
HAL Id: hal-04307606
https://hal.science/hal-04307606

Submitted on 26 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robot Control for Dummies: Insights and Examples
using OpenSoT

Enrico Mingo Hoffman, Alessio Rocchi, Arturo Laurenzi, Nikos Tsagarakis

To cite this version:
Enrico Mingo Hoffman, Alessio Rocchi, Arturo Laurenzi, Nikos Tsagarakis. Robot Control for Dum-
mies: Insights and Examples using OpenSoT. 2017 IEEE-RAS 17th International Conference on Hu-
manoid Robotics (Humanoids), Nov 2017, Birmingham, United Kingdom. pp.736-741, �10.1109/HU-
MANOIDS.2017.8246954�. �hal-04307606�

https://hal.science/hal-04307606
https://hal.archives-ouvertes.fr

Robot Control for Dummies: Insights and Examples using OpenSoT

Enrico Mingo Hoffman, Alessio Rocchi, Arturo Laurenzi and Nikos G. Tsagarakis

Abstract— In this paper we present OpenSoT, an open-
source, recently developed software library, that can be used
to solve robotics related control problems in a flexible and
easy way. OpenSoT includes high-level interfaces to state-of-
the-art algorithms for kinematic/dynamic modelling, quadratic
programming optimization, cost functions and constraints spec-
ification. OpenSoT is implemented in C++ and permits rapid
prototyping of controllers for fixed or floating base, highly
redundant robots such as (but not limited to) manipulators
and humanoids. We discuss the use of OpenSoT from the
perspective of the developer and the user, leaving out details
on the implementation of the tool. We demonstrate how the
software can be used with two examples: control of a redundant
humanoid robot through simple inverse kinematics schemes and
contact forces optimization.

I. INTRODUCTION

Recent trends in robotics try to formalize the problem
of control as an optimization problem in which a cost
function is minimized under a set of constraints. In particular,
quadratic programming (QP) optimization has been used
as a tool to describe control problems such as, but not
limited to, inverse kinematics (IK) [1], footstep planning [2],
operational space inverse dynamics and contact force opti-
mization [3]. QP optimization is a powerful tool since it
permits to minimize quadratic cost functions under linear
constraints and the aforementioned control problems can
be easily written in such framework. The fact that the
problem formulation becomes general, along with the large
number of available solver algorithms, makes it difficult to
implement software tools that treat robotic control problems
with some generality. While tools do exist that deal with a
broad range of robotic control problems, the usage of these
tools, in particular for a user who is not directly involved
in their actual development, is typically difficult, limited to
restricted problem formulations and not extensively tested in
real platforms. For example, ControlIt! [4] is constrained to
the Operational Space formulation and it does not take into
account inequality constraints, OCRA [5] does not provide
a user friendly API, RobOptim [6], while offering a lot
of flexibility w.r.t. the type of optimization problem to be
solved, does not offer robotics-related facilities and finally,
the Stack of Tasks [7] relies on a complex and heavy software
infrastructure.

The OpenSoT project addresses robotic control problems
using a different approach: rather than providing a software
with a complex infrastructure, the focus is on a framework
that is easy to use and to extend, so that the users can

Advance Robotics Department, Istituto Italiano di Tecnologia,
Genoa, Italy {enrico.mingo, alessio.rocchi,
arturo.laurenzi, nikos.tsagarakis}@iit.it

implement their control method of choice, however complex.
In OpenSoT, tasks (cost functions) and constraints are atomic
entities that can be mixed together in order to setup an
optimization problem. A set of out-of-the-box tasks and
constraints are already implemented and given to the users
to promote reusability and to ease the prototyping of new
controllers. Existing tasks and constraints are easy to extend
and new ones are easy to write thanks to basic interfaces. The
optimization problem can then be solved based on any algo-
rithm strategy (e.g. the equality hierachical QP (eHQP) [8],
the inequality hierachical QP (iHQP) [9] or the hierarchical
complete orthogonal decomposition (HCOD) [1]) and opti-
mization library (e.g. qpOASES [10], QuadProg++ [11]).
Furthermore, OpenSoT does not depend on any specific
kinematic/dynamic model library but permits to use any
model library of choice (such as RBDL [12] or KDL [13])
through the use of abstract interfaces. Finally, OpenSoT has
been extensively used, for real-time control, in many robotics
platforms including, but not limited to, COMAN [14], [15],
WALK-MAN [16] and CENTAURO [17].

The main contribution of this paper is the presentation of
OpenSoT in a form that makes it accessible and inquisitive
to use from the average experienced users. We consider QP
formalization of classical robotic control problems (IK and
contact force optimization) and how, thanks to OpenSoT, it
is possible to formalize and solve them using few lines of
code.

II. BACKGROUND

A standard formulation for a QP problem is:

x∗ = argmin
x

‖Ax− b‖2W
s.t. Aeqx = beq

u ≤ x ≤ u
c ≤ Cx ≤ c

(1)

where ‖Ax− b‖2W = xTATWAx− 2(Ax)TWb+ bTWb
is the quadratic cost function that is minimized, Aeqx = beq
is a linear equality constraint, u ≤ x ≤ u is a bound
and c ≤ Cx ≤ c is a general linear constraint. If the
problem (1) consists only in minimizing the cost function
under equality constraints, a simple close form solution is
known. Considering inequalities, there exist basically two big
families of methods to solve the problem in (1): active set
and interior point methods. Active set methods consider the
constraints as equalities only when they are active, so that the
problem (1) is transformed in an equality-constrained QP. At
each iteration, the new active set is computed by checking for
the violated constraints. Interior point methods use barrier

functions (most of the time log functions) to penalize the
cost function in the region where the bounds are violated
and the solution is found by iterative relaxation of the barrier
function.

A large number of remarkable control problems in robotics
can be written in the form of (1) [18].

III. STRUCTURE OF OPENSOT

OpenSoT is designed to follow the Hierachical
Paradigm [19]: at each control loop, the robot makes
use of proprioceptive and exteroceptive data to update
an internal model, the updated model is used to update
tasks and constraints, and finally the next control action
is computed by solving a QP problem as shown in Fig.
1. In particular, OpenSoT addresses the last two steps: it

Fig. 1. The Hierarchical Paradigm: sense, plan and act

provides tools and interfaces to easily write and use tasks,
constraints and solvers. For what concerns the first step,
robot and world modeling, a large number of existing C++
libraries provide standard functionalities such as forward
kinematics, Jacobians and inverse dynamics computation.
Tasks and constraints use quantities computed inside the
model library, to build matrices and vectors used inside the
solver.

A. OpenSoT Interfaces

The basic objects to describe the problem (1) are the
tasks T and the constraints C. Tasks and constraints use
an internal reference to the model M. To be indepen-
dent from any model library, we use an interface called
ModelInterface, which is developed inside the XBotCore
project [20]. The ModelInterface provides a clean and stan-
dardized way to access kinematic and dynamic quantities,
regardless of the specific algorithms that are used under
the hood. An implementation based on RBDL [21] is
available at https://github.com/ADVRHumanoids/
ModelInterfaceRBDL.

Fig. 2 shows the main pure virtual methods that the user
has to implement to write new tasks, constraints and solvers
in OpenSoT as well as to implement the ModelInterface. If
we consider a new task, the user will implement just four

Fig. 2. Pure virtual methods to implements new tasks, constraints, solvers
and models in OpenSoT

methods: three of them are used to compute the cost function
in (1) (getA(), getb() and getWeight()) while the
update() is used to update the task in the control loop
using quantities stored in the model. A similar interface is
provided by the constraint base class. Solvers has to provide
mainly a solve() method that is called at every control
loop.

B. Library of Tasks, Constraints and Solvers

In Fig. 3, the library of implemented tasks, constraints
and solvers, at the moment in which this paper is written,
are shown. The user can write complex control problems
using these entities and combining them. In particular, all the

Fig. 3. Library of out-of-the-box tasks, constraints and solvers. In blue
tasks and constraints used for velocity-based IK, in red for contact force
optimization

tasks and constraints that are used for velocity-based IK are
represented in blue, while the ones used for contact force op-
timization considering the centroidal dynamics of a floating
base robot are in red. Further tasks and constraints regarding
Cartesian impedance control, inverse dynamics, force control
and acceleration-based IK are under development.

The available solvers at the moment are the eHQP and the
iHQP. The eHQP solver is based on classical SVD-based
pseudo-inverse and implemented using the Eigen library. The
eHQP solver permits to solve control problems with only
equality constraints. The iHQP solver is based on Eigen and
qpOASES for the solution of QP with equality and inequality
constraints (in particular, the active set strategy is used). Both
the solvers permits to handle HARD and SOFT priorities
between the tasks. More details on these two solvers are
given in the next section.

C. Math of Tasks (MoT)

Inside the OpenSoT library, a series of operations between
tasks and constraints are defined to ease the formulation of

https://github.com/ADVRHumanoids/ModelInterfaceRBDL
https://github.com/ADVRHumanoids/ModelInterfaceRBDL

complex problems. Before introducing these operations, we
recall the concept of stack S: a stack is a set of tasks T and
constraints C at different priority levels [1]. If a constraint
is present only at a certain priority level, it is called local
constraint, while, if it is present at all the priority levels, it
is called global constraint.

Two (or more) tasks can be in a SOFT relative priority
using the Augment operation:

T3 = T1 + T2 (2)

basically the resultant task T3 is the weighted norm of the
two tasks T1 and T2.

If two tasks are in a HARD relative priority, then a new
stack is generated:

S = T1/T2 (3)

in particular, this means that the T2 is solved keeping the
optimality of T1.

A constraint can be associated to a task with the insert
operation:

T << C (4)

in this case the constraint is local and applied just at the
level in which the task is specified. A constraint can also be
inserted in a stack

S << C (5)

in this case the constraint is global and applied to all the
levels of the stack. The taskToConstraints operation
permits to transform a task into a constraint.

Two constraints can be merged into one with the Augment
operation:

C3 = C1 + C2 (6)

The operations defined from (2) to (6) constitute a simple,
yet effective, set of math operations that we can use to
describe complex problems, even in C++ code, keeping a
clean readability on how the control problem is formalized.
For example, we can consider the control problem to make
a humanoid robot walk using the floating-base: at the first
priority level we control the left and right soles w.r.t. the
world frame. At the second priority level we control the
Center of Mass (CoM) of the robot w.r.t. the world frame and
subsequently, at the third level, we control the left and right
hands w.r.t. the Waist frame. Finally we consider a postural
task in joint space. To all the priorities we apply joint limits
and joint velocity limits. This control problem can be written
using the Math of Task (MoT) formalism as:

(
WorldTRFoot +

World TLFoot
)
/

WorldTCoM/(
WaistTRWrist +

Waist TLWrist
)
/

TPosture

<<

(
C Joint

Limits
+ CJoint Velocity

Limits

)

(7)
that in C++ code will be the Listing 1. Here, in the first part
we update the model with the actual joint space configuration

Listing 1. C++ Example using iHQP
1 using namespace OpenSoT::tasks::velocity;
2 using namespace OpenSoT::constraints::
3 velocity;
4 using namespace OpenSoT::solvers;
5
6 model.setJointPosition(q);
7 model.update()
8
9 CoM com(q, model);

10 Cartesian LFoot(q,model,"l_sole","world");
11 Cartesian Rfoot(q,model,"r_sole","world");
12 Cartesian LWrist(q,model,
13 "l_wrist","Waist");
14 Cartesian RWrist(q,model,
15 "r_wrist","Waist");
16 Postural Posture(q);
17 JointLimits joint_limits(q,qmax,qmin);
18 VelocityLimits vel_limits(M_PI,0.01,
19 q.size());
20
21 AutoStack auto_stack =(
22 (LFoot + RFoot)/
23 (com)/
24 (LWrist + RWrist)/
25 (Posture)<<joint_limits<<vel_limits);
26
27 QPOases_sot solver(auto_stack->getStack(),
28 auto_stack->getBounds(),1e10);
29
30 while(1){
31 model.setJointPosition(q);
32 model.update();
33 stack.update(q);
34
35 if(solver.solve(dq))
36 q += dq;}

sensed from the robot, then we create the needed tasks and
constraints passing the model reference to them. The stack
contains the definition of the control problem (7) and it is
passed to the solver. In the control loop, we update the model,
update the stack and then we ask for a solution from the
solver. The resulting code is simple and readable as its MoT
formulation.

Furthermore, we have defined three other important
operations that can be applied to tasks. The subTask
operation permits to select rows of the task while the
activeJointMask permits to select columns of the task
(setting to zero the disabled one). For example, considering
the IK problem, if we are interested to control just the
position (not the orientation) of left wrist w.r.t. the torso
frame, without using the joints of the torso, we can use
the subTask to select just the position task and with the
activeJointMask we can disable the joints of the torso.
Finally, the setActive method permits to activate and
deactivate a task or a stack during the execution.

IV. USE CASES AND EXAMPLES

In this section we introduce the use of the OpenSoT
library in two realistic robot control examples exploring the
Velocity-based IK and the Contact Force Optimization.

Listing 2. C++ Example using eHQP
1 ...
2
3 DampedPseudoInverse solver(
4 auto_stack->getStack()));
5
6 ...

A. Velocity-based IK

In Velocity based IK we want to find the joint velocities q̇
that realize a certain Cartesian velocity ẋ of the end-effector.
Depending on the type of solver one may decide to use, there
may be the possibility to set inequality constraints to the IK
problem. We are going to consider an IK problem stated as
in (7) (or in Listing 1, lines 22 to 25).

If we use the eHQP solver we can consider task hierarchies
and equality constraint and it is implemented using the
iterative algorithm in [8]:

q̇0 = 0

q̇i = q̇i-1 + (JiPi-1)
†
(ẋi − Jiq̇i-1)

P0 = I

Pi = Pi-1 − (JiPi-1)
†
JiPi-1

(8)

where Ji is the task Jacobian and (·)† is the Moore-Penrose
pseudo-inverse. The algorithm in (8) is a QP solver that can
handle only equality constraints. To use this solver, we are
going to change lines 27 and 28 in Listing 1 with the ones
in Listing 2. in which we just use the defined stacks.

If one decides to use the iHQP solver, we can consider
task hierarchies and equality/inequality constraints. We will
set up n QP problems (with n equal to the number of level
of priorities) of the form:

argmin
q̇

‖Jiq̇i − ẋi‖2 + λ‖q̇i‖2

s.t. ci ≤ Ciq̇i ≤ ci
c ≤ Cq̇i ≤ c
u ≤ q̇i ≤ u

Ji-1q̇i-1 = Ji-1q̇i
...

J0q̇0 = J0q̇i

(9)

in which we use the active set approach implemented in the
qpOASES library to solve it1.

The tasks consist of doing some steps (CoM and feet
tracking) and a squat motion moving the arm (CoM and arm
tracking). During the squat motion, the CoM is commanded
to move down of 0.2 [m]. Such movement is not doable by
the robot without passing the joint limits of the knees.

Fig. 4 shows the joint trajectory produced by the eHQP
and the iHQP solvers. The first one can not handle joint
limits, therefore the produced trajectory is not inside the
given constraint while, the latter keeps the joint inside the
given constraint. The possibility to handle joint limits is paid
back in terms of CoM tracking as shown in Fig. 5. Finally

1Both the implemented eHQP and iHQP solvers uses a damping term to
avoid kinematic singularities.

0 0.5 1 1.5 2 2.5 3 3.5 4
0.5

1

1.5

2

2.5

t [sec]

q
[r
a
d
]

Knee Joint Position

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

t [sec]

q̇
[r

a
d

s
e
c
]

Knee Joint Velocity

Fig. 4. Knee joint position and velocity during squat motion. The blue
and red dashed lines represent the eHQP and iHQP solver respectively. The
black line in the first picture represents the upper limit of the knee joint

0 0.5 1 1.5 2 2.5 3 3.5 4
0.3

0.305

0.31

0.315

0.32

t [sec]

x
[m

]

CoM x

0 0.5 1 1.5 2 2.5 3 3.5 4
−15

−10

−5

0

5
x 10

−4

t [sec]

y
[m

]

CoM y

0 0.5 1 1.5 2 2.5 3 3.5 4

0.4

0.5

0.6

0.7

t [sec]

z
[m

]

CoM z

Fig. 5. CoM tracking during squat motion. The blue and red dashed lines
represent the eHQP and iHQP solver respectively, the black line is the
reference

Fig. 6 shows the motion of the whole robot.

B. Contact Force Optimization

An important control challenge in humanoid robotics is the
Contact Force Optimization given the Centroidal Dynamics
of the robot:

mẍ =
∑
i

Fc,i +mg

ḣ =
∑
i

(ci − x)× Fc,i + τ i

(10)

where ẍ is the acceleration of the CoM, ḣ is the variation of
centroidal angular momentum, x is the position of the CoM,
m is the total mass of the robot, g is the gravity vector,
Fc,i and τ i are respectively the forces and the torques at
the i-th contact at position ci expressed in world frame [22].
Furthermore, it is practice to associate to (10) the linearized
friction cones constraints in order to generate wrenches at the

Fig. 6. The upper sequence shows the resulting motion from the eHQP
solver and the the lower presents the resulting motion of the iHQP solver.
In the lower sequence we can see how the presence of the joint limits
constraint change the whole body motion, trying to fulfill the CoM task

contacts that do not cause slipping. The linearized friction
cones are written in the form:

|Ft| ≤
√
2µ

2
Fn

Fn ≥ 0

(11)

where Ft and Fn are respectively tangential and normal
forces at the contacts, in the contact frame, and µ is the
friction coefficient. The problem stated in (10), constrained
by (11), can be expressed in the form of (1) and can be
used to compute the contact wrenches that realize a certain
motion of the CoM and a certain variation of the centroidal
angular momentum, without making the robot slide. Using
the Math of Tasks formulation, we can write the contact force
optimization problem as2:(

TCoM
)
<<

(
CFriction

Cones
+ CWrench

Limits

)
(12)

where we added an extra wrench limits constraint that further
bounds the problem. In C++ code this will be written as in
Listing 3. As example, we consider the task of compensating
the weight of the robot (31.4639 Kg) without generating
any variation of centroidal angular momentum taking into
account the friction cones. We consider the configuration in
Fig. 7, where the robot has its feet on two flat rocks and the
ankle roll joints rotated of 45 deg. The considered friction
coefficient is µ = 0.5. The computed wrenches, for the two
contacts, expressed in world frame are:

worldwl sole =

0

−51.4
154.3
0
0
0

worldwr sole =

0

51.4
154.3
0
0
0

[
N
Nm

]

(13)

2Note that the TCoM defined in (7) and the one in (12) are different:
in the first one we are referring to the CoM task defined under the
namespace OpenSoT::tasks::velocity while in the second one we
are referring to the centroidal dynamics task defined under the namespace
OpenSoT::tasks::forces.

Listing 3. C++ Example contact force optimization
1 using namespace OpenSoT::tasks::force;
2 using namespace OpenSoT::constraints::
3 force;
4 using namespace OpenSoT::solvers;
5
6 model.setJointPosition(q);
7 model.update()
8
9 vector<string> links_in_contact;

10 links_in_contact.push_back("r_sole");
11 links_in_contact.push_back("l_sole");
12
13 CoM com(wrench,links_in_contact,model);
14 WrenchLimits wrenchLims(300.,
15 6*links_in_contact.size())
16
17 vector<pair<string,double>> mu;
18 mu.push_back(pair<string,double>(
19 links_in_contact[0], 0.5));
20 mu.push_back(pair<string,double>(
21 links_in_contact[1], 0.5));
22 FrictionCones friction(wrench,model,mu);
23
24 AutoStack auto_stack =(
25 com<<wrenchLims<<friction);
26 QPOases_sot solver(auto_stack->getStack(),
27 auto_stack->getBounds());
28
29 solver.solve(wrench);

Fig. 7. The robot has its feet on two flat rocks that makes the ankles turn
of 45 deg

If we consider the forces in (13) expressed at the local
frame, we obtain:

l soleFl sole =

 0
72.7
145.5

 r soleFr sole =

 0
−72.7
145.5

 [
N
]
(14)

that fulfill the given friction cones constraints as it can

be easily checked. If we consider the same optimization
computed using the eHQP solver, therefore without including
the friction cone constraints, the obtained wrenches in world
frame are:

worldwl sole =

0
0

154.3
0
0
0

worldwr sole =

0
0

154.3
0
0
0

[
N
Nm

]

(15)
where the forces computed in the local frame are:

l soleFl sole =

 0
109.1
109.1

 r soleFr sole =

 0
−109.1
109.1

 [
N
]
(16)

which are clearly outside the specified friction cones.
The two given use cases are part of the tests inside the

OpenSoT library that can be found at the url https://
github.com/robotology/OpenSoT.

V. CONCLUSIONS
We have presented the recently developed, free and open-

source control library OpenSoT, which is a software aimed
at giving to users an efficient, yet transparent approach to
shortening the development time for robotics control related
problems. It provides to developers and users a flexible
software framework that competes favorably with other ones,
but with an easy and more readable syntax and usage,
developed for solving control problems for complex robotic
systems. We demonstrated how the library can be used to im-
plement different control problems and reported on how the
package was used successfully in a real-world application on
many different robotic platforms with real-time constraints.
More and more successful applications of OpenSoT are now
starting to emerge, and it is the belief and hope of the authors
of this paper that robotic researchers, working in the area of
motion generation and control of complex multi-dof robotic
systems, will experiment and validate the proposed software
for application-oriented tasks, research and development as
well as teaching.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the European Union Horizon 2020 robotics program
[ICT-23-2014], grant agreement n.644727 CogIMon and
the Seventh Framework Programme [ICT-2013-10], grant
agreements n.611832 WALK-MAN. The authors want to
acknowledge Luca Muratore for the help given to test the
iHQP solver in the Xenomai real-time environment.

REFERENCES

[1] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, vol. 33, no. 7, pp. 1006–
1028, 2014.

[2] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and
M. Diehl, “Online walking motion generation with automatic footstep
placement,” Advanced Robotics, vol. 24, no. 5-6, pp. 719–737, 2010.

[3] L. Righetti and S. Schaal, “Quadratic programming for inverse dy-
namics with optimal distribution of contact forces,” in Humanoid
Robots (Humanoids), 2012 12th IEEE-RAS International Conference
on. IEEE, 2012, pp. 538–543.

[4] C.-L. Fok, G. Johnson, L. Sentis, A. Mok, and J. D. Yamokoski,
“ControlIt! — a software framework for Whole-Body operational
space control,” International Journal of Humanoid Robotics, vol. 0,
no. 0, p. 1550040, 9 Oct. 2015.

[5] ISIR. (2014) Optimization-based control for robotics applications:
Ocra. [Online]. Available: https://github.com/ocra-recipes

[6] T. Moulard, F. Lamiraux, K. Bouyarmane, and E. Yoshida, “RobOp-
tim: an Optimization Framework for Robotics,” in Robomec, Tsukuba,
Japan, May 2013, p. 4p.

[7] “Stack of tasks development team.” [Online]. Available: http:
//stack-of-tasks.github.io/index.html

[8] F. Flacco and A. De Luca, “Discrete-time redundancy resolution at
the velocity level with acceleration/torque optimization properties,”
Robotics and Autonomous Systems, vol. 70, pp. 191–201, 2015.

[9] O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of
redundant manipulators: Generalizing the task-priority framework to
inequality task,” IEEE Transactions on Robotics, vol. 27, no. 4, pp.
785–792, 2011.

[10] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“qpOASES: a parametric active-set algorithm for quadratic program-
ming.” Math. Program. Comput., vol. 6, no. 4, pp. 327–363, 2014.

[11] L. D. Gaspero. (2007) Quadprog++. [Online]. Available: https:
//github.com/liuq/QuadProgpp

[12] M. Felis. (2011) Rigid body dynamics library: Rbdl. [Online].
Available: https://rbdl.bitbucket.io/

[13] R. Smits, “KDL: Kinematics and Dynamics Library.” [Online].
Available: http://www.orocos.org/kdl

[14] A. Rocchi, E. M. Hoffman, D. G. Caldwell, and N. G. Tsagarakis,
“Opensot: a whole-body control library for the compliant humanoid
robot coman,” in Robotics and Automation (ICRA), 2015 IEEE Inter-
national Conference on. IEEE, 2015, pp. 1093–1099.

[15] N. Tsagarakis, S. Morfey, G. Cerda, L. Zhibin, and D. Caldwell,
“Compliant humanoid coman: Optimal joint stiffness tuning for modal
frequency control,” in Robotics and Automation (ICRA), 2013 IEEE
International Conference on, May 2013, pp. 673–678.

[16] N. G. Tsagarakis, D. G. Caldwell, F. Negrello, W. Choi, L. Baccelliere,
V. G. Loc, J. Noorden, L. Muratore, A. Margan, A. Cardellino,
L. Natale, E. M. Hoffman, H. Dallali, N. Kashiri, J. Malzahn, J. Lee,
P. Kryczka, D. Kanoulas, M. Garabini, M. G. Catalano, M. Ferrati,
V. Varricchio, L. Pallottino, C. Pavan, A. Bicchi, A. Settimi, A. Rocchi,
and A. Ajoudani, “Walk-man: A high-performance humanoid platform
for realistic environments,” Journal of Field Robotics, vol. 34, pp. 1
– 34, 06/2017 2017.

[17] L. Baccelliere, N. Kashiri, L. Muratore, A. Laurenzi, M. Kamedula,
A. Margan, J. Cordasco, S. Malzahn, and N. Tsagarakis, “Development
of a human size and strength compliant bi-manual platform for realistic
heavy manipulation tasks,” in Intelligent Robots and Systems (IROS),
2017 IEEE International Conference on, September 2017.

[18] Y. Nakamura, Advanced Robotics: Redundancy and Optimization,
1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1990.

[19] R. C. Arkin, Behavior-Based Robotics. MIT Press, 1998.
[20] L. Muratore, A. Laurenzi, E. M. Hoffman, A. Rocchi, D. G. Caldwell,

and N. G. Tsagarakis, “XBotCore: A Real-Time Cross-Robot Software
Platform,” in IEEE International Conference on Robotic Computing,
IRC17, 2017.

[21] M. L. Felis, “Rbdl: an efficient rigid-body dynamics library using
recursive algorithms,” Autonomous Robots, vol. 41, no. 2, pp. 495–
511, 2017.

[22] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in Humanoid Robots
(Humanoids), 2014 14th IEEE-RAS International Conference on.
IEEE, 2014, pp. 295–302.

[23] E. Mingo Hoffman, A. Rocchi, N. G. Tsagarakis, and D. G. Caldwell,
“Robot dynamics constraint for inverse kinematics,” in International
Conference on Advances in Robot Kinematics, ARK 2016. IFToMM,
2016, pp. 280–286.

[24] C. Fang, A. Rocchi, E. M. Hoffman, N. G. Tsagarakis, and D. G.
Caldwell, “Efficient self-collision avoidance based on focus of interest
for humanoid robots.” in Humanoids. IEEE, 2015, pp. 1060–1066.

https://github.com/robotology/OpenSoT
https://github.com/robotology/OpenSoT
https://github.com/ocra-recipes
http://stack-of-tasks.github.io/index.html
http://stack-of-tasks.github.io/index.html
https://github.com/liuq/QuadProgpp
https://github.com/liuq/QuadProgpp
https://rbdl.bitbucket.io/
http://www.orocos.org/kdl

	INTRODUCTION
	BACKGROUND
	STRUCTURE OF OPENSOT
	OpenSoT Interfaces
	Library of Tasks, Constraints and Solvers
	Math of Tasks (MoT)

	USE CASES AND EXAMPLES
	Velocity-based IK
	Contact Force Optimization

	CONCLUSIONS
	References

