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Quadrupedal walking motion and footstep placement through Linear
Model Predictive Control

Arturo Laurenzi1,2, Enrico Mingo Hoffman1, and Nikos G. Tsagarakis1

Abstract— The present work addresses the generation of
a walking gait with automatic footstep placement for a
quadrupedal robot, within a Linear Model Predictive Control
framework. Existing work has shown how this is only possible
within a non-convex programming framework, finding a solu-
tion of which is well-known to be very hard. We propose a way
to formulate the joint optimization problem as an approximate
QP with linear constraints, whose global optimum can be
quickly found with off-the-shelf solvers. More specifically, this
is done by introducing auxiliary states and control inputs, each
of which is subject to linear constraints that are inspired from
the literature on bipedal locomotion.

Finally, we validate our method on the CENTAURO robot,
a hybrid wheeled-legged quadruped with a humanoid upper-
body.

I. INTRODUCTION

Mobile robots are nowadays expected to have an in-
creasingly important role in many domains, from industrial
automation and logistics to maintenance and search and
rescue applications leaving the flat factory floors to enter less
structured and controlled environment. To operate efficiently
in these more challenging environments they should be
able to safely move around regardless of how cluttered, or
inaccurately known is the terrain. Walking robots have the
potential to perform locomotion through arbitrarily complex
terrains, at the cost of an increased mechanical and control
complexity related to stability and body coordination issues.
In this work we address the problem of generating an omni-
directional walking gait for a quadrupedal robot, i.e. a
coordinated motion of the robot legs satisfying the property
that at least three legs must always be on the ground. When
tackling such a problem, it is important to notice that legged
robots are floating base systems, whose global motion can
only be obtained by means of contact forces exchanged with
the environment. In turn, contact forces must fulfill physical
constraints, and consequently there exist motions that cannot
be executed by a floating base robot. Simplified models have
been proposed in the literature to describe the set of feasible
motions in a way that is more suitable for the development
of simple and fast planning algorithms, such as the linear
inverted pendulum model (LIPM) [1]; this simple model
forms the basis of many popular walking controllers.

The generation of a walking gait can be decomposed as
the series of a footstep planning stage followed by a center-
of-mass (CoM) motion planning. This strategy is common
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Fig. 1. The CENTAURO robot, a hybrid wheeled-legged quadruped with
a humanoid upper-body.

among the earliest approaches to legged locomotion, but it
was shown [2] that, for the case of bipeds, it is also possible
to jointly generate both footsteps and CoM motion inside a
QP framework, gaining improved robustness and disturbance
rejection capabilities [3]. On the contrary, in the case of
quadrupedal walking, joint optimization over both CoM
motion and footsteps gives rise to non-linear constraints,
which make the optimization problem more difficult and less
efficient to solve.

The main contribution of this work is a decomposition of
such a joint optimization problem that does not introduce
non-linear constraints, by introducing auxiliary states and
control inputs that are subject to linear constraints. In this
way, we formulate an approximate optimization problem that
can be exactly solved. The proposed approach is validated
on our new quadrupedal robot CENTAURO [4] (see Figure
1), both in simulation and on real hardware.

The remainder of this article is organized as follows:
• in Section II we present a selection of relevant works

in the field;
• Section III introduces the mathematical formulation that

our algorithm is based on, starting from existing models,
and then presenting the decomposition that is the core
contribution of the present work;

• Section IV contains the details of our implementation;
• Section V shows real hardware results;



• in Section VI we summarize the outcome of this work
and present possible future directions.

II. RELATED WORKS

Legged locomotion is a rather mature field of research; the
solutions that have been proposed can be roughly split into
three categories: algorithms that are based on optimal control,
hybrid zero dynamics (HZD) formulations [5], and algo-
rithms that are based on bio-inspired oscillators [6]. Optimal
control methods have demonstrated particularly impressive
results, allowing for automatic gait discovery in complex
environments [7], [8], albeit with such computational require-
ments that make them unsuitable for online applications. The
rest of this section focuses on relevant works that employ a
similar strategy as ours, which is based on optimal control,
and with sufficiently low computational burden to allow for
online operation.

Such a family of walking gait generators is mainly due to
the work of Kajita et al. [1] for bipeds, who tackled the CoM
motion generation problem within feasibility constraints as a
servo tracking problem, where the system dynamics is given
as an integrator, and the tracked output is the Zero Moment
Point (ZMP), that corresponds to the center of pressure of
the ground reaction forces. Inspired by the observation that
humans start moving their CoM before taking a step, Kajita
formulated an LQR problem with preview of the future ZMP
reference. It was later recognized [9] that to construct a
hand-tuned preview on the ZMP trajectory is actually not
needed, provided that the ZMP is constrained inside future
support polygons, which is possible inside a linear MPC
(LMPC) framework. As final steps in the development of
LMPC-based bipedal walking, in [2], [3] the footsteps, CoM
motion, and waist orientation [10] were jointly optimized
in a single QP problem. Stability analyses of the LMPC
with ZMP constraints can be found in Wieber [11], [9],
showing that, for the limited control horizon case, stability
crucially depends on the control horizon time span, with the
requirement that some CoM derivative is minimized inside
the cost function. The concept of capture point was also
introduced to identify states that can be stabilized without
taking a step [12]. Lanari et al. [13], [14] contributed to
this topic as well, by relating the capture point idea to a
boundedness constraint, which describes the initial CoM
state and footsteps that permit to generate a bounded CoM
motion. Moreover, approaches to bipedal walking have been
proposed that control the ZMP according to a feedback law
on the capture point [15].

Concerning quadrupedal walking, [16] studied the stability
properties of the different walking gait patterns, i.e. the
order according to which the four legs are lifted, while
[17] suggested a simple way of selecting a specific pattern
according to the desired speed. In [18][19] heuristic ap-
proaches that rely on geometric reasoning to generate static
walking are proposed. An optimal control approach with pre-
set footholds can be found in [20], while in [21] footsteps
are optimized as well inside a non-linear programming

framework, whose solution is, in general, extremely hard to
find.

In this work, we address this specific point by reformu-
lating the joint CoM-footsteps optimization problem as an
approximate QP whose solution can be readily found, as
explained in the next section.

III. MATHEMATICAL FORMULATION

As it was mentioned in Section I, the main difficulty
that the walking gait designer must face derives from the
fact that legged robots are underactuated: global motion
cannot be directly achieved by their actuated degrees of
freedom; instead, it must be generated by contact forces
exchanged with the environment. This intuition is beautifully
summarized by the following centroidal dynamics equation 1

Mp̈ppcom =
N

∑
i=1

FFF i +Mggg

L̇LL =
N

∑
i=1

(pppi− pppcom)×FFF i,

(1)

where M is the system mass, pppcom ∈ R3 is the robot CoM
position, FFF i ∈ R3 is the i-th contact force, N is the number
of contacts, ggg ∈R3 is the gravity acceleration, LLL ∈ R3 is the
robot angular momentum, and pppi ∈ R3 is the i-th contact
point. It is remarkably important to notice that these contact
forces are constrained, and consequently there exist CoM
trajectories that cannot be executed by a legged robot. The
most important constraint is commonly recognized [11] as
the unilateral constraint, which takes the following form:

nnnT
i FFF i ≥ 0 ∀i ∈ {1, . . . ,N} (2)

where nnni ∈ R3 is the outward normal of the i-th contact
surface. Broadly speaking, this means that the robot can only
push on the ground. Assuming coplanar contacts (and, for
simplicity, nnn = [001]T ) and rearranging equations (1) and
(2) as in [22], the equivalent centroidal momentum constraint
can be obtained as follows:

zzz ∈ ConvHull{pppi}N
i=1

zzz =
[

pppcom−
h

g+ ḧ
p̈ppcom +

nnn× L̇LL
Mg+Mḧ

]
x,y

,
(3)

where zzz ∈ R2 is commonly referred to as the Zero Moment
Point (ZMP). Neglecting variations in the robot CoM height
h and angular momentum, (3) gives rise to the popular cart-
table model [1]:

zzz ∈ ConvHull{pppi}N
i=1

zzz =
[

pppcom−
p̈ppcom

ω2

]
x,y

,
(4)

with ω =
√

g
h representing a parameter that characterizes

the influence of the CoM acceleration on the ZMP position.
Notice how, according to such a simplified model, the

1Notice that we neglect any torque exchanged with the ground, which is
equivalent to assuming point contacts.



feasibility of a CoM trajectory only depends on whether a
linear combination of the CoM derivatives belongs to some
convex set.

A. Classical approach

If we can assume the set of contact points to be given in
advance (e.g. by some footstep planning stage), then we can
follow [20], [9] and cast the walking gait generation problem
into a linear MPC problem, as it is briefly summarized
hereafter.

We first specify our process dynamics as a triple integrator
of the CoM jerk, as follows:

ẋxx = Axxx+Buuu, (5)

where xxx ∈ R6 is the state vector defined by the aggregation
of the planar CoM position, velocity and acceleration, and
uuu ∈ R2 is the control input (which corresponds to the CoM
jerk). Consequently, A∈R6×6 and B∈R6×2 take the follow-
ing form:

A =

02×2 I2×2 02×2
02×2 02×2 I2×2
02×2 02×2 02×2


B =

02×2
02×2
I2×2

 .
(6)

The ZMP can be defined as an output zzz ∈ R2 of (5):

zzz =Czmp xxx; (7)

the definition of Czmp follows from (4):

Czmp =
[
I2×2 02×2 − 1

ω
I2×2

]
. (8)

Finally, we assume piece-wise constant control input over
some control horizon

uuu(t) = uuuk ∀t ∈ [tk, tk+1] , k ∈ {0, . . . ,M−1}, (9)

where tk is the k-th discretization knot, and M denotes the
control horizon length (in this work, a fixed discretization
step ∆t has been used). From standard theory of linear
systems we know that the ZMP (as well as any other output)
at time tk depends linearly on both the initial state xxx0 = xxx(t0)
and the sequence of controls UUU ∈ R2M , as specified below:

zzzk = C̃k
zmp xxx0 + D̃k

zmp UUU (10)

with UUU =
[
uuuT

0 . . . uuuT
M−1

]T ; the matrices C̃k
zmp and D̃k

zmp
are obtained from integration of (5) over the knots (9).

The ZMP can then be constrained to the convex hull of
the contact points over the whole control horizon. Indeed, the
feasibility constraint (4) can be written as a linear inequality
of the following form[

(ppp j(i),k− pppi,k)× (zzzk− pppi,k)
]

z
≤ 0 (11)

for each time step k over the control horizon, and for each
support polygon side (i, j(i)), where j(i) denotes the subse-
quent of the i-th foot, according to a clockwise ordering2.

2As it is customary in the literature, we assign integer labels to the four
legs according to a clock-wise ordering and starting from the front-left leg.

The resulting optimization problem takes the form

min
UUU

1
2

M

∑
k=1

xxxT
k Qk xxxk +uuuT

k Rk uuuk

s.t. Azmp(PPP)UUU ≤ bbbzmp(PPP,xxx0),

(12)

where Azmp and bbbzmp account for (11) when evaluated over
all support polygons sides and over the control horizon
as well. Such matrices depend on the current and future
footsteps, which are collected in the vector PPP ∈ R2·(1+MP)·4,
with MP representing the number of predicted footsteps.

Notice that, if we do not optimize over the footsteps pppi, the
constraint (11) is linear; on the contrary, if we want to include
the footsteps inside the optimization process, non-linearities
arise in the form of quadratic constraints. Moreover, such
a constraint becomes non-convex (see the appendix for a
simple proof), resulting in an NP-hard problem. Even though
several algorithms exist that allow to find a (local) minimizer
of such a problem, it is the authors’ belief that finding a
linearly constrained QP approximation of the full problem
would be beneficial for at least two reasons:
• QPs are a standard class of optimization problems that

are well-known in the scientific community; global min-
imizers can be quickly computed by means of off-the-
shelf solvers (e.g. [23]). General-purpose NLP solvers,
on the other hand, can be expected to be significantly
slower.

• NLP solvers can only provide local minima of non-
convex problems. It can be argued that the risk of
converging to a “bad” local minimum may ruin the
planner performance.

The remainder of this section is devoted to the development
of such a QP approximation, that is the main contribution of
the present work.

B. Proposed decomposition

As it was mentioned in the previous subsection, our goal
is to derive a QP approximation of problem (12) when
optimizing for both ZMP and footsteps. More specifically,
the approximated feasible set should be a linear subset of
the complete set (11), so that a solution to the approximated
QP will also be a feasible point for the original problem.

To this aim, we observe that the nonlinearity in (11)
originates from the coupling between stance feet pairs.
Indeed, also in the case of bipedal walking, the authors of [3]
noticed how nonlinearities arise whenever more than one
stance foot is considered. With this in mind, we propose
to split the set of the feet indices I = {1,2,3,4} into two
partitions of two indices each, IA and IB. Correspondingly,
we introduce two auxiliary states xxxA ∈R6 and xxxB ∈R6, such
that the full robot state xxx is given by a convex combination
of the two auxiliary states:

xxx = α xxxA +(1−α)xxxB (13)

for some parameter α ∈ (0 1), that we call distribution factor.
In addition, we also define auxiliary control inputs uuuA ∈ R2



and uuuB ∈ R2 such that an analogous relation as (13) holds
for the same value of α:

uuu = α uuuA +(1−α)uuuB. (14)

Following these definitions, we can define an auxiliary
system whose state x̃xx ∈ R12 and input ũuu ∈ R4 are given by
the concatenation of the two auxiliary states and inputs:

x̃xx =
[

xxxA
xxxB

]
, ũuu =

[
uuuA
uuuB

]
. (15)

Clearly, the auxiliary dynamics

˙̃xxx = Ã x̃xx+ B̃ ũuu (16)

is described by the following matrices:

Ã =

[
A 06×6

06×6 A

]
, B̃ =

[
B
B

]
. (17)

The robot state xxx can then be recovered as an output for
system (16), as it is shown below:

xxx =Cstate x̃xx (18)

Cstate =
[
α I6×6 (1−α) I6×6

]
. (19)

Likewise, we can define outputs corresponding to the aux-
iliary ZMPs zzzA and zzzB by considering (4) for the auxiliary
states xxxA and xxxB, respectively.

C. Feasibility constraint

To generate linear constraints, we notice that the two
auxiliary states, together with the corresponding footsteps,
define two equivalent bipeds. Drawing from [3], we can
define biped-like feasibility constraints for both auxiliary
systems, enforcing the two auxiliary ZMPs to lie inside the
corresponding biped supports. Finally, we notice that the
full quadruped support is given by the convex hull of the
two equivalent bipeds supports, according to the following
expression:

zzz = α zzzA +(1−α)zzzB; (20)

consequently, as the global ZMP is given by a convex
combination of the auxiliary ZMPs, it will lie inside the full
polygon. An illustration of this is given by Figure 2.

To obtain a numerically stable QP, we set the equivalent
bipeds feet size to a small (but not zero) δ ppp ∈ R2.

D. Auxiliary state initialization

It is worth noticing that, having introduced new auxiliary
states in our dynamics, we do not have an observable system
anymore; broadly speaking, this means that the full state (15)
cannot be reconstructed from the measured output, which
we assume to be the robot state xxx defined by (18). As a
consequence, it is impossible to compute (or estimate) in
a meaningful way the initial value of the auxiliary state x̃xx,
which is needed at each control time by the MPC algorithm.
However, since auxiliary sub-states do not carry any physical
meaning, we are free to choose the corresponding value
arbitrarily, as long as the following equality holds true:

xxx0 =Cstate x̃xx0, (21)

A

B

Fig. 2. Decomposed feasibility constraint as described in Section III-C.
Auxiliary ZMPs are shown as colored circles for both system A (blue) and
B (purple). The resulting global ZMP (green) is inside the support polygon.

i.e. the initial robot state matches the measured one. Finally,
we notice how the initial auxiliary state appears linearly
in both the cost function and the constraints of the LMPC
problem; hence, we can let the solver determine an optimal
value for x̃xx0 by introducing it as decision variable, and
enforcing (21) as a constraint.

E. Parameters choice

To implement our decomposition, we first need to choose
a partitioning IA, IB. To this aim, we notice that the quality
of velocity tracking along different directions will differ,
depending on the specific choice. More specifically, a front-
back partitioning (IA = {1,2}, IB = {3,4}) will privilege
forward walking, while a left-right partitioning (IA = {1,4},
IB = {2,3}) will favour lateral walking. This is explained as
follows: in the first scenario, the supports of the two systems
have the possibility to overlap along the forward direction,
whereas they are always disjointed along the lateral direction.
Consequently, the ZMP trajectory can be continuous along
the forward axis, while it is always discontinuous along the
vertical axis, causing oscillations that are well known in the
literature. For a left-right partitioning, the vice-versa happens
instead.

Concerning the role of the distribution factor α , it intu-
itively controls how much of the robot weight is supported
by the auxiliary systems A and B, i.e. their relative load
distribution.

Throughout the rest of this work we employ a front-back
partitioning, while the distribution factor is fixed at α = 1

2 .
A more detailed discussion on the role of the distribution
factor is left for future work.

IV. IMPLEMENTATION DETAILS

The proposed algorithm was implemented in C++ inside
the OpenSoT framework [24], that mainly targets hierarchi-
cal QP optimization problems with constraints, decoupling
the concepts of front-end, i.e. the interface that allows to
formulate the optimization problem, from the back-end, i.e.
the tool that is actually used to solve it. More specifically,
the front end allows to combine tasks and constraints in a



natural way by overloading suitable operators. The back-end
implementation that was used in this work was powered by
the qpOASES [23] solver. The following tasks and constraints
were implemented:
• tracking of a CoM velocity reference vvvref:

Jvel(UUU , x̃xx0) =
M

∑
k=1

∥∥ṗppcom,k− vvvref
∥∥2 ; (22)

• a footstep regularization task, which tries to bias the
feet positions to the center of the respective workspaces
p̄pp j, for each foot j belonging to the set of stance feet
at time k, denoted by Sk:

Jfootstep(UUU ,PPP, x̃xx0) =
M

∑
k=1

∑
j∈Sk

∥∥ppp j,k− pppcom,k− p̄pp j
∥∥2 ;

(23)
• minimum CoM acceleration and jerk tasks, as follows:

Jacc(UUU , x̃xx0) =
M

∑
k=1

∥∥p̈ppcom,k
∥∥2

Jjerk(UUU , x̃xx0) =
M

∑
k=1
‖uuuk‖2 ;

(24)

• feasibility constraint (for the single auxiliary states), as
described in Section III-C;

• footspan constraint, whose aim is to ensure that the
relative position of the feet lies between some lower
and upper bound:

∆pi, j
min ≤ pppi,k− ppp j(i),k ≤ ∆pi, j

max ∀i ∈ Sk; (25)

in (25) j(i) ∈ Sk denotes the index of the leg adjacent
to leg i, according to a clockwise ordering.

• Initial state consistency constraint (21).
The final objective function was obtained as a weighted sum
of the atomic tasks that were listed above.

V. EXPERIMENTAL RESULTS

In order to validate the proposed approach, we test it on
our CENTAURO robot, a hybrid wheeled-legged quadruped
with a humanoid upper body, which is powered by our
control framework XBotCore [25]. XBotCore allows us to
control the robot under hard real-time (RT) constraints,
while offering at the same time a complete interface to
non-RT (NRT) external processes. We command a piece-
wise constant velocity reference for the CoM, both in the
forward and lateral direction. The gait pattern is dynamically
computed as a function of the velocity reference according
to [17], in order to maximize the static stability margin,
using a fixed stride time T and duty cycle β . We tune
the parameters as in Table I, trying to balance tracking
performance while avoiding excessive stretching of the legs.
The resulting optimization problem has nV = 108 decision
variables and nC = 208 constraints, which leads to roughly
50 Hz average execution frequency (see Fig. 4), which is
more than three times faster when compared to [21].

However, it should be noted that our implementation does
not take advantage of the sparsity pattern, as it does not

TABLE I
PARAMETERS USED FOR THE EXPERIMENT.

Parameter Value Parameter Value

M 20 wacc 1
MP 2 wvel, x 100
∆t 0.05 s wvel, y 1000
δ px,y 0.05 m wfootsteps 1000
∆p1,2

min, ∆p4,3
min [−0.3, 0.3] m ∆p2,3

min, ∆p1,4
min [0.6,−0.2] m

∆p1,2
max, ∆p4,3

max [0.3, 0.7] m ∆p2,3
max, ∆p1,4

max [1.2, 0.2] m
T 3.0 s β 0.8
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Fig. 3. Planned CoM velocity profile (solid) against reference (dash). Data
were processed through zero-phase low-pass filtering with cutoff frequency
fc = 0.2 Hz. Raw data are represented in grey.

exploit the fact that the hessian of the objective function is
actually constant and does not need to be recomputed and
re-factorized at each iteration. As a remark, notice that, by
choosing β < 0.75, our algorithm can also generate trotting
motions.

To transfer the planned motion to the robot, we adopt
a simple inverse kinematics (IK) scheme. Once again, we
leverage the OpenSoT framework to write a hierarchical IK
problem with the following priorities:

1) CoM task + Feet position task
2) Knee task + Waist orientation task + Postural task,

where the aim of the knee task is to avoid the collision of
the robot knees. Moreover, joint position and velocity limits
are enforced as constraints. We assign a low weight to the
waist orientation task, so that natural rotations arise from the
minimization of joint velocities given by the postural task.
From the software architecture point of view, the IK runs
inside the RT loop at 1 kHz frequency, while the motion
planning runs on a NRT ROS node.

Figure 5 and 3 show the achievable tracking performance.
It can be noticed that, as discussed in Section III-E, the
forward velocity is tracked smoothly and precisely; on the
contrary, lateral velocity is tracked only on average, and with
greater steady-state error. Indeed, this behavior is inherited
from the approach of [3], that the present work aims to
extend to the quadrupedal case. Finally, it can be visually
checked from Figure 6 that the proposed method does indeed
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the negative y direction for 0.3 s (grey lines). For reference, the robot mass
is roughly 90 kg.

generate a ZMP which is always inside the support polygon,
therefore resulting in a feasible motion.

We also tested the disturbance rejection capabilities of our
method, by simulating an external impulsive force that is
applied while the robot is walking. As it can be seen in
Figure 5 (grey lines), the CoM plan deviates in the same
direction of the force, in order to absorb the impact, while
at the same time adapting the footsteps as well.

The outcome of our experiment is summarized in Figure
7, and in the accompanying video as well.

VI. CONCLUSIONS

The present work introduced a way to generate a walking
motion of a quadrupedal robot, through the joint optimization
of both the CoM trajectory and the footsteps as well. The
proposed method is more robust than fixing the footsteps
a-priori since, as discussed in [3], enforcing the ZMP to
always lie inside the pre-planned supports could require
excessive CoM motions (or be unfeasible altogether). Be-
sides, differently from the work of [21] which allows to find
local minimizers of a non-convex optimization problem, we
propose to find the exact global minimizer of an approx-
imated QP problem. Such an approximation leads to the
loss of some feasible solutions, and to an increased number
of decision variables, which indeed represent drawbacks of
our formulation; on the other hand, we eliminate the risk
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Fig. 6. Sequence of support polygons generated by the proposed algorithm.
The ZMP trajectory is plotted as well, with a color that matches the
corresponding polygon (grey corresponds to four-stance phases).

Fig. 7. Snapshots taken from an experiment on the actual CENTAURO
robot. For the sake of clarity, the final backward phase is not included.

of computing a bad local minimum for a the original non-
linear program. In addition, we achieve a significantly faster
computation time when compared to [21] even with a naive,
dense implementation.

Our first trials on the quadruped robot CENTAURO have
shown promising results. A mixed forward-lateral-backward
gait was transferred to the actual hardware with little param-
eter tuning.

Future work will address the integration of in place
rotations, that are possible under this framework provided
that the orientation trajectory is fixed beforehand, as in [3].
Moreover, the role of the load distribution α , introduced in
Section III, must be further investigated. Such a parameter
may also be considered to be time-varying, in order to
produce more variegate CoM motions, and recover part of
the lost solutions.

Lastly, more optimized solvers can be implemented by
avoiding to uselessly recompute and re-factorize the hessian
matrix, and also by carrying out an analysis of consecutive
MPCs active sets.



APPENDIX

A. Non-convexity of the feasibility constraint

We can equivalently formulate the feasibility constraint
(11) as follows: [

∆pppi×∆ppp j
]

z ≤ 0, (26)

where ∆pppi = pppi− zzz and ∆ppp j = ppp j− zzz, and both such quanti-
ties depend linearly on the optimization variables. Noticing
that such a constraint is quadratic, we may write it in the
following form: [

∆pppT
i ∆pppT

j
]

Q
[

∆pppi
∆ppp j

]
≤ 0, (27)

where the matrix Q ∈ R4×4 is given by

Q =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 . (28)

Finally, since a constraint of the form h(x)≤ 0 is convex if
and only if h is a convex function, we just need to check
whether Q = QT is positive semi-definite. Indeed, this is not
the case, since some of its eigenvalues are negative:

det(λ I−Q) =
(
λ

2−1
)2→ sp(Q) = {−1,−1,+1,+1} .

(29)
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