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Detection of ulcerative colitis lesions from
weakly annotated colonoscopy videos using

bounding boxes
Safaa Al-Ali, John Chaussard, Sébastien Li-Thiao-Té, Éric Ogier-Denis, Alice Percy-du-sert, Xavier Treton,

and Hatem Zaag

Abstract— Ulcerative colitis is a chronic disease charac-
terized by bleeding and ulcers in the colon. Currently, the
gastroenterologist reviews the colonoscopy video to as-
sess the disease severity using an endoscopic score. This
task is time-consuming and does not consider the size and
the number of lesions. Consequently, automatic detection
methods were proposed enabling fine-grained assessment
of lesion severity. However, they depend on the quality
of the training set, and its specificity to the application
context. To suit the local clinical setup, we opted for an in-
ternal training dataset containing only rough bounding box
annotations around lesions. Color information is the pri-
mary indicator used by specialists to recognize the lesions.
Thus, we propose to use linear models in suitable color
spaces to detect lesions. We introduce an efficient sam-
pling scheme for exploring the set of linear classifiers and
removing trivial models i.e. those showing zero false neg-
ative or positive ratios. Using bounding boxes leads to ex-
aggerated false negative/positive ratios due to mislabeled
pixels, especially in the corners, resulting in decreased
models’ accuracy. Therefore, we propose to evaluate the
model sensitivity on the annotation level instead of the pixel
level. Our sampling strategy can eliminate up to 25% of
trivial models. Despite the limited annotations’ quality, the
detectors achieved good performance (93% specificity/89%
sensitivity for bleeding and 57% specificity/83% sensitivity
for ulcers). The best models exhibit low variability when
tested on a small subset of endoscopic images. However,
the inter-patient model performance was variable suggest-
ing that appearance normalization is critical in this context.

Index Terms— Bleeding, bounding box annotation, le-
sions detection, model selection, sensitivity, ulcer, ulcera-
tive colitis.
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I. INTRODUCTION

INFLAMMATORY bowel diseases (IBDs) are chronic in-
flammatory illnesses, in which the lining of the bowel

becomes inflamed and presents lesions such as bleeding and
ulcers [1]. The two main forms are Crohn’s disease (CD) and
Ulcerative colitis (UC) both of which may cause serious dis-
comfort and long-term complications for the affected patients.

Proper diagnosis and management of these conditions are
essential to improve the patient’s quality of life and prevent
further complications. Colonoscopy [2] and Wireless Capsule
Endoscopy (WCE) [3] are the methods of reference for
evaluating and monitoring IBDs severity, and hence making
treatment decisions and assessing treatment response. These
techniques allow direct visualization of the inner lining of the
gastrointestinal tract. More precisely, a colonoscopy uses a
flexible thin hose equipped with a mini-video camera and is
performed by an experienced clinician for UC. On the other
hand, WCE uses an embedded, pill-sized, camera that can be
swallowed, and is more suited to the diagnosis of CD.

Bleeding and ulcers are common lesions associated with
both diseases, UC and CD. Color information is the primary
indicator used by specialists to distinguish between mucosal
lesions and the surrounding normal or healthy mucosa. In par-
ticular, bleeding lesions usually show dark red areas whereas
ulcers appear as white spots on the gut wall, both distributed
with diverse shapes and sizes. Currently, experts review manu-
ally colonoscopy or WCE videos, which can represent around
10,000 frames. This process is a hard and time-consuming
task leading to only considering the characteristics of the most
severe lesions.

Therefore, automated lesion detection can bring signifi-
cant benefits by improving the reproducibility of severity
assessment and decreasing the physicians’ burden as well.
Many methods have been proposed to automatically detect
endoscopic bleeding and ulcer lesions. In this light, computer
analysis techniques try to solve two kinds of problems. First,
given a set of pixels, a region of interest (ROI) or a complete
frame, binary classification algorithms are used to select a
label between ”lesion” (also called abnormal) or ”not lesion”
(also called normal). Second, segmentation algorithms are
used to find regions with the same label such as bleeding
or ulcers regions. Numerous automatic detection methods
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used color features to train their models [4]–[8], while others
combine it with texture information to enhance detection
performance [9]–[11].

The presented work focuses on bleeding and ulcer detection
from colonoscopy videos obtained in the context of UC
disease during an ongoing collaboration with the Bichat-
Beaujon Hospital in Paris, France. Although the lesions’
appearance is similar between UC and CD, we anticipate that
the currently available methods are biased to their training
set, i.e. to well-delineated video-capsule images ( [12]–[16])
as opposed to complete colonoscopy videos obtained on the
local instruments. Consequently, we built a custom dataset of
colonoscopy videos of real patients, called Vatic specific to
this collaboration. To minimize the burden of the annotation
process, we propose that doctors use an interface inspired
by the Vatic software [17] that allows the delineation of the
lesions by bounding boxes instead of a precise delineation
of lesion boundaries. Classical machine learning or Convolu-
tional Neural Network (CNN) approaches for lesion detection
usually depend on the quality of the training dataset, which
naturally affects the accuracy of the detector. Consequently,
using complex machine learning algorithms such as CNNs
in our case may generate unsatisfactory detection results.
Therefore, we decided to alternatively employ linear models.
Due to their simplicity, these models can provide valuable
insights and interpretable results. Following [7], [8], [12], [18],
[19], we decided to use linear models in convenient color
spaces for bleeding and ulcer detection. We also propose an
efficient sampling scheme to explore the set of linear models
that rejects trivial classifiers that classify all the pixels into the
same class. Since the bleeding and ulcer lesions are of variable
and complex geometric shapes, their delimitation by bounding
boxes is quite imprecise. Indeed, the pixels surrounding the
lesion were included in the annotation although they are
healthy pixels. To deal with this problem, we propose to take
into account annotation errors to compute the sensitivity of the
detector. Specifically, we consider the mislabeled pixels within
the bounding box annotations as correctly identified abnormal
pixels rather than considering them as false negatives. Finally,
we analyze the performance of the best models across the
initial training and additional testing datasets by considering
only small subsets of endoscopic images.

The contributions of this paper are threefold:

• Proposition of a sampling strategy to effectively explore
the set of linear models by only considering nontrivial
models.

• Introduction of a sensitivity performance that can deal
with bounding box annotations imprecision enhancing
detection models accuracies.

• Study of the variability of the detectors across the pa-
tients, even inside the training set. Our study shows
that the models used are not universal and personalized
models should be developed for each patient.

The rest of the paper is organized as follows: in Section II,
we present an overview of the current state-of-the-art methods
proposed for UC lesions detection. Then, in Section III, we
propose a classification method based on linear models com-

puted using pixel color features. Additionally, we propose an
efficient sampling scheme to explore the set of linear models
that rejects trivial classifiers. Next, we introduce performance
criteria that can deal with bounding box annotation problems.
In Section IV, we demonstrate that our proposed method
achieves good-quality detection of bleeding and ulcers in the
ROC space. To prepare for clinical validation, we evaluate the
accuracy of our performance estimates on a set of small subset
of endoscopic images. We show that the proposed classifiers
exhibit good performance, and yield reliable results, but that
most of the variability is indeed related to patients’ variability
(see Section V).

II. RELATED WORK

A. Automatic detection of bleeding

Most of the current methods perform classification in a
color space with maximum contrast between bleeding and
nonbleeding regions. As bleeding pixels are red, it is natural
to consider detection and classification in the RGB colorspace,
or direct transformations of RGB ( [6], [7], [18], [20]–[22]).

In 2011, Fu et al. [20] trained a 3-layer perceptron on
the ratios (R/G,R/B, R/G+B+R) for each pixel and applied
morphological erosion. Later in 2014, [6], the authors extended
their approach by working with superpixel regions, and a
Support-Vector Machine (SVM) classifier trained on 60,000
pixels. In the same year, Ghosh et al. [18] applied a K-
Nearest Neighbors (KNN) classifier to statistical parameters
extracted from the R/G histogram. The authors reported that
the combination of only three parameters, namely {median,
variance, kurtosis} was sufficient to identify bleeding frames
with an accuracy of 98.5%. This work was later extended in
[7] by working on 7 pixels ×7 pixels blocks.

Some bleeding detection algorithms work on the histogram
bin levels instead of the pixel values [18], [21]. Kundu et
al. [21] computed Regions of Interest (ROIs) defined by
the color ratios r/b ≥ m and r/g ≥ n computed in the
normalized RGB color space, denoted by rgb and applied a
KNN classifier to 64 histogram bins in the green channel.
The parameters m = 2.8 and n = 2 are chosen according
to the maximal accuracy of pixel detection compared to the
ground truth provided for 65 endoscopic images. In [22], the
authors combined the RGB values into a single number with
bit concatenation and applied an SVM classifier on the bins
of the resulting histogram. In [12], the authors used a similar
technique before PCA dimension reduction and classification
with KNN.

Other color spaces were also considered in [5], [23], [24].
In [23], the authors used an SVM classifier with statistical
features computed in Luma In-phase Quadrature (YIQ) color
space. Deeba et al. [5] merged two SVM classifiers built from
statistical features extracted respectively from RGB and Hue-
Saturation-Value (HSV) color histograms. In [24], the authors
trained a three-layer probabilistic neural network on statistical
features from RGB and Hue-Saturation-Intensity (HSI) pixel
intensities. Recently, Pogorelov et al. [9] proposed to consider
image texture besides color. They used RGB color features
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and 22 texture parameters extracted from the grey-level co-
occurrence matrix. The authors tested many classification
methods and found that the SVM classifier performed best.

B. Automatic detection of ulcers

Ulcers show as pinkish white, which explains why most
methods focus on detecting bright pixels [8], [25]. In [25],
the authors trained an SVM classifier on statistical features
in RGB and CIElab (Lab) spaces and concluded that (L, a,
G) channels give the best detection performance. The authors
later extended their work in [8] with more colorspaces (RGB,
HSV, YCbCr, CMYK, YUV, CIElab, XYZ) and found that
(Cr,Y,B) is the best feature combination.

Ulcers also appear as rough surfaces which can be detected
based on texture features [10], [11], [19]. In [11], the authors
proposed to combine color (S from HSV and M from CMYK)
and Leung-Malik filters [26] with an SVM classifier. In [19],
the authors applied an SVM classifier to statistical moments
of the Contourlet transform and Log Gabor filter in HSV and
YCbCr color spaces. In Yeh et al. [10], the textural features
were obtained from the Grey Level Co-occurrence Matrix.
Different combinations of the number of features, feature se-
lection algorithm, and classification algorithm were compared,
and the best combination was obtained with decision trees,
with 40 features selected by the ReliefF method.

III. MATERIALS AND METHOD

A. Colonoscopy videos dataset

From Vatic database, we used 5 videos (768 pixels×576
pixels) containing both bleeding (1629 frames) and ulcer (1760
frames) annotations for training, for a total of 4349 frames (see
Table I). Each video was annotated by gastroenterologists with
the help of the Vatic software [17].

TABLE I: Number of frames used for training: number of
frames with bleeding annotations, number of frames with ulcer
annotations, and total number in the video.

Bleeding frames Ulcer frames Total number of frames
video 1 671 554 812
video 2 224 378 378
video 3 254 86 1116
video 4 140 204 910
video 5 340 538 1133

Total 1629 1760 4349

B. Proposed method

Our proposed method involves several steps outlined in Fig.
1. First of all, we remove all black pixels surrounding the
informative pixels. Next, we compute the color histograms of
healthy pixels. We thus propose an effective sampling method
to explore the linear models. We also adjust the computation of
the sensitivity criteria to encounter mislabeled pixels occurring
during the annotation process using bounding boxes. Finally,
we optimize the performance of the detectors utilizing the
Youden index [27]. In what follows, we detail the process
by showing some examples.

1) Image preprocessing: Due to the camera’s field of view,
only an octagonal portion of the image is actually recorded in
the endoscopic video, and the outer portions are set to black
(see Fig. 2). Additionally, some embedded textual informa-
tion should be removed prior to bleeding or ulcer detection.
Consequently, we detect pixels with small grey-level variance
and grow the detected region with morphological dilation (5x5
square structuring element). Additionally, some unannotated
areas are bright because of light shining on wet spots (specular
reflection), so we remove the pixels 1{Y >c}, with c = 150
chosen by visual inspection.

Fig. 2: Example of an endoscopic frame (on the left) and
corresponding binary mask (on the right) used later to remove
pixels that do not correspond to the colon wall during the
training stage of the detectors.

2) Definition of bleeding and ulcer detectors: We previously
pointed out that in colonoscopy videos, bleeding show as red
patches and ulcers as pinkish-white patches on the gut wall
(Fig. 3). As previous authors [7], [12], [18] have shown that the
R/G ratio is relevant (it leads to 11% overlap in [7]) to detect
bleeding, we consider linear classifiers in the (R,G) subspace,
i.e. {aR + b ≥ G for (a, b) ∈ R2}. Similarly, following [8],
[19], we consider linear classifiers in the (Cr,Y) subspace
obtained using Cr and Y channels from YCbCr and CMYK
color spaces respectively, i.e. {aCr + b ≤ Y for (a, b) ∈ R2}
to detect ulcer lesions. This corresponds to finding a straight
separation line between the histograms of normal and lesions’
pixels. Let’s take the example of endoscopic figures given in
Fig. 3. The best bleeding detector should lead to a minimum
overlap ratio between normal (Fig. 3c) and bleeding pixels
(Fig. 3e) in the (R, G) color space. On the other hand, the
best ulcer detector should lead to a minimum overlap ratio
between normal (Fig. 3d) and ulcer pixels (Fig. 3f) within the
(Cr, Y) color space.

3) Proposed sampling strategy: The model search process
consists of exploring all the linear models of the color spaces
(R, G) and (Cr, Y) for bleeding and ulcer detection respec-
tively. In Fig 4, we give the histograms of normal pixels of the
training dataset (Table I). For each histogram, we plot a set of
100 random linear models. We can remark that classifiers that
do not ”cross” the histograms, herein highlighted in orange
color, are trivial because they give the same label to all pixels.
In particular, no normal pixel will be correctly identified by the
detector and consequently, the true negative rate of this detec-
tor will be zero. To study the amount of these trivial models,
we ran a series of 100 trials, each involving 100 randomly
generated lines. The results show that when sampling linear
models in (R,G), also denoted by RG, color space, an average
of 9% of these models is ”trivial” with a standard deviation
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Training
videos

Pre-processing
(removal of
black pixels)

Compute (R,G)
& (Cr,Y) histograms

of normal pixels

Sample only models
crossing the contour

(Figs. 6a and 6b)

Optimise SensitivityA (1)
with Youden

index (3)

Lesion
detection

Fig. 1: Flowchart of the proposed method.
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Fig. 3: (a,b) Annotated frames with bleeding (red bounding
box) and ulcers (orange bounding box). Corresponding his-
tograms of the normal pixels i.e. all pixels out of the bounding
boxes (c-d), bleeding pixels (e), and ulcer pixels (f).

(std) of around 3%. In contrast, for the (Cr,Y), also denoted by
CrY, space this amount increases significantly to achieve an
average of 25% with a std of about 4%. When sampling the RG
space using 10,000 random models, among them 9.41% are
trivial whereas this number increases to 25.62% in the case of
sampling CrY space. Therefore, we decided to eliminate these
models and restrict the optimization space to the set of random
linear classifiers that go through the interior of the histogram.
Since the number of trivial models remains almost the same by
testing more than one hundred models, we decided to restrict
the search for lesion detectors by testing only one hundred
random linear models.

Additionally, if a line goes through the interior, it must cross
the boundary of the set. We can avoid sampling redundant
linear classifiers by focusing on the contour of the histogram
instead of its interior. To sample the set of lines, we will thus
draw two points in the contour of the RG and CrY histograms
and consider the associated linear classifiers (see Fig. 6).
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Fig. 4: Histograms of normal pixels for the training dataset
(cf Table I) in the RG space (on the left) and CrY space (on
the right). Among the set of 100 random linear models, 8%
do not cross the RG histogram in opposite to 23% for the CrY
histogram. Trivial models are represented in orange color.

4) Proposed performance metric of the detectors: In text-
book statistics, the specificity

∑
TN∑

TN+
∑

FP or true negative
(TN) rate measures the proportion of normal pixels correctly
identified as such, and sensitivity

∑
TP∑

TP+
∑

FN or true pos-
itive (TP) rate measures the correctness of abnormal pix-
els detection. However, evaluating specificity and sensitivity
hinges on reliable pixel annotations by gastroenterologists.
Unfortunately, as previously discussed, the gastroenterologists’
annotations in our database contain many errors because the
regions of interest are provided as bounding boxes, whereas
bleeding and ulcers have more complex shapes (see Fig. 5).
Direct observation also suggests that many dark red pixels
were not labeled as bleeding, and white pixels were not labeled
as ulcers. Consequently, we expect over-inflated levels of FP
and FN based on the database annotations. This will hide the
correct classifier, and decrease the confidence in our results.

In Fig. 5, we illustrate the results of bleeding detection (in
red) using a chosen random linear model, G ≤ 0.3R + 1
and ulcer detection (in orange) using the linear model Y ≥
0.5Cr + 8. We report the performance metrics of the models
in terms of TP, TN, FP, and FN computed on the pixel
level in Table II. It can be seen that the model is able to
correctly identify most of the annotated pixels (see the last
row). However, as gastroenterologist annotations are usually
wider than the actual lesion, some annotated pixels are not
detected by our algorithm, then the false negative ratio is very
high resulting in decreased sensitivity values (cf Table II).

To overcome these problems, we modify the definition of
sensitivity to take the labeling problems into account. The
pixels inside an annotation and not detected as such should
not count as false negatives when assessing the algorithm’s
performance. Consequently, we will count all pixels belonging
to an annotation as TP, as soon as one pixel is detected inside.
As pixels inside an annotation are either true positives or false
negatives, this corresponds to counting ”detected annotations”
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Image A Image B Image C Image D

Fig. 5: Endoscopic images extracted from Vatic dataset (first row). The second row represents the mask highlighting the ground
truth obtained by the bounding boxes annotations (in gray). The third row shows the results of bleeding detection (in red)
using the linear model G ≤ 0.3R + 1 and ulcer detection (in orange) using the linear model Y ≥ 0.5Cr + 8. The last row
shows the intersection between the models’ detection and the ground truth.

TABLE II: Performance results for endoscopic images given in
Fig. 5. TPA represents the number of pixels within the detected
annotations and PA denotes the total number of pixels of all
the annotations presented in the frame.

Image identity TP TN FP FN TPA PA Specificity Sensitivity SensitivityA

Image A 23229 234006 2161 66942 93936 93936 99.08% 25.76% 100 %
Image B 11181 263133 16183 35841 47022 47022 94.81% 23.78% 100 %
Image C 36692 238390 18724 10619 46318 50616 92.72% 77.55% 91.51%
Image D 8556 192292 54952 30270 36041 38982 77.77% 22.04% 92.46%

instead of ”detected pixels”. More precisely, we count in terms
of ”area”, and define the sensitivity criteria as follows:

SensitivityA =
Area of detected annotations

Total area of annotations
. (1)

In comparison with the standard sensitivity criteria,
SensitivityA may provide a compromise between bounding
box annotations and the detector’s ability to correctly identify
them (cf Table II). Specificity was not modified, as we expect
missing annotations to represent a small number of pixels
relative to nonannotated pixels

∑
TN +

∑
FP .

Finally, the detector performance is measured in a sensitivity
vs (1-specificity) plot or Receiver Operating Characteristic
(ROC) space. As we are only interested in single detectors,
each detector’s performance is represented by a point. The
ideal classifier corresponds to the upper left corner. Other good
models are a compromise between sensitivity and specificity
and are close to (0,1). We select the classifier that maximizes

the Youden index [27]:

m̂ = argmax
m

dROC({y = x},m), (2)

= argmax
m

(
SensitivityA + Specificity(m)− 1

)
. (3)

IV. RESULTS

A. Best lesions detectors
As explained in Section III-B.3, we take a random sample

of size 100 from the set of linear models that cross the contour
of the histogram of normal pixels. Fig. 6 shows the sampled
models in histogram space and in ROC space.

Table III shows the performance of the three best linear
models in terms of specificity, SensitivityA, and standard sen-
sitivity. As shown in Fig. 6, the models achieve good perfor-
mance results in ROC space, i.e. specificity and SensitivityA.
Fig. 7 (in the 2nd and 4th row) shows that there is a good
visual agreement between the colors of detected lesions and
the expert annotations. The best linear models can focus on
the relevant areas rather than the total annotation, and select
candidate ROIs that were not annotated. As expected, the
detected areas do not overlap ”fully” with the annotations,
which is the reason for the low standard sensitivity levels.
Based on the 3 best models, we estimate that around 90% of
bleeding annotations are incorrect, and 80% of the ulcer anno-
tations (see Table III). As a result, training with the standard
sensitivity would provide nonsensical models, whereas we can
achieve good performance with SensitivityA.
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Fig. 6: 100 linear classifiers are sampled by drawing two
points from the contour of the (R,G) histogram of normal
pixels (left) and (Cr,Y) histogram (right). The performance
of the models for bleeding (left) and ulcer (right) is shown in
ROC space. The three best models are shown in black.

TABLE III: Performance of the best linear models for bleeding
and ulcer detection. Good performance is obtained based on
SensitivityA, but standard sensitivity is low due to annotation
errors.

Best models for bleeding Specificity SensitivityA Sensitivity
G ≤ 0.298R− 1.03 92.71% 88.58% 9.56%
G ≤ 0.264R− 4.837 97.79% 70.08% 4.16%
G ≤ −0.066R+ 31.58 86.39% 75.92% 13.79%
Best models for ulcers Specificity SensitivityA Sensitivity
Y ≥ 0.698Cr − 42.799 57.33% 82.71% 38.85%
Y ≥ 0.505Cr + 8.816 80.88% 56.62% 14.27%
Y ≥ 0.499Cr + 6.318 77.91% 59.46% 17.17%

In Table IV, we summarize the results of our models
compared to two methods found in the literature. As we are
interested in detecting annotations, we apply two simultaneous
color ratios as done in [21] and find the optimal parameters
m̂ = 5.95 and n̂ = 3.75 to detect bleeding ROIs. The KNN
algorithm has not been further employed as the authors did.
On the other hand, for ulcer detection, an SVM model with
an RBF kernel and 10-fold cross-validation was trained on our
dataset using two color bands Cr and Y as done in [8]. Based
on a grid search within the values range (−8, 7, 6, . . . , 6, 7, 8),
we find that the optimal parameters are C = 0.79 in terms
of regularization constant and γ = 3.03 in terms of kernel
hyper-parameter. We then computed the detection performance
for both resulted models on our training dataset (cf Table I)
using the standard specificity and the proposed SensitivityA

(cf section III-B.4). Reported results show that linear models
exhibit better compromise between specificity and SensitivityA

compared with [8] and [21]. SVM model fails on abnormality
detection, here the ulcers found in Vatic. We thus tried to make
data augmentation on the ulcer pixels to maintain a balance
in the training dataset, but SensitivityA remained low.

In Fig. 7, we present some annotated frames with the
corresponding detection using our models as well as the

TABLE IV: Performance of the best lesions detectors compared
to the literature.

Models Specificity SensitivityA

Proposed bleeding detector 92.71% 88.58%
Linear model-Kundu [21] 16.68% 99.84%
Proposed ulcer detector 57.33% 82.71%
SVM algorithm-Suman [8] 99.84% 21.14%

models computed based on [8] and [21]. We find that our best
linear models show better compromise between the detection
of healthy pixels and lesions pixels than the other methods.

V. DISCUSSION

As discussed in Section II-A, the RGB color space, and
especially the Red and Green channels, has previously been
used successfully for bleeding detection, whereas the YCbCr
color space was used for ulcer detection. The information
present in the pixel color is not altered by a change of color
space, but a suitable color space presents this information
more straightforwardly, and dimension reduction methods such
as PCA can automatically perform this. In this manuscript,
choosing the right colorspace based on the previous literature
(see [5], [9], [13], [22] for bleeding and [8], [11], [19] for
ulcers) enables us to work with 2D linear models instead of
3D models.

The use of bounding box annotations in our database (see
Fig. 3) entails a considerable quantity of ground truth errors
because annotations do not match the arbitrary and compli-
cated shapes of the lesions. This is a major difficulty in our
context, regardless of the type of model or machine-learning
approach. To ease the annotation burden, semi-automatic re-
gion selection algorithms have been proposed. In the work of
Sainju et al. [28], the authors use the growing region algorithm
[29] to create homogeneous bleeding regions from consecutive
capsule endoscopy frames. A seed is manually selected by
the user and then enlarged by adding 8-connected neighbors,
and the new centroid is taken as the seed for the following
frame. This method extracts only one region per lesion, which
can unbalance the normal and bleeding regions in the training
database. In addition, it does not perform well in the absence
of lesions due to forward and backward camera movements or
in patients with mild forms of UC. In [5], the authors use a
similar method to extract the bleeding regions but keep only
a single frame rather than the complete sequence.

In this paper, we propose to adjust the performance criterion
of lesion detection rather than automatically annotate the
dataset. We chose to work with linear models instead of more
sophisticated approaches in order to provide results that are
easy to interpret and use in clinical practice. In addition, the
good performance obtained in this and previous studies ( [5],
[7], [8], [11], [18], [19]) suggests that clinical validation of the
approach is the critical step, as opposed to more sophisticated
approaches such as SVM or neural networks.

To evaluate the validity of our results, we did not perform
cross-validation, but show the results of computing specificity
and SensitivityA on a random subset of frames in each video
in Fig. 8. Cross-validation selects random subsets and finds the
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Fig. 7: Annotated frames from Vatic database (first column), bleeding detection with our best linear model (second column),
bleeding detection by two simultaneous linear models [21] (third column), ulcer detection with our best linear model (fourth
column), ulcer detection using SVM [8] (last column).

best model for each subset. Consequently, it selects different
models at each run and evaluates the performance of the
optimization algorithm. For clinical practice, we are interested
in the performance of specific models, their reliability, and
their generalization to new patients. Fig. 8 shows the perfor-
mance of the 3 best models for the patients in the training
dataset (left) and 5 new patients (right). For each patient, we
estimated specificity and SensitivityA on 20 random subsets
of a video, each containing 10% of the frames. Only three
points are drawn, but the size of the ellipses is computed from
the standard deviations of the 20 subsets. Fig. 8 shows that
specificity and SensitivityA are estimated precisely, even on a
fraction of the frames. This suggests that computational time
can be reduced by using only a small subset of the video.
However, the performance varies a lot between patients, even
inside the training set. This means that the selected models
are not universal and that specific models should be trained
for each patient. This observation was not reported in previous
works because the datasets used contain frames that are not or-
ganized “by patient”. Consequently, methodological advances
are necessary to make colonoscopy videos comparable, in
order to apply trained models to new patients.

VI. CONCLUSION

This paper studies the automatic detection of bleeding and
ulcers in colonoscopy videos for UC severity assessment based
on a training dataset containing many annotation errors. We
decided to deal with the annotations problem rather than
proposing a sophisticated machine learning algorithm to im-
prove detection performance as done by current studies. As in

10 4 10 3 10 2 10 1 100

1 Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty
A
, b

le
ed

in
g 

de
te

ct
io

n

10 4 10 3 10 2 10 1 100

1 Specificity

Best 1
Best 2
Best 3
Diagonal

10 2 10 1 100

1 Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty
A
, u

lce
r d

et
ec

tio
n

10 2 10 1 100

1 Specificity

Best 1
Best 2
Best 3
Diagonal

Fig. 8: Performance of the 3 best linear models depending on
the patient, 5 training videos (left), and 5 test patients (right).

previous studies, we explore the set of linear classifiers and
propose an efficient optimization method based on sampling
the contour of the color histogram. This allows us to eliminate
around 25% of trivial models which leads to focusing only on
interesting models i.e. those giving nonzero true negative and
true positive ratios. By adjusting the definition of sensitivity,
we can circumvent the effect of the annotation errors using
bounding boxes, and select good pixel-level lesion detectors.
The best linear models obtain 93% specificity / 89% sensitivity
for bleeding detection and 57% specificity / 83% sensitivity
for ulcer detection, and reliable performance estimates can be



8 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

obtained from random subsets of the dataset. These show that
the best detectors achieve good performance, but that patient-
to-patient variability is dominant in this problem, and that
further procedures to normalize the appearance of the videos
are needed for clinical applications.

PATIENTS’ CONSENT

The patients’ videos were anonymous, and analyzed after
obtaining their consent. The study was approved by the local
research study committee.
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