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OpenSoT: a Whole-Body Control Library for the Compliant Humanoid Robot

A fundamental aspect of controlling humanoid robots lies in the capability to exploit the whole body to perform tasks. This work introduces a novel whole body control library called OpenSoT. OpenSoT is combined with joint impedance control to create a framework that can effectively generate complex whole body motion behaviors for humanoids according to the needs of the interaction level of the tasks. OpenSoT gives an easy way to implement tasks, constraints, bounds and solvers by providing common interfaces. We present the mathematical foundation of the library and validate it on the compliant humanoid robot COMAN to execute multiple motion tasks under a number of constraints. The framework is able to solve hierarchies of tasks of arbitrary complexity in a robust and reliable way.

I. INTRODUCTION

In this paper we present a new whole body motion and compliance control architecture for the humanoid bipedal robot COMAN [START_REF] Ajoudani | Manipulation framework for compliant humanoid coman: Application to a valve turning task[END_REF], Fig. 1, based on a task space whole-body trajectory generator called OpenSoT. OpenSoT is a novel control library that implements the idea of decoupling atomic tasks/constraints descriptions and solvers to execute multiple tasks and achieve complex motion behaviors. It employs a solver implementing a cascade of Quadratic Programming (QP) problems, and a set of tasks and constraints in velocity space in order to solve a generic hierarchical inverse kinematics problem on a humanoid robot. The generated velocities are integrated and sent to joint impedance controllers together with computed gravity compensation torques.

OpenSoT has been developed to address the motion and interaction control problems that the recent DARPA Robotics Challenge highlighted by integrating advanced and complex robotic systems, such as humanoids and other legged mobile manipulation machines, into real world scenarios where robots need to function and interact in unstructured and unknown environments. To cope with these scenarios, the control scheme should allow the robots to generate reliably complex and efficient motions at whole body level while accommodating/controlling the contact forces and interaction with the environment.

Typical methods and techniques to map task-space commands to joint commands can be classified as inverse kinematics or inverse dynamics schemes and can be implemented using a variety of low level controllers. Inverse dynamics schemes implemented on pure low level torque control [START_REF] Ott | Cartesian Impedance Control of Redundant and Flexible-Joint Robots[END_REF] rely on the quality of the dynamic model [START_REF] Khatib | A unified approach for motion and force control of robot manipulators: The operational space formulation[END_REF] as well as on the performance of the joint torque sensing and regulation. In the majority of the cases it is difficult to achieve adequate performance due to errors in all components including the model, the torque sensing accuracy and finally, torque tracking. On the other hand, classical stiff PID joint control is also unsuitable for tasks controlling interaction forces.

A trade-off between the two approaches can be represented by a combination of a centralized kinematic control working on top of a decentralized joint impedance control. The latter offers the robustness of decentralized control and adds compliance to the system allowing the possibility to regulate the impedance both at the joint level and at the Cartesian level through conservative congruence transformation [START_REF] Ott | Cartesian Impedance Control of Redundant and Flexible-Joint Robots[END_REF]. Furthermore, it allows to introduce feed-forward torque terms based on inverse dynamics computations. We believe decentralized control schemes of this type are fundamental in reliable robots that must be able to recover from failures. An example is the case of a humanoid which tries to maintain balance when a recoverable hardware or software failure occurs: a decentralized architecture may then allow to keep a stable configuration while performing failure recovery procedures.

OpenSoT implements these ideas. The goal was therefore to develop a high performance and flexible library that can generate reliably complex and efficient motions at whole body level. This yields the following features that we believe make the implementation of OpenSoT unique and attractive:

• Demonstrates adequate modularity through the separation of task descriptions, control schemes and solvers maximizing customization, flexibility and expandability.

• Provides user friendly interfaces for defining tasks, constraints and solvers to promote integration and cooperation in the emerging field of whole-body hierarchical control schemes. • Demonstrates computation efficiency to allow for real time performance implementations. • Allows ease of use and application with arbitrary robots through the Universal and Semantic Robotic Description Formats (URDF and SRDF).

The rest of the paper is structured as follows. Section II introduces the related literature on Whole-Body Inverse Kinematics/Dynamics compliant control, focusing mainly on schemes actually used in real hardware. Section III presents the global control scheme for compliant constrained IK control while Section IV describes the OpenSoT library. Finally we present experimental results obtained on COMAN in Section V. Conclusions are addressed in Section VI.

II. RELATED WORKS

Kinematic and dynamic inversion are well known problems in robotics. In general, given some tasks specified in Cartesian position, velocity, accelerations or forces, we want to find the joints positions, velocities, accelerations or torques that realize those tasks. Many solutions to this problem have been presented for single and multiple kinematic chains [START_REF] Siciliano | Kinematic control of redundant robot manipulators: A tutorial[END_REF] and [START_REF] Wensing | Generation of dynamic humanoid behaviors through task-space control with conic optimization[END_REF]. An interesting subset of these algorithms are those based on numerical optimization, since they allow for the explicit introduction of unilateral/bilateral constraints in the inverse kinematic/dynamic problem, which are fundamental when working on the real robot hardware [START_REF] Escande | Hierarchical quadratic programming: Fast online humanoid-robot motion generation[END_REF].

In this brief review of the state of the art on full-body control, we will focus on some of the recent frameworks that have been used successfully on humanoid robots. One of the most famous framework oriented to whole-body control is the Stack of Tasks (SoT) from LAAS [START_REF] Mansard | A versatile generalized inverted kinematics implementation for collaborative working humanoid robots: The stack of tasks[END_REF]. This work can be categorized under the group of the IK solvers with different implementations allowing to use both the classical pseudoinverse approach with null-space projection or decomposition methods that allow for one-shot solving of the whole stack (HCOD), to enforce lexycographic order in the stack. SoT has been used mostly in HRP-2 platform and our work is mainly inspired by this one. Another framework for whole-body task specification and control is iTaSC [START_REF] Smits | Software support for high-level specification, execution and estimation of event-driven, constraint-based multi-sensor robot tasks[END_REF], with the current implementation supporting velocity-based whole-body control and equality constraints. It has been successfully demonstrated on the PR2 robot. In [START_REF] Fallon | An architecture for online affordance-based perception and whole-body planning[END_REF] IK is solved using a nonlinear program. Two kind of nonlinear optimizations are set up: a single-shot IK and trajectory optimization. This work was used in Atlas during the DRC trials coupled with a position control. A nonlinear optimization is also performed in [START_REF] Pattacini | An experimental evaluation of a novel minimum-jerk cartesian controller for humanoid robots[END_REF] to perform IK on the iCub platform. There are many other frameworks including those that are based on Inverse Dynamics, implemented on top of a pure low level torque control (a notable example is [START_REF] Sentis | Compliant control of multicontact and center-of-mass behaviors in humanoid robots[END_REF]), yet it is difficult to find hardware platforms mature enough to implement control schemes of such frameworks 

III. CONTROL SCHEME

In this section we introduce the Compliant Inverse Kinematics scheme as depicted in Fig. 2. The first block consists in a Constrained Inverse Kinematic engine, eventually in Closed Loop (CCLIK), that receives Cartesian references as input to perform a certain task defined in Task Space. This block generates joint position references and torques for gravity compensation for the second block that consists in a joint impedance control. In particular the joint impedance control is implemented in a decentralized way at each DSPs in the robot.

Decentralized Joint Impedance Control

The desired torque sent to actuator i is locally computed as

τ d,i = k q,i (q d,i -q i ) -k d,i qi + g(q d ) i (1) 
where q i and q d,i are respectively actual and desired joint positions, qi is the actual joint velocity, k q,i is a positive joint stiffness, k d,i is a positive joint damping and g(q d ) i is a gravity compensation torque computed at the desired joints configuration. The terms q d,i and g(q d ) i are computed by the CCLIK block. The control in ( 1) is implemented at the joint DSP level and is locally stable.

Inverse Kinematics

We consider a robot that executes n tasks simultaneously, and for each of these tasks T i , a proper error function e i (q, t) is provided, describing the task error. The time derivative of the error can be computed as

ėi = ∂e i ∂q q + ∂e i ∂t = J i q + ∂e i ∂t (2) 
with J i the error Jacobian. During the execution of a generic task it is desirable that the task error converges to 0, by imposing an exponential dynamic, that is

ėi = -λe i ⇒ J i q = - ∂e i ∂t -λe i = ė * i (3)
If the robot is redundant with respect to a task, secondary tasks can be also added and executed without affecting the performance of the primary task, and given a set of tasks described by the couple T i = (J i , ė * i ), the robot can be commanded to execute them using its whole body motion capabilities. In order to implement the method and obtain this result, the relative importance between tasks needs first to be defined. Thus, two kinds of relationships: hard priority and soft priority needs to be set. A task has hard priority with respect to another task if the latter can not deteriorate the solution of the first one. Soft priorities are defined between tasks at the same level so all the solutions are influenced by each other proportionally to theirs weights.

The execution of a set of tasks has a well-known solution in the stack of tasks, where hard priorities are enforced by the order of the task in the stack. To take into account also soft priorities the augmented Jacobian formulation [START_REF] Chiacchio | Closedloop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy[END_REF] can be employed. It must be noted though that the augmented Jacobian formulation alone cannot enforce hard priorities since adding many tasks together can generate an ill-conditioned augmented Jacobian matrix. Therefore, to generate wholebody motions, a series of QP problems in cascade is instead solved [START_REF] Kanoun | Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task[END_REF]. This is a well known method to derive motions by executing tasks adding bilateral constrains to the inverse kinematics problem [START_REF] Escande | Hierarchical quadratic programming: Fast online humanoid-robot motion generation[END_REF]. A generic task can be described as

q1 = argmin q J i q -ė * i s.t. A c,1 q ≤ b c,1 (4) 
The formulation used in (4) for the constraints can be profitably used to express lower and upper bounds for the variable value as well as equality constraints.

In general, the n th task will then be written as

qd = argmin q J n q + λe n + ∂en ∂t s.t. A 1 q = A 1 q1 . . . A n-1 q = A n-1 qn-1 A c,1 q ≤ b c,1 . . . A c,n q b c,n (5) 
where qd is the desired velocity (control variable). In (5) the previous solutions qi , i < n are taken into account with constraints of the type A i q = A i qi ∀i < n, so that the optimality of all higher priority tasks is not changed by the current solution. While in [START_REF] Wensing | Generation of dynamic humanoid behaviors through task-space control with conic optimization[END_REF] the first task has a relationship of hard priority with respect to the second, and so on, for each level of priority, a soft priority relationship between tasks can be imposed introducing the relative weights β i , so that the augmented Jacobians and the error vectors can be written as

J aug = β 1 J T 1 . . . β n J T n T e aug = β 1 e T 1 . . . β n e T n T (6) 
where the soft priority between tasks is altered by tuning the relative weights β i , with higher priority tasks having larger β i . As already mentioned, in this case the tasks can still influence each other performance. A mixture of hard and soft priorities is in general needed to describe a stack of tasks.

The solution obtained can then be sent directly to a velocity controlled robot or integrated in a position controlled robot as

q d = q + qδt ( 7 
)
where δt is the control loop period.

IV. OPENSOT

OpenSoT is a robotics library tool oriented to Whole-Body Control. The main idea behind its implementation is to decouple the task description, and the solver used to solve the general Inverse Kinematics/Dynamic problem. This distinction allows to easily switch the control, even with the same task description, by using a different solver. OpenSoT aims at providing a standard way to describe the aforementioned entities in an atomic way, and at the same time to build a repository of common entities that can be reused to create a generic stack using a user friendly development and integration interface.

OpenSoT offers classes to describe different tasks and constraints and to implement different solvers oriented to a particular control type (velocity, acceleration, torque). According to the control type, different controllers are available in literature. Defining a task once in a proper way still allows to switch between different control laws, as shown in [START_REF] Nakanishi | Operational space control: A theoretical and empirical comparison[END_REF], thus decoupling task description and type of control. The same applies to constraints and bounds [START_REF] Flacco | Motion control of redundant robots under joint constraints: Saturation in the null space[END_REF].

OpenSoT Tasks

In OpenSoT, a task T i is in general defined as:

T i = (J i , ė * i ) (8) 
including a set of constraints for that task. Tasks are implemented through the class Task which provides an interface to obtain A and b, a weight matrix W and a scalar weight λ for the task (getA(), getb(), getWeight(), getlambda()).

In our framework it is possible to augment a task with an operation called Aggregation. Aggregated: The aggregated task constructs an augmented Jacobian starting from a definition of more basic tasks as

T agg = A T 1 A T 2 T , b T 1 b T 2 T (9) 
Cartesian: It is possible to define a general Cartesian task as the aggregate of a Cartesian position task and a Cartesian orientation task. The Cartesian task computes the (relative) Jacobian between any given base and distal links in the kinematic tree, b J d . The Cartesian errors in position and orientation are computed respectively as:

e p = p d -p e o = -(η d -η d + [ d ×] ) (10)
and the task is defined as: Postural: A postural task is defined in joint space as:

T C,p = b J d,p , ṗd + K p e p T C,o = b J d,o , ω d + K o e o
T p = (I, qd + K q (q d -q)) (12) 
Minimum Effort: The minimum effort task is again defined in joint space as:

T g = I, α g ∇(g(q) T g(q)) (13) 
where the gradient is computed numerically by means of two-point estimation and the Hessian is set to identity as in the Gradient Projection Method [START_REF] Mansard | Task sequencing for high-level sensorbased control[END_REF].

Constraints and Bounds

Constraints model equalities and bilateral/unilateral inequalities using the simple form:

C = (A c , b c ) (14) 
Bounds are a particular kind of constraints, applied to all the tasks in the stack, where A c is always the identity. We can specify lower and upper bounds as

b = (l b , u b ) (15) 
Constraints and bounds are implemented in OpenSoT through the class Constraint which implements a simple interface providing equality constraints (getAeq(), getbeq()), inequality constraints (getAeineq(), getbLowerBound(), getbUpperBound()) and bounds (getLowerBound(), getUpperBound()).

Aggregated: The aggregated constraint performs merging of a list of constraints into a single constraint, in particular piling the equalities and inequalities constraints, and merging the bounds as follows:

C agg = A T c,1 A T c,2 T , b T c,1 b T c,2 T ( 16 
) b agg = (max (l 1 , l 2 ) , min (u 1 , u 2 )) (17) 
ConvexHull: CoM is bounded to lay inside the convex hull defined by the contacts with the environment, where we can write

C CH =       a 0 b 0 . . . . . . a n-1 b n-1    ,    -c 0 . . . -c n-1       (18) 
with a i ,b i ,c i coefficients of the implicit equation of the line a i x+b i y +c i = 0, bounding the convex hull. These lines are expressed in a frame attached to the CoM and parallel to the inertial frame, and are obtained by finding the coefficients of a line passing through two consecutive points of the convex hull of the support polygon. The convex hull is obtained by creating a hull of a point cloud of contact points between the foot and the ground, which can be obtained by skin sensors or, in current implementation, by the foot model assuming full-foot contact with the ground. CartesianLinearVelocity: This task implements limits on the Cartesian velocity of any link w.r.t. another link, or the inertial frame

C C,p = b J d , b v max,d (19) 
The constraints CoMVelocity are a peculiar case where instead of the distal link we use the CoM. JointLimits:

b JointLimits = (µ (q min -q) , µ (q max -q)) (20)

JointVelocity: b JointVelocity = (-α i qmax ∆t, α i qmax ∆t) (21) 
with u j lims and l j lims the q where α i ≤ α i+1 scales the bounds in order to implement a simple velocity allocation scheme between tasks at different priority levels.

OpenSoT Solver OpenSoT provides a class to implement different Solvers that uses the classes Tasks, Constraints and Bounds to solve the IK problem for a desired control type. The actual solver supported in OpenSoT is based on (5) and is currently supporting only velocity based task and Constraints. Therefore velocity control is the available control type in the current state of implementation while other type of solvers which support different control modalities are due to be integrated soon. The solver uses qpOASES [START_REF] Ferreau | qpoases: A parametric active-set algorithm for quadratic programming[END_REF], an opensource C++ implementation of an on-line active set strategy [START_REF] Ferreau | An online active set strategy to overcome the limitations of explicit mpc[END_REF], part of the ACADO suite. qpOASES implements an automatic regularization technique (therefore there is no need for explicit singularity avoidance and escaping) and warmstart functionalities. The solver permits to define any type of stack and it handles the bounds in a global way. To test the performances of the solver we have prepared a benchmark were a variable sized stack is created and solved. The lowest priority task is always a postural task [START_REF] Chiacchio | Closedloop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy[END_REF] while the others are Cartesian tasks [START_REF] Sentis | Compliant control of multicontact and center-of-mass behaviors in humanoid robots[END_REF], bounds on joint limits and velocities are also added to the optimization. Table I shows the results to solve one control step of optimization 1 for 29 variables.

V. EXPERIMENTS To evaluate the performance of OpenSoT, experiments were performed using a compliant humanoid robot. Apart from demonstrating the implementation and fundamental functionality of the library, the experiments were targeting at demonstrating also the effect of changing on-line the lowpriority joint space task from pure postural to pure minimum effort.

Control Scheme

In the experiment a Control Computer runs the wholebody inverse kinematic framework in open-loop. Gravity compensation terms are derived at each desired configuration computed by OpenSoT and are used by the joint-level impedance controller running inside the motor driver DSPs. The Joint active stiffness and damping are kept constant during the experiment. In the experiment the joint impedance control is enabled only in the upper body/arms, while a joint position control is used in the lower body.

Tasks Description

The stack is composed by two tasks, where J 1 is an Aggregated Task composed of Cartesian tasks that control the hands and swing foot end-effectors, and a CoM task to control the Center of Mass considering the whole body. Using the augmented Jacobian [START_REF] Santis | Multiple-point kinematic control of a humanoid robot[END_REF] formulation provided by Aggregated, we have 

J 1 = J T l wr J T
The parameter β ∈ (0, 1) allows to smoothly weight between a postural joint space task to minimum effort joint space task. Each level of the stack is bounded by an Aggregated constraint containing one JointLimits Bound and a JointVelocity Bound. The CoM is not controlled in a higher level task, meaning we do not wish to control its exact position, rather we set an admissible region bounded by the convex hull by imposing fixed margins from the convex hull vertices. This is done by creating a constraint of type ConvexHull, and a constraint of type CoMVelocity to constraint the maximum Cartesian speed of the CoM. The optimization algorithm uses the reliable default settings of qpOASES, with regularisation enabled and regularisation set as epsRegularisation * =2E2, the maximum number of working set calculations nWSR=32. A reference configuration for the postural task q ref and a reference pose for all the controlled end-effectors is set by sensing their respective values during the start-up phase of the control. During the experiment, the gain β is tuned manually on-line. Speed of execution is obtained by using the warm-start method, which allows to have an initial guess for the active-set in the QP solver. This allows to solve this stack within 4ms.

Results

Fig. 3 presents the 2-norm of the torques in all the 29 joints of the robot. It is easy to recognize the different part where the last task is pure postural (β = 1.0) and where the last task is pure min effort (β = 0.0). The difference between the 2-norm of the torques in pure postural task 

VI. CONCLUSIONS

This work introduced a novel whole-body control library called OpenSoTs. OpenSoT is combined with joint impedance control to create a framework tool that can effectively generate complex whole-body motion behaviors for humanoid robots. Such framework allows to control the robot by solving a hierarchy of tasks with linear constraints. The framework provides an easy way to implement new tasks, constraints, bounds and solvers by providing common interfaces. The theoretical foundation of OpenSoT was presented and its performance was demonstrated in a multi-objective task in which the motion of all end-effectors of the robot and the centre of mass (CoM) were controlled while taking into account joint limits and joint velocity limits. At the same time, a minimum-effort task in the null-space of these tasks is imposed at lower priority. Compliant behavior was obtained through a low level joint impedance control with gravity compensation at the desired configuration. OpenSoT is released free and open source at https://github. com/robotology-playground/OpenSoT.
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 1 Fig. 1: COMAN is a 29 DOFs humanoid robot equipped with series elastic actuators

Fig. 2 :

 2 Fig. 2: Proposed control scheme and up to now no complex tasks have been experimentally demonstrated yet in humanoid bipedal robots.

( 11 )

 11 where p d = [x d y d z d ] is the desired position and α d = [η d 1,d 2,d 3,d ] is the desired orientation expressed as a quaternion [14], K p and K o are positive definite matrices and ξ d = [ ṗd w d ] is the desired Cartesian velocity for the end-effector. A particular case is the CoM task which is defined as a Cartesian position task.

e 2 =

 2 where J l wr and J r wr are the (6×29) Jacobians of the left and right arms respectively computed w.r.t. the base link of the robot. Notice that J l wr and J r wr share the torso kinematic chain. J CoM is the (3 × 29) Jacobian of the CoM of the robot computed w.r.t. the left foot (support foot) and finally J sw ft is the (6 × 29) Jacobian of the right foot (swing foot) computed w.r.t. the left foot. The second task is again an Aggregated in joint space needed to stabilize auto-motions due to redundancy, which aggregates a MinimumEffort and Postural task. Again, the solution of the second task lies in the null-space of the first QP problem, the residuals of the first task remain constant after solving the second J 2 = βI T nJ (1 -β) I T nJ T βλ 11 b T p + (1 -β) λ 12 b T g T
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 34 Fig. 3: 2-norm of torques during switching from a pure postural task to a mix of postural and minimum effort task

Fig. 5 :Fig. 6 :

 56 Fig. 5: COMAN holding end-effectors pose while executing a postural task (left) or a minimum effort task (right)

TABLE I :

 I Solver Time

	# Stacks	Tasks	Time [s]
	2	postural, CoM	0.003
	3	postural, CoM, left arm	0.005
	4	postural, CoM, left arm, right arm	0.007