‖(UP , V P )‖low) and τ(T ) ≥ τ1

the Hj’s defined by (17) for solutions uj ’s of (16) satisfy

∞
∑

j=0

β2(j+1)2γ
[∫ T

0
‖Hj(t)‖2j dt+

1

β(j+1)
‖Hj(T )‖2j +

1

β(j+1)

∫ T

0
‖∂yHj‖2j dt

]

≤ 16

∞
∑

j=0

[

(j+1)2γ−4

β2

∫ T

0
‖Fj(t)‖2j dt+

(j+1)2γ−3

β
‖uin,j‖2j

]

.

Here we use a low-order control of UP and V P in order to control the commutator error
terms. From the required bounds, we define the low-order norm as

‖(UP , V P )‖low = sup
t∈[0,T ]

max
(

max
0≤k≤3

‖∂kxUP‖∞, ‖∂x∂2yUP ‖∞, ‖(1 + y)∂yU
P‖∞, ‖(1 + y)∂2yU

P ‖∞,

‖(1 + y)∂yU
P‖L∞

x L2
y(ρ0)

, ‖∂xyUP ‖L∞
x L2

y(ρ0)
, ‖∂xxyUP‖L∞

x L2
y(ρ0)

,

‖(1 + y)2∂2yU
P ‖L∞

x L2
y(ρ0)

, ‖(1 + y)∂x∂
2
yU

P ‖L∞

x L2
y(ρ0)

, max
0≤k≤2

∥

∥

∥

∥

∂kxV
P

1 + y

∥

∥

∥

∥

∞

)

.

(19)
Although a main ingredient of our proof, the unknown Hj is less natural that the usual uj,

notably for the future treatment of the nonlinearity, which involves uj and ωj = ∂yuj. This is
why we shall we relate the control of Hj to uj and show:

Proposition 7. Fix m > 1
2 ,

1
2 ≤ α ≤ 1

2 + γ, 1 ≤ γ ≤ 2, r ∈ R. Then there exist constants
C = C(m,α, γ, r) and C = C(m,α, γ, r) such that for all τ1, β and T such that

β ≥ C(1 + ‖(UP , V P )‖low) (1 +
1

τ1
+ ‖(UP , V P )‖low) and τ(T ) ≥ τ1

the solution u of (16) satisfies

∫ T

0
‖u‖2γ,τ,r dt+ sup

t∈[0,T ]

1

β
‖u‖2γ,τ,r− γ

2

+

∫ T

0

1

β
‖(1 + y)ω‖2γ,τ,r+1−γ dt

+ sup
t∈[0,T ]

1

β2
‖(1 + y)ω‖2

γ,τ,r+ 1

2
−γ

+
1

β2

∫ T

0
‖(1 + y)∂yω‖2γ,τ,r+ 1

2
−γ

dt

≤ C





1

β2

∞
∑

j=0

∫ T

0

1

(j+1)4−2γ
‖Fj‖2j dt+

1

β2

∞
∑

j=0

∫ T

0

1

(j+1)2γ−1
‖(1 + y)Fj‖2j dt





+
C

β2

∞
∑

j=0

∫ T

0

1

(j+1)2γ−1
‖Fj |y=0‖2L2

x
dt+C

[

1

β
‖uin‖2γ,τ0,r+γ− 3

2

+
1

β2
‖(1 + y)ωin‖2γ,τ0,r+ 1

2
−γ

]

.
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For γ ≥ 5/4 this is

∫ T

0
‖u‖2γ,τ,r dt+ sup

t∈[0,T ]

1

β
‖u‖2γ,τ,r− γ

2

+

∫ T

0

1

β
‖(1 + y)ω‖2γ,τ,r+1−γ dt

+ sup
t∈[0,T ]

1

β2
‖(1 + y)ω‖2

γ,τ,r+ 1

2
−γ

+
1

β2

∫ T

0
‖(1 + y)∂yω‖2γ,τ,r+ 1

2
−γ

dt

≤ C





1

β2

∞
∑

j=0

∫ T

0

1

(j+1)4−2γ

∥

∥

∥

∥

∥

(

1 +
y

(j+1)2γ−
5

2

)

Fj

∥

∥

∥

∥

∥

2

j

dt





+
C

β2

∞
∑

j=0

∫ T

0

1

(j+1)2γ−1
‖Fj |y=0‖2L2

x
dt+C

[

1

β
‖uin‖2γ,τ0,r+γ− 3

2

+
1

β2
‖(1 + y)ωin‖2γ,τ0,r+ 1

2
−γ

]

.

4.1 Estimate for Hj

We focus first on Lemma 6. The idea is to use the solution φj of (18) as a test function in (16).
Taking the weighted scalar product and integrating over [0, T ], we find for the first term in (16):

∫ T

0
〈
(

∂t + β(j+1) + UP∂x + (j+1)∂xU
p + V P∂y − ∂2y

)

uj, φj〉j dt

= −〈uin,j, φj(0)〉j

+

∫ T

0
〈uj ,

(

−∂t + β(j+1)− UP∂x + j∂xU
p − V P∂y − ∂yV

P − V P ∂yρj
ρj

−
(

∂y +
∂yρj
ρj

)2
)

φj〉j dt

= −〈uin,j, φj(0)〉j +
∫ T

0
〈uj ,Hj〉j dt.

Note that there is no boundary term as uj and φj vanish at the boundaries. Differentiating
(17), we can replace uj in the last integral and find

∫ T

0
〈uj ,Hj〉j dt

=

∫ T

0
〈
(

∂t + β(j+1) + UP∂x + (j+1)∂xU
p + V P∂y − ∂2y

)

Hj,Hj〉j dt

+

∫ t

0
〈(∂yUP∂x + j∂xyU

P )

∫ y

0
Hj dz,Hj〉j dt

+

∫ t

0
〈∂xyUP

∫ y

0
Hj dz,Hj〉j dt+

∫ T

0
〈∂yV PHj,Hj〉j dt

=
1

2
‖Hj(T )‖2j + β(j+1)

∫ T

0
‖Hj(t)‖2j dt+

∫ T

0
‖∂yHj(t)‖2j dt

+

∫ t

0
〈(∂yUP∂x + j∂xyU

P )

∫ y

0
Hj dz,Hj〉j dt

+

∫ t

0
〈∂xyUP

∫ y

0
Hj dz,Hj〉j dt+

∫ T

0
〈∂yV PHj,Hj〉j dt

+ (j+
1

2
)

∫ T

0
〈∂xUPHj,Hj〉j dt−

1

2

∫ T

0
〈
(

∂yV
P + V P ∂yρj

ρj

)

Hj,Hj〉j dt+
∫ T

0
〈∂yρj
ρj

Hj,Hj〉j dt.

By the boundary values of Hj there are again no boundary terms from partial integration in
y. In the last expression, the first line contains the good controlled terms, the second line will
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cancel the leading contribution from the bad terms ∂yU
P vj + j∂xyU

P∂−1
x vj (see below), while

the last two lines collect the error terms.
Next, we compute the contribution from the terms with vj using vj = −∂x

∫ y
0 uj dz:

∫ T

0
〈∂yUP vj , φj〉j dt

= −
∫ T

0
〈∂yUP∂x

[

(

∂t + β(j+1) + UP∂x + (j+1)∂xU
p + V P∂y − ∂2y

)

∫ y

0
Hj dz

]

, φj〉j dt

= −
∫ T

0
〈∂yUP

(

∂t + β(j+1) + UP∂x + (j+1)∂xU
p + V P∂y − ∂2y

)

∂x

∫ y

0
Hj dz, φj〉j dt

−
∫ T

0
〈∂yUP (∂xU

P∂x + (j+1)∂2xU
P + ∂xV

P∂y)

∫ y

0
Hj dz, φj〉j dt

= −
∫ T

0
〈
(

∂t + β(j+1) + UP∂x + (j+1)∂xU
p + V P∂y − ∂2y

)

[

∂yU
P∂x

∫ y

0
Hj dz

]

, φj〉j dt

+

∫ T

0
〈
(

(∂t + UP∂x + V P∂y)∂yU
P − 2∂2yU

P∂y − ∂3yU
P
)

∂x

∫ y

0
Hj dz, φj〉j dt

−
∫ T

0
〈∂yUP (∂xU

P∂x + (j+1)∂2xU
P + ∂xV

P∂y)

∫ y

0
Hj dz, φj〉j dt

= −
∫ T

0
〈∂yUP∂x

∫ y

0
Hj dz,Hj〉j dt

+

∫ T

0
〈
(

(∂t + UP∂x + V P∂y)∂yU
P − 2∂2yU

P∂y − ∂3yU
P
)

∂x

∫ y

0
Hj dz, φj〉j dt

−
∫ T

0
〈∂yUP (∂xU

P∂x + (j+1)∂2xU
P + ∂xV

P∂y)

∫ y

0
Hj dz, φj〉j dt

and

∫ T

0
〈j∂xyUP∂−1

x vj , φj〉j dt

= −j
∫ T

0
〈∂xyUP

(

∂t + β(j+1) + UP∂x + (j+1)∂xU
p + V P∂y − ∂2y

)

∫ y

0
Hj dz, φj〉j dt

= −j
∫ T

0
〈∂xyUP

∫ y

0
Hj dz,Hj〉j dt

+ j

∫ T

0
〈
(

(∂t + UP∂x + V P∂y)∂xyU
P − 2∂x∂

2
yU

P∂y − ∂x∂
3
yU

P
)

∫ y

0
Hj dz, φj〉j dt.

In both cases the leading order term cancels. Hence collecting the terms we arrive at

1

2
‖Hj(T )‖2j + β(j+1)

∫ T

0
‖Hj(t)‖2j dt+

∫ T

0
‖∂yHj(t)‖2j dt

≤
∫ T

0
〈Fj , φj〉dt+ 〈uin,j, φj(0)〉j +

∫ T

0

5
∑

i=1

Ei dt
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where E1, . . . , E5 collect the lower-order error terms as

E1 = −〈∂xyUP

∫ y

0
Hj dz,Hj〉j − 〈∂yV PHj,Hj〉j ,

E2 = −(j+
1

2
)〈∂xUPHj,Hj〉j +

1

2
〈
(

∂yV
P + V P ∂yρj

ρj

)

Hj,Hj〉j − 〈∂yρj
ρj

Hj,Hj〉j,

E3 = −〈
(

(∂t + UP∂x + V P∂y)∂yU
P − 2∂2yU

P∂y − ∂3yU
P
)

∂x

∫ y

0
Hj dz, φj〉j ,

E4 = 〈∂yUP (∂xU
P∂x + (j+1)∂2xU

P + ∂xV
P∂y)

∫ y

0
Hj dz, φj〉j ,

E5 = −j〈
(

(∂t + UP∂x + V P∂y)∂xyU
P − 2∂x∂

2
yU

P∂y − ∂x∂
3
yU

P
)

∫ y

0
Hj dz, φj〉j .

Here E3 and E4 contain the worst terms, as they involve x-derivatives of Hj. They are respon-
sible for the Gevrey regularity requirement.

Assume m ≥ 0, α ≥ 1
2 and β large enough so that Lemma 5 applies. We can then estimate

the forcing terms as

∫ T

0
〈Fj , φj〉j dt ≤

2

β3(j+1)3

∫ T

0
‖Fj(t)‖2j dt+

β(j+1)

4

∫ T

0
‖Hj(t)‖2j dt

and

〈uin,j, φj(0)〉j ≤
2

β2(j+1)2
‖uin,j‖2j +

β(j+1)

4

∫ T

0
‖Hj(t)‖2j dt.

Absorbing the terms with Hj we therefore find

‖Hj(T )‖2j + β(j+1)

∫ T

0
‖Hj(t)‖2j dt+ 2

∫ T

0
‖∂yHj(t)‖2j dt

≤ 4

β3(j+1)3

∫ T

0
‖Fj(t)‖2j dt+

4

β2(j+1)2
‖uin,j‖2j + 2

∫ T

0

5
∑

i=1

Ei dt.

We now estimate the error terms, where we repeatedly use Lemma 3. For E1 we find

E1 ≤
[

Cm‖∂xyUP‖L∞
x L2

y(ρ0)
+ ‖∂yV P ‖∞

]

‖Hj‖2j .

For E2 we also use Lemma 2 and assume α ≥ 1
2

E2 ≤
[

(j+
1

2
)‖∂xUP ‖∞ +

1

2
‖∂yV P ‖∞ + Cl(j+1)

(

1 +

∥

∥

∥

∥

V P

1 + y

∥

∥

∥

∥

∞

)]

‖Hj‖2j .

In the term E3 we have terms with ∂xHj , which we want to estimate in ‖ · ‖j+1 as they will be
later controlled by Hj+1. Using Lemma 4 we find

E3 ≤ Cm‖(1+y)(∂t + UP∂x + V P∂y − ∂2y)∂yU
P ‖L∞

x L2
y(ρ0)

‖∂xHj‖j+1‖φj‖j
+ 2‖(1+y)∂2yUP ‖∞‖∂xHj‖j+1‖φj‖j
≤ 2‖(1+y)∂2yUP ‖∞‖∂xHj‖j+1‖φj‖j

where we used the identity

(∂t + UP∂x + V P∂y)∂yU
P − ∂2y∂yU

P = 0. (20)
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Similarly, we find for E4 that

E4 ≤ Cm‖(1+y)∂yUP∂xU
P ‖L∞

x L2
y(ρ0)

‖∂xHj‖j+1‖φj‖j
+ (j+1)Cm‖∂yUP∂2xU

P ‖L∞
x L2

y(ρ0)
‖Hj‖j‖φj‖j

+ ‖∂yUP∂xV
P ‖∞‖Hj‖j‖φj‖

And finally for E5 we find

E5 ≤
(

jCm‖(∂t + UP∂x + V P∂y − ∂2y)∂xyU
P ‖L∞

x L2
y(ρ0)

+ 2j‖∂x∂2yUP ‖∞
)

‖Hj‖j‖φj‖j
≤
(

jCm‖(∂xUP∂x + ∂xV
P∂y)∂yU

P‖L∞
x L2

y(ρ0)
+ 2j‖∂x∂2yUP‖∞

)

‖Hj‖j‖φj‖j

where we took again advantage of (20).
We collect the various factors in constants D1,D2,D3 defined as folllows:

D1 = 4
(

‖(1+y)∂2yUP‖∞ + Cm‖(1+y)∂yUP∂xU
P‖L∞

x L2
y(ρ0)

)

and
D2 = 2

(

(j+1)Cm‖∂yUP∂2xU
P ‖L∞

x L2
y(ρ0)

+ ‖∂yUP∂xV
P ‖∞

+ jCm‖(∂xUP∂x + ∂xV
P∂y)∂yU

P‖L∞

x L2
y(ρ0)

+ 2j‖∂x∂2yUp‖∞
)

and

D3 = 2

(

Cm‖∂xyUP ‖L∞
x L2

y(ρ0)
+ ‖∂yV P‖∞ + (j+

1

2
)‖∂xUP‖∞ +

1

2
‖∂yV P ‖∞ + Cl(j+1)

(

1 +

∥

∥

∥

∥

V P

1 + y

∥

∥

∥

∥

∞

))

.

Then

2

∫ T

0

5
∑

i=1

Ei dt ≤ D1

∫ T

0
‖∂xHj‖j+1‖φj‖j dt+D2

∫ T

0
‖Hj‖j‖φj‖j dt+D3

∫ T

0
‖Hj‖2j dt

≤ 1

4

∫ T

0
β3(j+1)3‖φj‖2j dt+

2D2
1

β3(j+1)3

∫ T

0
‖∂xHj‖2j+1 dt+

(

2D2
2

β3(j+1)3
+D3

)∫ T

0
‖Hj‖2j dt

With Lemma 5 the φ integral can be estimated as

1

4

∫ T

0
β3(j+1)3‖φj‖2j dt ≤

1

2
β(j+1)

∫ T

0
‖Hj(t)‖2j dt

and thus can be absorbed in the LHS.
Here ‖(UP , V P )‖low has been designed such that we can find numerical constants c1, c2, c3

such that

D1 ≤ c1(1 + ‖(UP , V P )‖low)2,
D2 ≤ c2(j+1) (1 + ‖(UP , V P )‖low)2,
D3 ≤ c3(j+1) (‖(UP , V P )‖low).

Combining all the estimates we arrive at the following lemma.

Lemma 8. Assume α ≥ 1
2 and m > 1

2 . Then there exist a constant C = C(m,α) such that for

β ≥ C(1 + ‖(UP , V P )‖U,low)
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and j ∈ N the Hj defined by (17) for a solution uj of (13) satisfy

2‖Hj(T )‖2j + β(j+1)

∫ T

0
‖Hj(t)‖2j dt+ 4

∫ T

0
‖∂yHj(t)‖2j dt

≤ 8

β3(j+1)3

∫ T

0
‖Fj(t)‖2j dt+

8

β2(j+1)2
‖uin,j‖2j

+
4c21(1 + ‖(UP , V P )‖low)4

β3(j+1)3

∫ T

0
‖∂xHj‖2j+1 dt.

Proof. Use the previous estimates. Note that the condition on β also implies that the hypothesis
of Lemma 5 is satisfied by choosing C large enough.

4.2 Relating ∂xHj with Hj+1

To conclude the proof of Lemma 6, that will be achieved by summation of the previous estimate
over j, we need first to control ∂xHj by Hj+1.

Lemma 9. Let m > 1
2 and α ≥ 1

2 . Then there exist constants C = C(m,α) and C = C(m,α, r)
such that for all τ1, β and T with

β ≥ C
(

1 + ‖(UP , V P )‖low
)2
, τ(T ) ≥ τ1,

it holds that

∫ T

0
‖∂xHj‖2j+1dt

≤ C
(j+1)2γ

τ21

∫ T

0
‖Hj+1‖2j+1 dt+ C

(j+1)2α−2

β

∫ T

0
‖∂yHj‖2j dt+

C

β

∫ T

0
‖Hj‖2j dt.

Proof. From the definition of uj , it holds that ∂xuj(t) =
(

j+2
j+1

)r
(j+1)γ

τ(t) uj+1(t). Hence we

anticipate that

∂xHj(t) ≈
(

j+2

j+1

)r (j+1)γ

τ(t)
Hj+1(t).

Therefore we estimate the difference

∆j := ∂xHj −
(

j+2

j+1

)r (j+1)γ

τ(t)
Hj+1.

From equation (17) (used with indices j and j+1), we find that

(

∂t+β(j+1)+UP∂x+(j+2)∂xU
P+V P∂y−∂2y

)

∫ y

0
∆j dz = −

[

(j+1)∂xxU
P + ∂xV

P∂y
]

∫ y

0
Hj dz.

(21)
We stress that

∫ y
0 ∆j dz does not converge to zero at infinity, so that one can not perform L2

estimates on this quantity. However, we can notice by Lemma 3 that

‖
(ρj+1

ρ0

)1/2
∫ y

0
∆j dz‖L2 ≤ ‖

(ρ1
ρ0

)1/2‖L2
y
‖
(ρj+1

ρ1

)1/2
∫ y

0
∆j dz‖L2

xL
∞

y

≤ Cm−1‖∆j‖j+1

< +∞.

(22)
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The square integrable quantity δj =
(ρj+1

ρ0

)1/2 ∫ y
0 ∆j dz satisfies the equation

(

∂t + β(j+1) + UP∂x + (j+2)∂xU
P + V P∂y − ∂2y

)

δj

=− (j+1)∂xxU
P
(ρj+1

ρ0

)1/2
∫ y

0
Hj dz − ∂xV

P
(ρj+1

ρ0

)1/2
Hj

+ V P∂y

(

(ρj+1

ρ0

)1/2
)

(ρj+1

ρ0

)−1/2
δj − 2∂y

(

(ρj+1

ρ0

)1/2
)

∆j − ∂2y

(

(ρj+1

ρ0

)1/2
)

(ρj+1

ρ0

)−1/2
δj .

(23)
As in (22), we obtain

‖(j+1)∂xxU
P
(ρj+1

ρ0

)1/2
∫ y

0
Hj dz‖L2 ≤ Cm−1(j+1)‖∂xxUP‖∞‖Hj‖j+1 (24)

We also get

‖∂xV P
(ρj+1

ρ0

)1/2
Hj‖L2 ≤ ‖ 1

1 + y
∂xV

P ‖∞‖Hj‖j+1.

By Lemma 2, we find

‖V P∂y

(

(ρj+1

ρ0

)1/2
)

(ρj+1

ρ0

)−1/2
δj‖L2 ≤ ‖ 1

1 + y
V P ‖∞Cl(j + 1)‖δj‖L2 .

Using again Lemma 2 and the identity

(ρj+1

ρ0

)1/2
∆j = ∂yδj − ∂y

(

(ρj+1

ρ0

)1/2
)

(ρj+1

ρ0

)−1/2
δj

and defining
Aj,α = max((j+1)1−α, log(j+1), 1) (25)

we obtain
‖2∂y

(

(ρj+1

ρ0

)1/2
)

∆j‖L2 ≤ 2ClAj,α‖∂yδj‖L2 + 2C2
l A

2
j,α‖δj‖L2 .

Eventually,

‖∂2y
(

(ρj+1

ρ0

)1/2
)

(ρj+1

ρ0

)−1/2
δj‖L2

= ‖∂y
(

j+1
∑

k=1

1

kα(1 + y
kα )

(ρj+1

ρ0

)1/2
)

(ρj+1

ρ0

)−1/2
δj‖L2 ≤ CA2

j,α‖δj‖L2

for some constant C = C(α). The previous bounds combined with an energy estimate yield
that for C large enough (we remind that α ≥ 1

2 ):

‖δj(T )‖2L2 + β(j + 1)

∫ T

0
‖δj‖2L2 dt+

∫ T

0
‖∂yδj‖2L2 dt ≤ (j+1)

∫ T

0
‖Hj‖2j+1 dt. (26)

We can then take the x-derivative of equation (23) and proceed as above. For C large enough,
we get

‖∂xδj(T )‖2L2 + β(j+1)

∫ T

0
‖∂xδj‖2L2 dt+

∫ T

0
‖∂x∂yδj‖2L2 dt

≤ (j+1)

∫ T

0
(‖∂xHj‖2j+1 + ‖Hj‖2j+1) dt

+

∫ T

0

(

2‖∂xV P∂y

(

(ρj+1

ρ0

)1/2
)

(ρj+1

ρ0

)−1/2
δj‖L2 + 2(j+2)‖∂2xUP δj‖L2 + 2‖∂xV P∂yδj‖L2

)

‖∂xδj‖L2 dt

17



We then use that

‖∂xV P∂y

(

(ρj+1

ρ0

)1/2
)

(ρj+1

ρ0

)−1/2
δj‖L2 ≤

∥

∥

∥

∥

∂xV
P

1 + y

∥

∥

∥

∥

∞
Cl(j+1)‖δj‖L2 ,

and

‖∂xV P∂yδj‖L2 ≤
∥

∥

∥

∥

∂xV
P

1 + y

∥

∥

∥

∥

∞
Cl(j+1)‖δj‖L2 +

∥

∥

∥

∥

∂xV
P

1 + y

∥

∥

∥

∥

∞
‖∆j‖j+1

and the bound (26) to end up with

‖∂xδj(T )‖2L2 +
β(j+1)

2

∫ T

0
‖∂xδj‖2L2 dt+

∫ T

0
‖∂x∂yδj‖2L2 dt

≤ 2(j+1)

∫ T

0
(‖∂xHj‖2j+1 + ‖Hj‖2j+1 + ‖∆j‖2j+1) dt.

(27)

To estimate directly ∆j, we differentiate the equation (21) with respect to y, which gives

(

∂t + β(j+1) + UP∂x + (j+2)∂xU
p + V P∂y + ∂yV

P − ∂2y

)

∆j

=− (j+1)∂xxU
PHj − (j+1)∂xxyU

P

∫ y

0
Hj − ∂xyV

PHj − ∂xV
P∂yHj

− ∂yU
P∂x

∫ y

0
∆j − (j+2)∂xyU

P

∫ y

0
∆j.

We take the 〈 , 〉j+1 scalar product with ∆j:

(

1

2
∂t + β(j+1)

)

‖∆j‖2j+1 −
[

(j+2) ‖∂xUP‖∞ +
1

2
‖∂yV P ‖∞ +

1

2
‖V P ∂yρj+1

ρj+1
‖∞
]

‖∆j‖2j+1

+ ‖∂y∆j‖2j+1 − 〈∂y∆j,
∂yρj+1

ρj+1
∆j〉j+1

≤ (j+1)
(

‖∂xxUP ‖∞ + Cm‖∂xxyUP ‖L∞

x L2
y(ρ0)

+ ‖∂xyV P‖∞
)

‖Hj‖j+1 ‖∆j‖j+1

+

∥

∥

∥

∥

∂xV
P

1 + y

∥

∥

∥

∥

∞
‖(1+y)∂yHj‖j+1 ‖∆j‖j+1

+
(

‖∂yUP√ρ0‖∞‖∂xδj‖L2 + (j+2)‖∂xyUP√ρ0‖∞‖δj‖L2

)

‖∆j‖j+1 .

By the 1d Sobolev imbedding theorem, we find that for a constant C = C(m) it holds that

‖∂yUP√ρ0‖∞ ≤ C‖(UP , V P )‖low and ‖∂xyUP√ρ0‖∞ ≤ C‖(UP , V P )‖low.

Combining these last two inequalities with (26), (27) and the inequality

‖(1 + y)∂yHj‖j+1 ≤ (j+1)α‖∂yHj‖j ,

and taking C large enough, we obtain

‖∆j(T )‖2j+1 + β(j+1)

∫ T

0
‖∆j‖2j+1 dt+

∫ T

0
‖∂y∆j‖2j+1 dt

≤ (j+1)

∫ T

0
‖Hj‖2j+1 dt+ (j+1)2α−1

∫ T

0
‖∂yHj‖2j dt+

1

β(j+1)

∫ T

0
‖∂xHj‖2j+1 dt.

(28)

Lemma 9 follows straightforwardly.
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Combining Lemmas 8 and 9, we will now prove Lemma 6.

Proof of Lemma 6. We choose C such that Lemmas 8 and 9 apply. We multiply the inequality
in Lemma 8 by β(j+1)2γ−1 and sum over j to get

∞
∑

j=0

β2(j+1)2γ
[
∫ T

0
‖Hj(t)‖2j dt+

1

β(j+1)
‖Hj(T )‖2j +

1

β(j+1)

∫ T

0
‖∂yHj(t)‖2j dt

]

≤ 8

∞
∑

j=0

[

(j+1)2γ−4

β2

∫ T

0
‖Fj(t)‖2j dt+

(j+1)2γ−3

β
‖uin,j‖2j

]

+

∞
∑

j=0

4c21(1 + ‖(UP , V P )‖low)4
β2

(j+1)2γ−4

∫ T

0
‖∂xHj‖2j+1 dt.

Taking C large enough, we can then find by Lemma 9 a constant C = C(m,α, r) such that

∞
∑

j=0

(j+1)2γ−4

∫ T

0
‖∂xHj‖2j+1 dt

≤ C

(

1 +
1

τ2

) ∞
∑

j=0

(j+1)4γ−4

∫ T

0
‖Hj‖2j dt+

C

β

∞
∑

j=0

(j+1)2(γ+α)−6

∫ T

0
‖∂yHj‖2j dt

≤ C

(

1 +
1

τ2

) ∞
∑

j=0

(j+1)4γ−4

[
∫ T

0
‖Hj‖2j dt+

1

β(j+1)

∫ T

0
‖∂yHj‖2j dt

]

.

We have used here that α ≤ γ+ 1
2 . Hence, the last term at the right-hand side can be absorbed

if
1

2
β2(j+1)2γ ≥ 4Cc21(1 + ‖(UP , V P )‖low)4

β2

(

1 +
1

τ2

)

(j+1)4γ−4,

which can be ensured by a suitable large C if γ ≤ 2.

4.3 Control of uj and ωj

We now relate the estimates on Hj to uj and start with an estimate for the L2 norm.

Lemma 10. Let m > 1
2 and α ≥ 1

2 . Then there exists a constant C = C(m,α) such that for

β ≥ C
(

1 + ‖(UP , V P )‖low
)

and for any ǫ1, ǫ2, ǫ3, ǫ4 > 0 it holds that

1

2

∫ T

0
‖uj‖2j dt−

ǫ1
(j+1)2γ

∫ T

0
‖∂xuj‖2j+1 dt−

ǫ2
β(j+1)γ

∫ T

0
‖∂yuj‖2j dt

− ǫ3
4β(j+1)γ

‖uj(T )‖2j −
ǫ4

β2(j+1)2γ

∫ T

0
‖∂2yuj(t)‖2j dt

≤ β(j+1)γ

ǫ3
‖Hj(T )‖2j

+

[

16β2(j+1)2 +
(j+1)2γ

ǫ1
C2
m‖(1+y)∂yUP ‖2L∞

t,xL
2
y(ρ0)

+
β2(j+1)2γ

4ǫ4

]
∫ T

0
‖Hj‖2j dt

+

[

β(j+1)γ

4ǫ2
+ 16C2

l A
2
j,α

] ∫ T

0
‖∂yHj‖2j dt+

∫ T

0
‖Hj‖j‖Fj‖j dt

where uj is satisfying (16), Aj,α is defined in (25) and Hj is defined by (17).
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Proof. Using the definition (17) of Hj we find

∫ T

0
‖uj(t)‖2j dt =

∫ T

0
〈
(

∂t + β(j+1) + UP∂x + (j+1)∂xU
p + V P∂y + ∂yV

P − ∂2y

)

Hj, uj〉j dt

+

∫ T

0
〈(∂yUP∂x + (j+1)∂xyU

P )

∫ y

0
Hj dz, uj〉j dt.

(29)
By the evolution equation (16) for uj, the first term can be written (from the partial integration
in y there is no boundary term as u|y=0 = 0)

∫ T

0
〈
(

∂t + β(j+1) + UP∂x + (j+1)∂xU
p + V P∂y + ∂yV

P − ∂2y

)

Hj, uj〉j dt

= 〈Hj(T ), uj(T )〉j +
∫ T

0
〈Hj , (−∂t + β(j+1)− UP∂x + j∂xU

P − V P∂y − V P ∂yρj
ρj

)uj〉

+

∫ T

0
〈∂yHj, (∂y +

∂yρj
ρj

)uj〉j

= 〈Hj(T ), uj(T )〉j +
∫ T

0
〈Hj , (2β(j+1) + (2j+1)∂xU

P − V P ∂yρj
ρj

)uj〉j dt

+

∫ T

0
〈Hj, ∂yU

P vj + j∂xyU
P∂−1

x vj〉j dt−
∫ T

0
〈Hj , Fj〉j dt

+

∫ T

0
〈∂yHj, (∂y +

∂yρj
ρj

)uj〉j dt−
∫ T

0
〈Hj, ∂

2
yuj〉j dt.

The terms can now be bounded using Lemma 2:

〈Hj , (2β(j+1) + (2j+1)∂xU
P − V P ∂yρj

ρj
)uj〉j

≤
∥

∥

∥

∥

2β(j+1) + (2j+1)∂xU
P − V P ∂yρj

ρj

∥

∥

∥

∥

∞
‖Hj‖j‖uj‖j

≤ (j+1)

[

2β + 2‖∂xUP ‖∞ + Cl

∥

∥

∥

∥

V P

1 + y

∥

∥

∥

∥

∞

]

‖Hj‖j‖uj‖j .

Recalling that vj = −∂x
∫ y
0 uj dz we find

〈Hj, ∂yU
P vj + j∂xyU

P∂−1
x vj〉j dt

≤ Cm‖(1+y)∂yUP‖L∞
x L2

y(ρ0)
‖Hj‖j‖∂xuj‖j+1 + j‖∂xyUP ‖L∞

x L2
y(ρ0)

‖Hj‖j‖uj‖j .

For the forcing terms we find
−〈Hj , Fj〉j ≤ ‖Hj‖j‖Fj‖j .

The diffusion terms give

〈∂yHj, (∂y +
∂yρj
ρj

)uj〉j − 〈Hj, ∂
2
yuj〉j

≤‖∂yHj‖j ‖∂yuj‖j +ClAj,α‖∂yHj‖j ‖uj‖j + ‖Hj‖j‖∂2yuj‖j .

The integrand in the second integral in (29) can be estimated as

〈(∂yUP∂x + (j+1)∂xyU
P )

∫ y

0
Hj dz, uj〉j

≤ Cm‖(1+y)∂yUP‖L∞

x L2
y(ρ0)

‖Hj‖j‖∂xuj‖j+1 + jCm‖∂xyUP ‖L∞

x L2
y(ρ0)

‖H‖j‖u‖j .
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Collecting the terms we find by choosing C large enough that

∫ T

0
‖uj‖2 dt ≤ 〈Hj(T ), uj(T )〉j + 4β(j+1)

∫ T

0
‖Hj‖j‖u‖j dt

+ 2Cm‖(1+y)∂yUP‖L∞
x L2

y(ρ0)

∫ T

0
‖Hj‖j‖∂xuj‖j+1 dt

+

∫ T

0

(

‖∂yHj‖j ‖∂yuj‖j + ClAj,α‖∂yHj‖j ‖uj‖j + ‖Hj‖j‖∂2yuj‖j
)

dt

+

∫ T

0
‖Hj‖j‖Fj‖j dt.

Splitting the products gives the claimed estimate.

The missing terms can be estimated by the evolution of uj and ωj = ∂yuj. For uj we find:

Lemma 11. Let m > 1
2 and α ≥ 1

2 . Then there exists a constant C = C(m,α) such that for

β ≥ C
(

1 + ‖(UP , V P )‖low
)

the solution uj of (16) satisfies

1

2
‖uj(T )‖2j +

1

2

∫ T

0
‖∂yuj‖2 dt

− 4β(j+1)γ
∫ T

0
‖uj‖2j dt−

C2
m‖(1+y)∂yUP ‖2L∞

x L2
y(ρ0)

β(j+1)γ

∫ T

0
‖∂xuj‖2j+1 dt

≤ 1

2
‖uin,j‖2j +

1

β(j+1)γ

∫ T

0
‖Fj‖2j dt.

Proof. By (16) we find

〈∂tuj, uj〉j = 〈
(

− β(j+1)− UP∂x − (j+1)∂xU
p − V P∂y + ∂2y

)

uj , uj〉j
− 〈∂yUP vj + j∂xyU

P∂−1
x vj , uj〉j + 〈Fj , uj〉j

≤ −1

2
‖∂yuj‖2j + 4β(j+1)γ‖uj‖2j +

C2
m‖(1+y)∂yUP ‖2L∞

x L2
y(ρ0)

β(j+1)γ
‖∂xuj+1‖2j+1

+
1

β(j+1)γ
‖Fj‖2j ,

where there is no boundary term from the partial integration in y as uj vanishes at the boundary
and we used in the inequality that C can be chosen large enough. Integrating this over [0, T ]
gives the claimed result.

By differentiating (16) in y and find

(

∂t+β(j+1)+UP∂x+(j+1)∂xU
p+V P∂y+∂yV

P−∂2y
)

ωj+∂yyU
P vj+j∂xyyU

P∂−1
x vj+∂xyU

Puj = ∂yFj .

(30)
This immediately yields the following control for ωj.
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Lemma 12. Let m > 1
2 and α ≥ 1

2 . Then there exists a constant C = C(m,α) such that for

β ≥ C
(

1 + ‖(UP , V P )‖low
)

the vorticity ωj = ∂yuj satisfies

‖(1 + y)ωj(T )‖2j +
∫ T

0
β(j+1)‖(1 + y)ωj‖2j dt+

∫ T

0
‖(1 + y)∂yωj‖2j dt

≤
4C2

m‖(1 + y)2∂yyU
P ‖2L∞

t,xL
2
y(ρ0)

β(j+1)

∫ T

0
‖∂xuj‖2j+1 dt

+
4C2

m(j+1)‖(1 + y)∂xyyU
P‖2L∞

t,xL
2
y(ρ0)

β

∫ T

0
‖uj‖2j dt

+ ‖(1 + y)ωin,j‖2j + 4

∫ T

0
‖(1 + y)Fj‖2j dt+ 4

∫ T

0
‖Fj |y=0‖2L2

x
dt.

Proof. Integrate (30) against (1 + y)2ωj in ‖ · ‖j . This yields

1

2
∂t‖(1 + y)ωj‖2j + β(j+1)‖(1 + y)ωj‖2j + ‖(1 + y)∂yωj‖2j

≤ j‖∂xUP ‖∞‖(1 + y)ωj‖2j +
∥

∥

∥

∥

V P

(

∂yρj
ρj

+
∂y(1 + y)2

(1 + y)2

)∥

∥

∥

∥

∞
‖(1 + y)ωj‖2j

+ ‖ωj |y=0‖L2
x
‖∂yωj|y=0‖L2

x

+ ‖(1 + y)∂yωj‖j
∥

∥

∥

∥

(1 + y)

(

∂yρj
ρj

+
∂y(1 + y)2

(1 + y)2

)

ωj

∥

∥

∥

∥

j

+ Cm‖(1 + y)2∂yyU
P ‖L∞

x L2
y(ρ0)

‖∂xuj‖j+1‖(1 + y)ωj‖j
+ jCm‖(1 + y)∂xyyU

P ‖L∞
x L2

y(ρ0)
‖uj‖j‖(1 + y)ωj‖j

+ ‖(1 + y)Fj‖j
∥

∥

∥

∥

(1 + y)

(

∂y +
∂yρj
ρj

+
∂y(1 + y)2

(1 + y)2

)

ωj

∥

∥

∥

∥

j

,

where we find a boundary term from the diffusion and there is no boundary term from V P∂y
because V P |y=0 = 0.

From (16) we find ∂yωj|y=0 = Fj |y=0. For ωj|y=0 write

|ωj(y = 0)| ≤
∫ 1

0

[

ωj
√
ρj +

∫ y

0
|(ωj

√
ρj)

′|dz
]

dy

to get

‖ωj|y=0‖2L2
x
≤ 2

(

1 +

∥

∥

∥

∥

∂yρj
ρj

∥

∥

∥

∥

)2

‖ωj‖2j + 2‖∂yωj‖2j .

By choosing C large enough and using that α ≥ 1
2 , the result follows after integration over

time.

Combining the results, we can conclude this section.
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Proof of Proposition 7. Adding the control of Lemma 11 with a factor ǫ3(j+1)−γ/β and Lemma 12
with a factor (j+1)1−2γ/β2 to the inequality of Lemma 10 yields





1

2
− 4ǫ3 −

4C2
m‖(1 + y)∂xyyU

P ‖2L∞

t,xL
2
y(ρ0)

(j+1)2γ−2β3





∫ T

0
‖uj‖2j dt

+
ǫ3

4β(j+1)γ
‖uj(T )‖2j +

(

ǫ3
2β(j+1)γ

− ǫ2
β(j+1)γ

)
∫ T

0
‖∂yuj‖2j dt−

ǫ4
β2(j+1)2γ

∫ T

0
‖∂2yuj(t)‖2j dt

−





ǫ1
(j+1)2γ

+
ǫ3Cm‖(1+y)∂yUP ‖2L∞

t,xL
2
y(ρ0)

β2(j+1)2γ
+

4C2
m‖(1 + y)∂xyyU

P‖2L∞

t,xL
2
y(ρ0)

(j+1)2γβ3





∫ T

0
‖∂xuj‖2j+1 dt

(j+1)1−2γ

β2
‖(1 + y)ωj(T )‖2j +

∫ T

0

(j+1)2−2γ

β
‖(1 + y)ωj‖2j dt+

∫ T

0

(j+1)1−2γ

β2
‖(1 + y)∂yωj‖2j dt

≤ β(j+1)γ

ǫ3
‖Hj(T )‖2j

+

[

16β2(j+1)2 +
(j+1)2γ

ǫ1
C2
m‖(1+y)∂yUP ‖2L∞

t L∞
x L2

y(ρ0)
+
β2(j+1)2γ

4ǫ4

]
∫ T

0
‖Hj‖2j dt

+

[

β(j+1)γ

4ǫ2
+ 16C2

l A
2
j,α

] ∫ T

0
‖∂yHj‖2j dt+

∫ T

0
‖Hj‖j‖Fj‖j dt

+
ǫ3

2β(j+1)γ
‖uin,j‖2j +

ǫ3
β2(j+1)2γ

∫ T

0
‖Fj‖2j dt

+
(j+1)1−2γ

β2
‖ωin,j‖2j +

4(j+1)1−2γ

β2

∫ T

0
‖(1 + y)Fj‖2j dt+

4(j+1)1−2γ

β2

∫ T

0
‖Fj |y=0‖2L2

x
dt.

Using that ∂xuj(t) =
(

j+2
j+1

)r (j+1)γ

τ(t) uj+1(t), we can sum over j and choose ǫ1, ǫ2, ǫ3, ǫ4 ap-

propriately to arrive for m > 1
2 , α ≥ 1

2 , γ ≥ 1, τ1 > 0, r ∈ R at the control

∞
∑

j=0

{
∫ T

0
‖uj‖2j dt+

1

β(j+1)γ
‖uj(T )‖2j +

(j+1)2−2γ

β

∫ T

0
‖(1 + y)ωj‖2j dt

}

+

∞
∑

j=0

(j+1)1−2γ

β2

{

‖(1 + y)ωj(T )‖2j +
∫ T

0
‖(1 + y)∂yωj(t)‖2j dt

}

≤ C

∞
∑

j=0

{

β(j+1)γ‖Hj(T )‖2j + β2(j+1)2γ
∫ T

0
‖Hj‖2j dt+ β(j+1)γ

∫ T

0
‖∂yHj‖2j dt

}

+ C
∞
∑

j=0

{

1

β(j+1)γ
‖uin,j‖2j +

(j+1)1−2γ

β
‖(1 + y)ωin,j‖2j

}

+ C

∞
∑

j=0

{∫ T

0

1

β2(j+1)2γ
‖Fj‖2j dt+

(j+1)1−2γ

β2

∫ T

0
‖(1 + y)Fj‖2j dt+

(j+1)1−2γ

β2

∫ T

0
‖Fj |y=0‖2L2

x
dt.

}

(31)
if

β ≥ C(1 + ‖(UP , V P )‖low) (1 +
1

τ1
+ ‖(UP , V P )‖low) and τ(T ) ≥ τ1

where C and C are constant only depending on m,α, γ, r (and not τ1).
Controlling H by Lemma 6 then yields the result for a fixed time T . Applying this estimate

for all T in [0, T ∗] then shows the claimed estimate.
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For γ ≥ 5/4 we find that (j+1)2γ−4 ≥ (j+1)1−2γ so that

(j+1)2γ−4‖Fj‖2j + (j+1)1−2γ‖(1 + y)Fj‖2j ≤ 2(j+1)2γ−4‖(1 + y

(j+1)2γ−
5

2

)Fj‖2j ,

which proves the expression in this case.

5 Nonlinear estimates

In order to close the estimate, we have to estimate Fj .

Proposition 13. Fix the parameters m,α, γ, r and an additional parameter R such that

γ ∈ [
3

2
, 2], α ≤ γ − 1, m ≥ 2γ − 1

α
+ 1,

r > 2γ, R > 2γ + 1, R ≥ r + 3γ − 2.
(32)

Then there exists a constant C = C(m,α, γ, r) such that for β, τ1 and T with τ(T ) ≥ τ1,

∞
∑

j=0

1

(j+1)4−2γ

∫ T

0

∥

∥

∥

∥

∥

(

1 +
y

(j+1)2γ−
5

2

)

Fj

∥

∥

∥

∥

∥

2

j

dt

≤ 2

∫ T

0
‖(1 + y)f ej ‖2γ,τ,r−2+γ

+
Cβ

τ41



sup
[0,T ]



‖u‖2γ,τ,r− γ
2

+
‖(1 + y)ω‖2

γ,τ,r+ 1

2
−γ

β
+ |UE |2γ,τ,R









∫ T

0

[

‖u‖2γ,τ,r +
‖(1 + y)ω‖2γ,τ,r+1−γ

β

]

dt.

We restrict to the case of γ ≥ 3/2 because we need α ≥ γ − 1 in order to control the terms
∂kxu∂

l−k+1
x u in Fj . Combined with the earlier requirement that α ≥ 1/2 this yields γ ≥ 3/2.

Proof. Write Fj = f ej +
∑6

i=1 F
i
j with

F 1
j =Mj

[

u∂x, ∂
j
x

]

u+Mj(j+1) ∂xu∂
j
xu,

F 2
j =Mj

[

∂yu, ∂
j
x

]

v +Mjj ∂xyu∂
j−1
x v +Mjv ∂

j
x∂yu,

F 3
j =Mj

[

U e∂x, ∂
j
x

]

u+Mjj ∂xU
e ∂jxu,

F 4
j =Mj

[

V e∂y, ∂
j
x

]

u,

F 5
j =Mj

[

∂xU
e, ∂jx

]

u,

F 6
j =Mj

[

∂yU
e, ∂jx

]

v +Mjj ∂xyU
e ∂j−1

x v.

As γ ≥ 3/2 and α ≤ γ − 1, we have 2γ − 5
2 ≥ α, so that

∥

∥

∥

∥

∥

(

1 +
y

(j+1)2γ−
5

2

)

Fj

∥

∥

∥

∥

∥

j

≤
∥

∥

∥

∥

(

1 +
y

(j+1)α

)

Fj

∥

∥

∥

∥

j

so that it suffices to bound the right-hand side.
Analysis of F 1

j . We write

F 1
j =

⌊ j+1

2 ⌋
∑

l=2

(

j

l

)

Mj

MlMj−l+1
uluj−l+1 +

j−1
∑

l=⌊ j+1

2 ⌋+1

(

j

l

)

Mj

MlMj−l+1
uluj−l+1 =: F 1

j,low + F 1
j,high.
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For F 1
j,low, we notice that for l ≤

⌊

j+1
2

⌋

there exist a constant C = C(r) with

(

j

l

)

Mj

MlMj−l+1
≤ C

τ1

(

j

l

)1−γ (j+1)γ

(l+1)r
.

This shows

1

(j+1)2−γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 1
j,low

∥

∥

∥

∥

j

≤ C

τ1

⌊ j+1

2 ⌋
∑

l=2

(

j

l

)1−γ (j+1)2γ−2

(l+1)r
‖uluj−l+1‖j−1

≤ C

τ1

⌊ j+1

2 ⌋
∑

l=2

(

j

l

)1−γ (j+1)2γ−2

(l+1)r

∥

∥

∥

∥

∥

(

ρj−1

ρj−l+1

)1/2

ul

∥

∥

∥

∥

∥

L∞
x,y

‖uj−l+1‖j−l+1.

Note that for an absolute constant Ca,

(

j

l

)1−γ

(j + 1)2γ−2 ≤ Ca for all 2 ≤ l ≤
⌊

j + 1

2

⌋

. (33)

From the 1d Sobolev embedding and Lemma 3, we find that for n ≤ min(m− 1, l):

∥

∥

∥

∥

∥

(

ρj−1

ρj−l+1

)1/2

ul

∥

∥

∥

∥

∥

L∞
x,y

≤ CA

∥

∥

∥

∥

∥

(

ρj−1

ρj−l+1

)1/2

∂xul

∥

∥

∥

∥

∥

L2
xL

∞
y

≤ CAC1 sup
y

(

ρj−1ρn
ρlρj−l+1

)1/2

‖∂x∂yul‖l

≤ C

τ1
sup
y

(

ρj−1ρn
ρlρj−l+1

)1/2

(l+1)γ ‖(1 + y)ωl+1‖l+1

where CA is an absolute constant, C is a constant depending on m, r. Note that we used here
Lemma 4 to bound ‖ωl+1‖l by ‖(1 + y)ωl+1‖l+1.The factor with the ρ is explicit:

(

ρj−1ρn
ρlρj−l+1

)1/2

=

∏l
k=1(1 +

y
kα )

∏j−1
k=j−l+2(1 +

y
kα )
∏n

k=1(1 +
y
kα )

.

For l ≤ m− 1, we take n = l and find that

(

ρj−1ρn
ρlρj−l+1

)1/2

≤ 1.

For l > m− 1, we take n = m− 1 and find that

(

ρj−1ρn
ρlρj−l+1

)1/2

≤
∏l

k=1(1 +
y
kα )

∏j−m+2
k=j−l+2(1 +

y
kα )
∏m−1

k=1 (1 +
y
kα )

≤
(

(j − l + 2) · · · (j −m+ 2)

m · · · l

)α

≤ C

(

j

l

)α

(j+1)−α(m−1)

for a constant C = C(m,α) and using that l ≤
⌊

j+1
2

⌋

.
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Hence we find for a constant C = C(m,α, r) that

1

(j+1)2−γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 1
j,low

∥

∥

∥

∥

j

≤ C

τ21

⌊ j+1

2 ⌋
∑

l=2

(l+1)γ−r‖(1 + y)ωl+1‖l+1‖uj−l+1‖j−l+1

using that 1− γ + α ≤ 0 and 2γ − 2 ≤ α(m− 1).
The discrete Young’s convolution inequality implies for all t ∈ [0, T ] that

∞
∑

j=0

1

(j+1)4−2γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 1
j,low

∥

∥

∥

∥

2

j

≤ C
τ41

( ∞
∑

l=0

(l+1)γ−r‖(1 + y)ωl‖l

)2 ∞
∑

j=0

‖uj‖2j

≤ C
τ41

( ∞
∑

l=0

(l+1)4γ−1−2r

)( ∞
∑

l=0

(l+1)1−2γ‖(1 + y)ωl‖2l

)





∞
∑

j=0

‖uj‖2j



 .

As 4γ − 1− 2r < −1, the first integral is finite. Hence we arrive at the required estimate

∞
∑

j=0

1

(j+1)4−2γ

∫ T

0
‖F 1

j,low‖2j dt ≤
C

τ21
sup

t∈[0,T ]
‖(1 + y)ω‖2γ,τ,r+1−γ

∫ T

0
‖u‖2γ,τ,r dt

with a constant C = C(m,α, γ, r).
For the treatment of F 1

j,high swap the roles of ul and uj−l+1 so that

F 1
j,high =

j−⌊ j+1

2 ⌋
∑

l=2

(

j

l − 1

)

Mj

MlMj−l+1
uluj−l+1.

In the given range l = 2, . . . , j −
⌊

j+1
2

⌋

we find

(

j

l − 1

)

≤
(

j

l

)

so that it can be bounded as F 1
j,low.

Analysis of F 2
j . We write

F 2
j = −

⌊ j+1

2 ⌋
∑

l=2

(

j

l

)

Mj

MlMj−l+1
∂yul ∂

−1
x vj−l+1 −

j−1
∑

l=⌊ j+1

2 ⌋+1

(

j

l

)

Mj

MlMj−l+1
∂yul ∂

−1
x vj−l+1

=: F 2
j,low + F 2

j,high

and note that it vanishes unless j ≥ 3.
By vj−l+1 = −∂x

∫ y
0 uj−l+1 dz we find for n ≤ min(m − 1, j − l + 1) using the 1d Sobolev

inequality and Lemma 3 that
∥

∥

∥

∥

(

1 +
y

(j+1)α

)

∂yul∂
−1
x vj−l+1

∥

∥

∥

∥

j

≤
∥

∥∂yul∂
−1
x vj−l+1

∥

∥

j−1

≤ Cm−n

∥

∥

∥

∥

∥

(

ρj−1ρn
ρlρj−l+1

)1/2

∂yul

∥

∥

∥

∥

∥

L∞

x L2
y(ρl)

‖uj−l+1‖j−l+1

≤ C
τ1

sup
y

(

ρj−1ρn
ρlρj−l+1

)1/2

(l+1)γ ‖(1 + y)ωl+1‖l+1‖uj−l+1‖j−l+1
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for a constant C = C(m, r).
In the range l = 2, . . . ,

⌊

j+1
2

⌋

for F 2
j,low we find that j − l + 1 ≥ j+1

2 and as we can assume

that j ≥ 3 we can always ensure that this is at least 2.
For j+1

2 ≤ m− 1, we can take n = 2 and find a constant C = C(m, r) such that

sup
y

(

ρj−1ρn
ρlρj−l+1

)1/2

≤ C

and otherwise we can taken n = m− 1 and find the same control as for F 1
j,low as

1

(j+1)2−γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 2
j,low

∥

∥

∥

∥

j

≤ C

τ21

⌊ j+1

2 ⌋
∑

l=2

(l+1)γ−r‖(1 + y)ωl+1‖l+1‖uj−l+1‖j−l+1

and we can conclude as for F 1
j,low.

For F 2
j,high we find

F 2
j,high = −

j−⌊ j+1

2 ⌋
∑

l=2

(

j

l − 1

)

Mj

MlMj−l+1
∂−1
x vl ∂yuj−l+1.

For n = min(m− 1, l + 1) we find

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

∂−1
x vl ∂yuj−l+1

∥

∥

∥

∥

j

≤
∥

∥

∥

∥

∥

(

ρj−1

ρj−l

)1/2

∂−1
x vl

∥

∥

∥

∥

∥

L∞
x,y

‖(1 + y)ωj−l+1‖j−l+1

≤ C

τ1
sup
y

(

ρj−1ρn
ρl+1ρj−l

)1/2

(l+1)γ‖ul+1‖l+1‖(1 + y)ωj−l+1‖j−l+1.

For l + 1 < m− 1 we can find a constant C = C(m) such that

(

j

l − 1

)

≤
(

j

l

)

(j+1)−1.

Using the stronger assumption 2γ − 1 ≤ α(m− 1), we can then conclude as in the treatment of
F 1
j,low that

1

(j+1)2−γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 2
j,high

∥

∥

∥

∥

j

≤ C

τ21

j−⌊ j+1

2 ⌋
∑

l=2

(l+1)γ−r‖ul+1‖l+1 (j+1)−1‖(1+y)ωj−l+1‖j−l+1.

Hence we find

∞
∑

j=0

1

(j+1)4−2γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 2
j,high

∥

∥

∥

∥

2

j

≤ C

τ41

( ∞
∑

l=0

(l+1)γ−r‖ul‖l
)2 ∞
∑

j=0

(j+1)−2‖(1 + y)ωj‖2j

≤ C

τ41

( ∞
∑

l=0

(l+1)3γ−2r

)( ∞
∑

l=0

(l+1)−γ‖ul‖2l

)





∞
∑

j=0

(j+1)−2‖(1 + y)ωj‖2j



 .
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As 3γ − 2r < −1, this gives the required estimate

∞
∑

j=0

1

(j+1)4−2γ

∫ T

0
‖F 2

j,high‖2j dt ≤
C

τ41
sup

t∈[0,T ]
‖u‖2γ,τ,r− γ

2

∫ T

0
‖(1 + y)ω‖2γ,τ,r−1 dt

with a constant C = C(m,α, γ, r). As r − 1 ≤ r + 1− γ this is the required control.
Analysis of F 3

j and F 5
j . We write

F 3
j + F 5

j = −
j
∑

l=2

(

j

l

)

Mj

MlMj−l+1
U e
l uj−l+1 −

j
∑

l=1

(

j

l

)

Mj

Ml+1Mj−l
U e
l+1uj−l

= −
⌊ j+1

2 ⌋
∑

l=2

[(

j

l

)

+

(

j

l − 1

)]

Mj

MlMj−l+1
U e
l uj−l+1 +

j+1
∑

l=⌊ j+1

2 ⌋+1

[(

j

l

)

+

(

j

l − 1

)]

Mj

MlMj−l+1
U e
l uj−l+1

=: F 3,5
j,low + F 3,5

j,high

with the convention that
(

j

j + 1

)

= 0.

Using the definition of U e and the 1d Sobolev embedding theorem we find

‖U e
l ‖L∞

x,y
≤ ‖UE

l ‖L∞
x

≤ Cs(l+1)γ

τ1
‖UE

l+1‖.

As l ≥ 2, this implies
∥

∥

∥

∥

(

1 +
y

(j+1)α

)

U e
l uj−l+1

∥

∥

∥

∥

j

≤ Cs(l+1)γ

τ1
‖UE

l+1‖ ‖uj−l+1‖j−l+1.

For l = 2, . . . ,
⌊

j+1
2

⌋

we find for a constant C = C(γ, r)

[(

j

l

)

+

(

j

l − 1

)]

Mj

MlMj−l+1
≤ C

τ1

(

j

l

)1−γ (j+1)γ

(l+1)r

so that as l ≥ 2

1

(j+1)2−γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 3,5
j,low

∥

∥

∥

∥

j

≤ C

τ21

⌊ j+1

2 ⌋
∑

l=2

(l+1)γ−r‖UE
l+1‖ ‖uj−l+1‖j−l+1.

Hence we find

∞
∑

j=0

1

(j+1)4−2γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 3,5
j,low

∥

∥

∥

∥

2

j

≤ C

τ41

( ∞
∑

l=0

(l+1)γ−r‖UE
l ‖
)2 ∞
∑

j=0

‖uj‖2j

≤ C

τ41

( ∞
∑

l=0

(l+1)2γ−2R

)( ∞
∑

l=0

(l+1)2R−2r‖UE
l ‖2

)





∞
∑

j=0

‖uj‖2j



 .

As 2γ −R < −1 this gives the bound

∫ T

0

∞
∑

j=0

1

(j+1)4−2γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 3,5
j,low

∥

∥

∥

∥

2

j

dt ≤ C

τ41
sup

t∈[0,T ]
|UE |2γ,τ,R

∫ T

0
‖u‖2γ,τ,r dt.
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For l =
⌊

j+1
2

⌋

+ 1, . . . , j we find

[(

j

l

)

+

(

j

l − 1

)]

Mj

MlMj−l+1
≤ C

τ1

(

j

l − 1

)1−γ (l+1)γ

(j−l+1)r

so that

1

(j+1)2−γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 3,5
j,high

∥

∥

∥

∥

j

≤ C

τ21

j
∑

l=⌊ j+1

2 ⌋+1

(l+1)3γ−2‖UE
l+1‖ (j−l+1)−r‖uj−l+1‖j−l+1.

Hence we find

∞
∑

j=0

1

(j+1)4−2γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 3,5
j,high

∥

∥

∥

∥

2

j

≤ C
τ41





∞
∑

j=0

(j+1)−r‖ul‖l





2 ∞
∑

l=0

(l+1)6γ−4‖UE
l+1‖

≤ C
τ41





∞
∑

j=0

(j+1)−2r









∞
∑

j=0

‖ul‖2l





( ∞
∑

l=0

(l+1)6γ−4‖UE
l+1‖2

)

.

As r > 1
2 this gives the bound

∫ T

0

∞
∑

j=0

1

(j+1)4−2γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 3,5
j,high

∥

∥

∥

∥

2

j

dt ≤ C
τ41

sup
t∈[0,T ]

|UE |2γ,τ,r+3γ−2

∫ T

0
‖u‖2γ,τ,r dt,

which is the required bound as R ≥ r + 3γ − 2.
Analysis of F 4

j . This term is creating trouble with the integrability in y as V e ∼ y and is the
reason for most technical difficulties.

We write

F 4
j = −

⌊ j+1

2
⌋

∑

l=1

(

j

l

)

Mj

Ml+1Mj−l
∂−1
x V e

l+1∂yuj−l −
j
∑

l=⌊ j+1

2 ⌋+1

(

j

l

)

Mj

Ml+1Mj−l
∂−1
x V e

l+1∂yuj−l

=: F 4
j,low + F 4

j,high.

As l ≥ 1 we find

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

∂−1
x V e

l+1∂yuj−l

∥

∥

∥

∥

j

≤
∥

∥

∥

∥

∥

∂−1
x V e

l+1

1 + y

∥

∥

∥

∥

∥

L∞

x,y

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

(1 + y)ωj−l

∥

∥

∥

∥

j

≤ C

τ
(l+1)γ‖UE

l+2‖ ‖(1 + y)ωj−l‖j−l

where C = C(r) is constant. In the last line we used the 1d Sobolev inequality and that

√

ρj
ρj−l

(

1 +
y

(j+1)α

)

≤ C.

For l = 1, . . . ,
⌊

j+1
2

⌋

we find

(

j

l

)

Mj

Ml+1Mj−l
≤ C

τ1

(

j

l

)1−γ

(l+1)γ−r
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so that

1

(j+1)2−γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 4
j,low

∥

∥

∥

∥

j

≤ C

τ21

⌊ j+1

2 ⌋
∑

l=1

(

j

l

)1−γ

(l+1)2γ−r(j+1)γ−2‖UE
l+2‖ ‖(1 + y)ωj−l‖j−l

≤ C

τ21

⌊ j+1

2 ⌋
∑

l=1

(l+1)2γ−r‖UE
l+2‖ (j+1)−1‖(1 + y)ωj−l‖j−l.

Hence we find

∞
∑

j=0

1

(j+1)4−2γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 4
j,low

∥

∥

∥

∥

2

j

≤ C
τ41

( ∞
∑

l=0

(l+1)2γ−r‖UE
l+2‖

)2




∞
∑

j=0

(j+1)−2‖(1 + y)ωj‖2j





≤ C
τ41

|UE |2γ,τ,R





∞
∑

j=0

(j+1)−2‖(1 + y)ωj‖2j





as 4γ − 2R < −1. This gives the bound

∫ T

0

∞
∑

j=0

1

(j+1)4−2γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 4
j,low

∥

∥

∥

∥

2

j

dt ≤ C
τ41

sup
t∈[0,T ]

|UE |2γ,τ,R
∫ T

0
‖(1 + y)ω‖2γ,τ,r−1 dt,

which is the required bound as −1 ≤ 1− γ.
For F 4

j,high we find

1

(j+1)2−γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 4
j,high

∥

∥

∥

∥

j

≤ C

τ2

j
∑

l=⌊ j+1

2 ⌋+1

(l+1)3γ−2

(j−l+1)r
‖UE

l+1‖ ‖(1 + y)ωj−l‖j−l.

As −1 + γ − r < −1
2 this gives the bound

∫ T

0

∞
∑

j=0

1

(j+1)4−2γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 4
j,high

∥

∥

∥

∥

2

j

dt ≤ C
τ41

sup
t∈[0,T ]

|UE |2γ,τ,r+3γ−2

∫ T

0
‖(1+y)ω‖2γ,τ,r+1−γ dt.

As R ≥ r + 3γ − 2 this is the required result.
Analysis of F 6

j . We write

F 6
j = −

⌊ j+1

2 ⌋
∑

l=2

(

j

l

)

Mj

MlMj−l+1
∂yU

e
l ∂

−1
x vj−l+1−

j
∑

l=⌊ j+1

2 ⌋+1

(

j

l

)

Mj

MlMj−l+1
∂yU

e
l ∂

−1
x vj−l+1 =: F 6

j,low+F
6
j,high.

As ∂yU
e is exponentially decaying, we find

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

∂yU
e
l ∂

−1
x vj−l+1

∥

∥

∥

∥

j

≤ C‖UE
l ‖L∞

x
‖uj−l+1‖j−l+1

≤ C(l+1)γ

τ
‖UE

l+1‖ ‖uj−l+1‖j−l+1.

For F 6
j,low we find (using that

(j
l

) Mj

MlMj−l+1
≤ C(l + 1)−r for l = 2...

⌊

j+1
2

⌋

):

1

(j+1)2−γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 6
j,low

∥

∥

∥

∥

j

≤ C

τ21

⌊ j+1

2 ⌋+1
∑

l=2

(l+1)γ−r‖UE
l+1‖ ‖uj−l+1‖j−l+1.
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As γ −R < −1
2 this gives the control

∫ T

0

∞
∑

j=0

1

(j+1)4−2γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 6
j,low

∥

∥

∥

∥

2

j

dt ≤ C
τ41

sup
t∈[0,T ]

|UE |2γ,τ,R
∫ T

0
‖u‖2γ,τ,r dt.

For F 6
j,high we find

1

(j+1)2−γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 6
j,high

∥

∥

∥

∥

j

≤ C

τ21

j
∑

l=⌊ j+1

2 ⌋+1

(l+1)2γ−2‖UE
l+1‖ (j+1)γ−r‖uj−l+1‖j−l+1.

As γ − r < −1
2 this gives the control

∫ T

0

∞
∑

j=0

1

(j+1)4−2γ

∥

∥

∥

∥

(

1 +
y

(j+1)α

)

F 6
j,high

∥

∥

∥

∥

2

j

dt ≤ C
τ41

sup
t∈[0,T ]

|UE |2γ,τ,r+1−γ

∫ T

0
‖u‖2γ,τ,r dt,

which is the required control as R ≥ r + 1− γ.

As a direct consequence of Proposition 7 and Proposition 13, we can state the following
corollary, where we use that Fj |y=0 = f ej |y=0 as u and v vanish at y = 0.

Corollary 14. Fix the parameters m,α, γ, r,R as in (32) and α ≥ 1/2. There exists C and C

such that for all β, τ1, T with

β ≥ C(1 + ‖(UP , V P )‖low) (1 +
1

τ1
+ ‖(UP , V P )‖low), and τ(T ) ≥ τ1

we have

|||u|||2 ≤ C

[

1

β
‖uin‖2γ,τ0,r+γ− 3

2

+
1

β2
‖(1 + y)ωin‖2γ,τ0,r+ 1

2
−γ

]

+C

[

+
1

β2

∫ T

0
‖f ej |y=0‖2γ,τ,r−2+γ dt+

1

β2

∫ T

0
‖(1 + y)f ej ‖2γ,τ,r−2+γ dt

]

+
C

τ41

(

1

β
|UE |2γ,τ,R + |||u|||2

)

|||u|||2

(34)

where

|||u|||2 =
∫ T

0
‖u‖2γ,τ,r dt+ sup

t∈[0,T ]

1

β
‖u‖2γ,τ,r− γ

2

+
1

β

∫ T

0
‖(1 + y)ω‖2γ,τ,r+1−γ dt

+ sup
t∈[0,T ]

1

β2
‖(1 + y)ω‖2

γ,τ,r+ 1

2
−γ

+
1

β2

∫ T

0
‖(1 + y)∂yω‖2γ,τ,r+ 1

2
−γ

dt

(35)

6 Control of the low norm and final a priori estimate

Corollary 14, which shows an a priori bound on the Gevrey norm of u, was derived under a
lower bound on β involving ‖(UP , V P )‖low. The last step is to see how this low norm relates
to |||u|||. A convenient approach is to establish an additional estimate on a weighted Sobolev
norm, namely

‖f‖2Hs =
∑

|ᾱ|≤s

∫

T×R+

|∂ᾱf |2(1 + y)2ᾱ2ρ0(y) dxdy,

where the summation variable is the multiindex ᾱ = (ᾱ1, ᾱ2). In this setting, we can state the
following estimate.
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Lemma 15. Let s ≥ 3 be an even integer, m ≥ s+ 2, α ≥ 0, r ∈ R, γ ≥ 1, and define |||u||| as
in (35). Then, there exists C depending on s,m,α, γ, r such that

d

dt
‖ωP ‖2Hs + ‖∂yωP ‖2Hs ≤ C‖ωP‖sHs + C(1 + ‖UE‖Hs+1(T) + |||u|||)‖ωP ‖2Hs

+

s
2
∑

l=0

‖∂lt(∂t + UE∂xU
E)‖2Hs−2l .

(36)

where ωP = ∂yU
P .

Proof. A similar estimate was established in [27, Proposition 5.6], so that we will only explain
the main steps. The starting point is the advection-diffusion equation on the vorticity

(∂t + UP∂x + V P∂y)ω
P − ∂2yω

P = 0. (37)

One applies ∂α to the equation, test it against (1 + y)2α2ρ0∂
αωP , and sum over |α| ≤ s. Then,

1

2
∂t‖ωP ‖2Hs + ‖∂yωP ‖2Hs ≤

∑

|α|≤s

∫

V P∂y((1 + y)2α2ρ0)|∂αωP |2

−
∑

|α|≤s

∫

[∂α, (UP ∂x + V P∂y)]ω
P ∂αωP (1 + y)2α2ρ0

−
∑

|α|≤s

∫

Ω
∂y((1 + y)2α2ρ0)∂y∂

αωP ∂αωP −
∑

|α|≤s

∫

{y=0}
∂y∂

αωP ∂αωP .

Using the equation on UP , one can obtain recursively boundary conditions for the odd deriva-
tives ∂2k+1

y ωP , starting from the Neumann condition

∂yω
P |y=0 = −∂tUE − UE∂xU

E.

More precisely, the boundary data ∂2k+1
y ωP |y=0 can be expressed in terms of the data UE and

of products of mixed derivatives ∂ρ1x ∂
ρ2
y ωP |y=0 with ρ2 ≤ 2k − 2. We refer to [27, Lemma 5.9]

for the expressions of these boundary conditions. This allows to establish the following bound,
cf equations (5.20)-(5.22) in [27]:

−
∑

|α|≤s

∫

{y=0}
∂y∂

αωP ∂αωP ≤ Cs‖ωP ‖sHs + Cs

s
2
∑

l=0

‖∂lt(∂t + UE∂xU
E)‖2Hs−2l +

1

4
‖∂yωP ‖2Hs .

The diffusion term does not raise any difficulty: we find

−
∑

|α|≤s

∫

Ω
∂y((1 + y)2α2ρ0)∂y∂

αωP ∂αωP ≤ C‖ωP‖2Hs +
1

4
‖∂yωP‖2Hs .

where C depends on s and m. Also, through standard estimates, we find

∑

|α|≤s

∫

V P∂y((1 + y)2α2ρ0)|∂αωP |2 ≤ C‖ωP‖3Hs

and
∑

|α|≤s

∫

[∂α, UP∂x]ω
P ∂αωP (1 + y)2α2ρ0 ≤ C‖ωP ‖3Hs .
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The other part of the commutator is slightly more delicate. First, one can show that

∑

|α|≤s,α1 6=s

∫

[∂α, V P∂y]ω
P ∂αωP (1 + y)2α2ρ0 ≤ C‖ωP ‖3Hs .

Note that the weight (that grows with the number of y-derivatives) allows to compensate for the
linear growth in y of V P . The success of this trick comes from the fact that we are interested
here in Sobolev estimates (contrary to the former Gevrey estimates). When α1 = s, namely
α = (s, 0), one can show similarly that

∫

[∂α, V P∂y]ω
P ∂αωP ρ0 −

∫

∂αV P∂yωP ∂
αωPρ0 ≤ C‖ωP‖3Hs .

However, the term where the s derivatives with respect to x apply to V P can not be handled
with usual manipulations. It is the well-known loss of x-derivative peculiar to the Prandtl
equation: in particular, one cannot control ‖(1 + y)−1∂sxV

P‖L2(ρ0) by ‖ωP ‖Hs . This is where
|||u||| is involved. We find that

∫

∂αV P∂yωP ∂
αωP ρ0 ≤ ‖(1 + y)−1∂sxV

P‖∞ ‖(1 + y)∂yω
P‖L2

xL
2(ρ0) ‖ωP ‖L2

xL
2(ρ0)

≤ C(‖UE‖Hs+1 + |||u|||)‖ωP ‖2Hs

using that ‖(1+ y)−1∂sxV
P ‖∞ ≤ C‖∂s+1

x uP‖∞ ≤ C|||u||| as soon as m ≥ s+2. Putting together
the previous estimates yields the result.

We conclude this section with

Proposition 16. Let us fix s = 6, m ≥ s + 2, α, γ, r, R as in (32) and α ≥ 1/2. Further fix
τ1 > 0. Let

Min = 2max(C, 1)
(

‖uin‖2γ,τ0,r+γ− 3

2

+ ‖(1 + y)ωin‖2γ,τ0,r+ 1

2
−γ

+ ‖ωP |t=0‖2Hs

)

where C is the constant appearing in Corollary 14. There exists β∗ and T∗ depending on τ1,
Min, on ‖ωP |t=0‖Hs , on sup[0,T0] |UE |2γ,τ0,R and on various Sobolev norms of UE, such that, for

all β > β∗ and for all T ≤ T∗ with τ(T ) ≥ τ1: if |||u|||2 ≤ 2Min

β , then |||u|||2 ≤ 3Min

2β .

Proof. Let β, T such that |||u|||2 ≤ 2Min

β ≤ 2Min (assuming β ≥ 1). We first apply Lemma 15,
which yields

d

dt
‖ωP ‖2Hs + ‖∂yωP‖2Hs ≤ C‖ωP ‖sHs + C(1 + ‖UE‖Hs+1(T) +

√

2Min)‖ωP ‖2Hs

+

s
2
∑

l=0

‖∂lt(∂t + UE∂xU
E)‖2Hs−2l .

(38)

Integrating this differential inequality shows

sup
t∈[0,T ]

‖ωP (t)‖Hs ≤ 2‖ωP |t=0‖Hs (39)

for T ≤ T1, where T1 depends onMin, supt∈[0,T0] ‖U e(t)‖Hs+1(T),
∫ T0

0 ‖∂lt(∂t+UE∂xU
E)‖2

Hs−2l dt

and on ‖ωP |t=0‖Hs .
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Standard Sobolev imbeddings imply that

max
0≤k≤3

‖∂kxUP ‖∞ + max
0≤k≤2

∥

∥

∥

∥

∂kxV
P

1 + y

∥

∥

∥

∥

∞
≤ C

(

max
0≤k≤3

‖∂kxUE‖∞ + |||u|||
)

.

As regards the other terms defining ‖(UP , V P )‖low, cf (19), they all involve ωP and are con-
trolled by ‖ωP ‖Hs as soon as s ≥ 5. Hence, it follows from (39) that

‖(UP , V P )‖low ≤ K

for T ≤ T1 and for some K depending on Min, ‖ωP |t=0‖Hs and various norms of UE . If we now
choose

β∗ ≥ C(1 +K) (1 +
1

τ1
+K), and τ(T ) ≥ τ1

where C is the constant appearing in Corollary 14, we obtain for β ≥ β∗:

|||u|||2 ≤ Min

2β
+

C

β2

∫ T

0
‖(1 + y)f ej ‖2γ,τ,r−2+γ dt+

C

βτ41

(

|UE |2γ,τ,R + 2Min

)

|||u|||2.

Taking β∗ large enough so that

C

β∗τ41
sup

t∈[0,T0]

(

|UE |2γ,τ0,R + 2Min

)

≤ 1

2

we get

|||u|||2 ≤Min +
2C

β2

∫ T

0
‖(1 + y)f ej ‖2γ,τ,r−2+γ dt+

2C

β2

∫ T

0
‖f ej |y=0‖2γ,τ,r−2+γ dt

If we take T∗ ≤ T1 such that 2C
∫ T∗

0 ‖(1 + y)f ej ‖2γ,τ,r−2+γ dt ≤ 1
2Min, the result follows.

7 Existence and uniqueness

On the basis of the previous a priori estimates, we now complete the proof of Theorem 1: we
construct a unique solution of (1)-(2) with data UP

in . This obviously amounts to constructing a
unique solution of (13)-(15) with data uin := UP

in − U e|t=0.

We fix s = 6, γ = 2. We take m ≥ s + 2 and α ≥ 1

2
that satisfy the inequalities in the

first line of (32). Let 0 < τ1 < τ0, r ∈ R, T0 > 0, and UE, UP
in = uin + U e|t=0 satisfying the

assumptions of the theorem. Let now (τ ′0, τ
′
1) with 0 < τ1 < τ ′1 < τ ′0 < τ0. Let r′ and R′ as in

the second line of (32). As τ0 > τ ′0, we have

‖uin‖2γ,τ ′
0
,r′+γ− 3

2

+ ‖(1 + y)ωin‖2γ,τ ′
0
,r+ 1

2
−γ

≤ C
(

‖uin‖2γ,τ0,r + ‖(1 + y)ωin‖2γ,τ0,r
)

< +∞

while
‖ωP |t=0‖2Hs ≤ C( sup

[0,T0]
|UE|2,τ0,r + ‖(1 + y)m+6ωin‖H6(T×R+)) < +∞

and
sup
[0,T0]

|UE |2,τ ′
0
,R′ ≤ C sup

[0,T0]
|UE |2,τ0,r < +∞

for a constant C possibly depending on τ0, τ
′
0, r, r

′, R′.
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The idea is then to apply Proposition 16 to a solution of an approximate system, for which
well-posedness is granted. Inspired by [27], we consider the regularized equation

∂tu+ (u∂x + v∂y)u+ (U e
ǫ ∂x + V e

ǫ ∂y)u+ (u∂x + v∂y)U
e
ǫ − ǫ∂2xu− ∂2yu = f eǫ , (40)

adding a tangential diffusion −ǫ∂2xu. The modified vector field (U e
ǫ , V

e
ǫ ) takes the form

U e
ǫ = ∂y(e

−ǫy(y + e−y − 1))UE
ǫ , V e

ǫ = −e−ǫy(y + e−y − 1)∂xU
E
ǫ

where UE
ǫ is an analytic approximation of UE , converging to UE in the norm | |2,τ0,r as ǫ→ 0.

Note that (U e
ǫ , V

e
ǫ ) is still divergence-free, but has now fast decay in y, so that all difficulties

generated by the linear growth of V e vanish. Accordingly, the right-hand side f e is modified
into f eǫ replacing UE by UE

ǫ , resp. (U e, V e) by (U e
ǫ , V

e
ǫ ) in (14). Similarly, one regularizes the

initial data to obtain some uin,ǫ real analytic in x, y, with fast decay at infinity in y (and obeying
suitable compatibility conditions).

One can show that system (40) is well-posed following classical methods for fully parabolic
equations. For instance, for Tǫ,max small enough, one can prove the existence of a Sobolev
solution uǫ on (0, Tǫ,max) through a fixed point argument applied to

Tǫu(t) = et(ǫ∂
2
x+∂2

y)uin,ǫ +

∫ t

0
e(t−s)(ǫ∂2

x+∂2
y)Fǫ[u](s)ds

with Fǫ[u] = f eǫ − (u∂x + v∂y)u− (U e
ǫ ∂x+V e

ǫ ∂y)u− (u∂x + v∂y)U
e
ǫ . Moreover, uǫ remains (real)

analytic in (x, y) as long as the Sobolev norm of uǫ does not blow up, that is on (0, Tǫ,max).
This property, related to the analytic regularization of the heat kernel is well-known, even in
the more difficult context of the Navier-Stokes equation: see [7, 25, 2] and references therein.

We now claim that all a priori estimates obtained for a solution u of (13) can be established
for uǫ solution of (40), uniformly in ǫ. For this, one just needs to adapt the definitions of the
auxiliary quantities Hj and φj : we rather consider

(

∂t + β(j+1) + UP∂x + (j+1)∂xU
p + V P∂y − ǫ∂2x − ∂2y

)

∫ y

0
Hj dz =

∫ y

0
uj dz,

Hj |t=0 = 0, ∂yHj|y=0 = 0, Hj|y→∞ = 0.

(41)

and
(

−∂t + β(j+1)− UP∂x + j∂xU
p − V P∂y − ∂yV

P − V P ∂yρj
ρj

− ǫ∂2x −
(

∂y +
∂yρj
ρj

)2
)

φj = Hj,

φj |t=T = 0, φj |y=0 = 0, φj|y→∞ = 0.
(42)

The additional good terms coming from −ǫ∂2x allow to control the extra commutator terms that
it generates. Hence, we can apply Proposition 16 with τ ′0, τ

′
1, r

′ and R′ instead of τ0, τ1, r, and
R. Let β∗ and T∗ given by the proposition (note that they are independent of ǫ). We then
introduce

Tǫ,∗ = sup{T ≤ Tǫ,max, |||u|||2 ≤ 2Min/β}
where β > β∗ is fixed, and |||u||| is defined in (35). Note that |||u||| implicitly depends on T . By
continuity in time of uǫ, one has Tǫ,∗ > 0. But from Proposition 16, one deduces easily that for
any T ≤ T∗, Tǫ,max ≥ Tǫ,∗ ≥ T .

From there, by standard compactness arguments, one obtains a solution to the Prandtl
system over [0, T ], with the regularity properties stated in the theorem. It remains to show
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uniqueness. For this, we take two solutions u1 and u2 up to time T . The difference ud then
satisfies (from (13))

∂tu
d +u1∂xu

d +ud∂xu
2 + vd∂yu

1 + v2∂yu
d +(U e∂x +V e∂y)u

d + (ud∂x+ vd∂y)U
e − ∂2yu

d = fd,e.

We then find for udj that

(

∂t+β(j+1)+U1,P∂x+(j+1)∂xU
1,P+V 2,P∂y−∂2y

)

udj+∂yU
1,P vdj+j∂xyU

1,P∂−1
x vdj = F d

j +∂xu
dudj ,

where again F d
j consists of fd,ej and mixed terms with less than j derivatives on u1, u2 or

ud. Comparing with (16), we see that the only difference is the replacement of (UP , V P ) by
(U1,P , V 2,P ). Let us stress that the latter field not being divergence-free is not an issue: none of
the a priori estimates carried in Section 4 and Section 5 were using the fact that (UP , V P ) was
divergence-free. One can therefore obtain a similar Gevrey bound on ud, under a lower bound
on β (involving the low norms of (U1,P , V 1,P ) and (U2,P , V 2,P )). This provides a stability
estimate which shows uniqueness. These considerations now finish the proof of our main result
Theorem 1.
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