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In this paper, we propose a droplet non-coalescence method based on the lattice Boltzmann (LB)
pseudopotential model. Due to its simplicity, the pseudopotential model has been widely used to
simulate multiphase flows. However, with the original pseudopotential model, droplets in contact
tend to merge, which poses a limitation in simulating densely packed droplets without coalescence,
as observed in emulsions and foams. To overcome this limitation, our aim is to develop a non-
coalescence method that does not introduce additional sets of distribution functions to simulate a
stable system of droplets in close contact. In this proposed method, all droplets must be labeled
with unique indexes, enabling the identification of each droplet, and pseudopotential repulsions are
applied at droplet contacting interfaces to prevent them from merging. Although this approach
effectively prevents droplet coalescence, there is a small amount of mass transfer between droplets.
To correct this, we also incorporate a mass control scheme. It is found that the proposed method is
able to model stable highly concentrated suspensions (HCS) with or without density and viscosity
ratios. Besides, the proposed method can also simulate flowing HCS with arbitrarily high volume
fractions of the dispersed phase allowing to simulate closely packed microfluidic soft flowing crystals
or foams.

I. INTRODUCTION

The lattice Boltzmann method (LBM) has become an
efficient and powerful tool to simulate fluid flows [1, 2].
LBM can deal with complex geometries [3–9], flow in
porous media [8–15], non-Newtonian fluids [15–25], is
easy to implement in parallel computers or graphical pro-
cessing units [26–35] and is extremely efficient to simu-
late multi-phase and multi-component flows [36–49]. As
a consequence, LBM has been widely used to simulate
microfluidic flows [36, 50–52, 56–61].

Microfluidic emulsification has been considered as a
promising technique because it can ensure the produc-
tion of monodispersed droplets [62–64], contrarily to con-
ventional emulsification in a batch that usually produces
polydisperse droplets. The main drawback of microflu-
idics is the extremely low flow rates that are involved.
Therefore, it is of the utmost importance to find the opti-
mal operating conditions. In the case of the production of
an emulsion, the objective is to find the optimal geometry
and inlet flow rates such that at the outlet, the dispersed
phase made of micro-droplets reaches the highest possible
concentration in the continuous phase. Extremely high
concentrations can be achieved in experiments such that
droplets are in close packing and form “soft flowing crys-
tals” [65–68]. With these high droplet concentrations,
the produced emulsions are often metastable and the ad-
dition of a surfactant is necessary to prevent the merg-
ing of droplets, coarsening, and the loss of the monodis-
perse size distribution [65]. From a numerical point of
view, the situation may be even more critical. Indeed, in
multi-component LBM simulations, when two droplets of
the same component come in contact, they immediately
merge to form a larger droplet. This is inherent in LBM
methods where interfaces have a finite width, typically
a few lattice spacings, as opposed to interface-tracking

Lagrangian techniques [53, 54]. This phenomenon is un-
wanted to study numerically emulsions stabilized by a
surfactant. As a consequence, numerical studies of T, X,
and Y junctions in microfluidic devices usually restrict to
low concentrations of the dispersed phase where droplets
flow far away from each other.

A simple method has been proposed to prevent the co-
alescence of droplets of the same fluid and reach higher
dispersed-phase concentrations [49, 52, 60]. Each time
a new droplet is created, its color is changed such that
it is different from the continuous phase and the neigh-
boring droplet ones. This approach is interesting since
it creates perfectly stable emulsions, but it suffers from
several drawbacks. As pointed out by the authors, 5 to
6 different colors are necessary for 2D systems to pre-
vent the neighboring of two droplets of the same color.
In the LBM, this requires 5 to 6 different sets of the
distribution function, which implies a larger amount of
computer memory. In a 3D case, each droplet may have
up to 12 first neighbors for a monodisperse system, and
the required memory will be even larger. This problem
can be solved by dynamically deallocating the memory
associated to colors that are not present at the node [60],
requiring more programming skills. A second problem
arises if the droplets have relative displacements, for ex-
ample being in a shear flow or crossing a channel width
reduction. The colors should be dynamically assigned
again to prevent any coalescence.

Another proposed approach adds to the short-range
interaction (repulsion between different phases or at-
traction for each phase) that ensures immiscibility be-
tween the discrete (droplets) and the continuous phase, a
mid-range repulsion between droplets that prevents them
from touching and merging [52, 54, 55, 69]. The main
advantage is this method is that only two components
are modeled which strongly reduces the memory require-
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ment. Essentially applied to the LB color-gradient model
[41–43], this approach has successfully modeled complex
emulsion structures in microchannel [55] that convinc-
ingly reproduces experiments [70].

The objective of this work is to propose a model that
combines the advantages of the two previous approaches,
i.e. a two-phase model that only uses two components
to have a low memory requirement but where the newly
created droplets are perfectly stable and will never merge
with other droplets. In this work, the LB pseudopoten-
tial model is preferred since it is very popular due to
its simplicity of implementation. In the pseudopotential
model, the mesoscopic interactions of pseudopotentials
(based on component densities) are used to represent the
microscopic intermolecular interactions and the separa-
tion of different components is a result of the mesoscopic
repulsions[47, 48]. The extension to other LB multicom-
ponent models, free-energy model [37–39], color-gradient
model[41–43] and phase-field model [44–46] should cause
any peculiar difficulties. The second objective of this
model is to have a wide range of applications, from iso-
lated drops to a highly concentrated suspension where
the continuous phase occupies only a few percent of the
volume, from isodensity phases to a high density differ-
ence to be closer to a liquid-gas system and to phases hav-
ing a viscosity difference to model water-oil emulsions.

The article is organized as follows. In Sec. II, we in-
troduce the LB pseudopotential multicomponent model
and the proposed non-coalescence method. Section III
tests the stability of contacting droplets with or without
viscosity and density ratios and shows how the proposed
method can model flowing HCS, foams and study flows
in microfluidic devices. Finally, concluding remarks are
given in Sec. IV.

II. NUMERICAL METHOD

A. The LB pseudopotential multicomponent model

The pseudopotential multicomponent model is widely
used because of its mesoscopic nature and simplicity.
This model can be used to simulate single-phase (liquid-
liquid) or multiphase (liquid-gas) flows. In this article,
both flow systems are considered, The dispersed droplet
(bubble) phase and the continuous fluid phase (suspend-
ing fluid) are represented by d and c, respectively. The
lattice Boltzmann equation for each component σ can be
given by [1]:

f
(σ)
i (x+ci∆t, t+∆t) = f

(σ)
i (x, t)+Ω

(σ)
i ∆t+S

(σ)
i ∆t (1)

where the Bhatnagar-Gross-Krook (BGK) collision oper-

ator Ω
(σ)
i is given by:

Ω
(σ)
i = −f

(σ)
i (x, t)− f

eq(σ)
i (x, t)

τm(x)
(2)

The equilibrium distribution function f
eq(σ)
i (x, t) is de-

fined by [71]:

f
eq(σ)
i (x, t) = ρ(σ)ωi

(
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u · u

2c2s

)
(3)

where ωi are discrete weights for velocity sets ci. In this
article, we utilize D2Q9 and D3Q19 velocity sets respec-
tively for 2D and 3D simulations. The speed of sound is
cs = 1/

√
3. The fluid density for each component ρ(σ),

the total fluid density ρ, and the barycentric velocity u
are defined by:

ρ(σ) =
∑
i

f
(σ)
i (x, t), ρ =

∑
σ

ρ(σ), (4)

and

u =
1

ρ

∑
σ

(∑
i

f
(σ)
i ci +

F
(σ)
tot ∆t

2

)
. (5)

To simulate the flow with a large viscosity ratio, the
system mixture relaxation time τm is used in this paper.
τm is defined by [72, 73]:

τm(x) =

∑
σ ρ

(σ)(x)ν(σ)

ρ(x)c2s
+

1

2
∆t. (6)

When the viscosity ratio is 1, the system mixture relax-
ation time reduces to the traditional relaxation time with
a constant value over the simulation domain. ν(σ) is the
kinematic viscosity for the σ component, and it is given
by:

ν(σ) = c2s(τ
(σ) − 0.5∆t) (7)

where τ (σ) is the relaxation time for the σ component.
The Guo forcing scheme is utilized to compute the

source term S
(σ)
i [1, 74]:

S
(σ)
i = ωi

(
1− ∆t

2τm(x)

)(
ci − u

c2s
+

(ci · u)ci
c4s

)
F

(σ)
tot

(8)

where F
(σ)
tot is the total force on each component σ, which

consists of four forces. They are respectively the gravita-

tional force F
(σ)
g , the inter-component interaction force

F
(σ)
inter, the intra-component interaction force F

(σ)
intra, and

the solid-fluid interaction force F
(σ)
s .

F
(σ)
tot = F (σ)

g + F
(σ)
inter + F

(σ)
intra + F (σ)

s . (9)

The gravitational force is given by:

F (σ)
g = ρ(σ)g. (10)

Two situations are considered in this paper, a low gravity
where droplets migrate, and get into contact but remain
mostly spherical in a similar way to a wet foam, and
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a strong gravity where droplets become polygonal in a
pattern analogous to a dry foam or a highly concentrated
emulsion [75, 76].

In the pseudopotential multicomponent model, the re-
pulsive interaction is applied between different compo-
nents to create the component separation:

F
(σ)
inter(x) = −ψ(σ)(x)Gσσ̃

∑
i

ωiψ
(σ̃)(x+ ci∆t)ci∆t

(11)
where ψ(σ)(x) is the pseudopotential density of the com-
ponent σ, and it can be given in many forms [1]. One
simple form of the pseudopotential density is ψ(σ)(x) =
ρ(σ)(x), and this form is used in all the single-phase
simulations throughout this paper. Another commonly
used form is ψ(σ)(x) = ρ0(1− exp(−ρ(σ)(x)/ρ0)), which
bounds ψ(σ) between 0 and ρ0 to avoid the appearance
of too large interaction, and this form is used in all the
multi-phase simulations throughout this paper. Gσσ̃ is
the interaction strength between different components,
and is chosen to be positive to ensure the repulsion be-
tween different components.

For a multiphase system, the intra-component inter-
action force is added to induce a density ratio between
different phases.

F
(σ)
intra(x) = −ψ(σ)(x)Gσσ

∑
i

ωiψ
(σ)(x+ ci∆t)ci∆t

(12)
where ψ(σ)(x) has same forms as in Eq. (11). Gσσ is
the interaction strength and it is negative to mimic the
attraction between elements of the same component.

For the boundary condition, the bounce-back method
[77–79] is usually used to achieve the no-slip boundary
condition. The wetting boundary condition is realized
by applying the pseudopotential interaction between the
fluid and the wall. A virtual density is given to the wall,
and the fluid-solid interaction force is given by:

F (σ)
s (x) = −Gσsψ

(σ)(x)
∑
i

ωis(x+ ci∆t)ψ
s(σ)ci∆t

(13)
where s(x) is a switch function, and its value is 1 for solid
nodes and 0 for fluid nodes. Gσs is the adhesive strength
between the fluid and the wall. ψs(σ) is the virtual solid
density for the component σ, which is a constant value.
One can change both Gσs and ψs(σ) to adjust contact
angles [80]. A recently developed curved boundary con-
dition for the pseudopotential flows is also used in this
paper, and details can be found in Wang et al. [7].

Originally, discrete weights ωi used in calculation of

F
(σ)
inter, F

(σ)
intra, and F

(σ)
s are the same as that in Eq. (3),

and it retains fourth-order isotropy of the interactions.
To reduce spurious currents and increase the stability of
the system, the calculation of the interactions can easily
be extended to eighth-order isotropy by including the
interactions with next-nearest fluid neighbors [81, 82]. At
the walls, next-nearest virtual solid neighbors are also
required to apply the wetting wall boundary condition
with eighth-order isotropy [7].

B. Non-coalescence of droplets in contact

A simple method is developed to prevent the coales-
cence of droplets in contact. In this method, all the
droplets must be assigned unique indexes throughout the
simulation. A pseudopotential-type repulsive force is ap-
plied at the region where droplets with different indexes
are in contact. We will see that with this approach,
the mass of each droplet is not perfectly constant, but
the material is exchanged between droplets in an anal-
ogous way to Ostwald ripening occurring in foam or in
suspensions [76]. Indeed, in the pseudopotential model,
the dispersed phase is partly miscible in the continuous
phase allowing material exchange between droplets. In
some situations this mass variation is unwanted and a
simple method to compensate for mass transfer is pro-
posed, by slightly adjusting the inter-component interac-
tion strength Gσσ̃ at the droplet region.

1. Droplet labeling

Here, we present algorithms to label all droplets with
unique color indexes. In the pseudopotential model, since
there is always miscibility between different fluids, we set
a minimum droplet density ρmin. When the density of
the droplet component at a node is above this minimum
value (ρ(d)(x) > ρmin), this node is considered inside the
droplet region, otherwise, it is considered inside the con-
tinuous fluid region. In this paper, the threshold value
is ρmin = 0.02 for all liquid-liquid simulations except
for the microfluidic simulations where ρmin = 0.05. For
all liquid-gas simulations, ρmin = 0.015. Two situations
should be considered for the droplet labeling. If the num-
ber of droplets does not change during simulation, only
the migration of the droplets should be considered. If
the droplet is leaving a LB node, the color index is set
to 0 when the discrete phase density goes below ρmin.
Contrarily, if a droplet is arriving in the LB node (x),
the discrete phase density ρ(d)(x) increases, and when
the density becomes larger than ρmin, the color index is
assigned to the one having the largest ρ(d) among the
first neighbors (4 in 2D and 6 in 3D). This algorithm is
simple, efficient, and easy to parallelize. As all droplets
are surrounded by a layer of 3 to 4 nodes of the continu-
ous phase, no inconsistency in the color indexing appears.
The second situation is when new droplets may appear.
A search algorithm should be implemented to check that
all non-continuous regions have different color indexes,
and if not, the color index of one of the regions must be
reassigned. Several algorithms, recursive or not, exist for
such a problem. One is proposed in appendix A. These
algorithms are generally complex, slow, and difficult to
parallelize.
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FIG. 1: The third and fifth layers of lattice neighbors of
the red node at the center for a 2D case.

FIG. 2: 2D illustration of the non-coalescence repulsion
at the interface node x (filled red circle) when two

droplets are in contact. The red circles denote droplet
nodes. The blue squares denote suspending fluid nodes.

2. Non-coalescence repulsion

To prevent droplets in contact from merging, the non-
coalescence repulsion is applied at the contacting inter-
face region. Here we only demonstrate how to apply the
non-coalescence repulsion in 2D for simplicity, but it can
be easily extended to 3D as well. For each node at droplet
diffuse interfaces, we search for its midrange neighbors to
find the nodes located inside neighboring droplets with
different indexes, and then pseudopotential-type repul-
sions are applied between them. In this work, we do
not search for all neighbors, instead, only one layer of
midrange neighbors (third or fifth layer) is searched in
order to save computational cost, and it is enough to sim-
ulate stable suspensions (see Sec. III A). Figure 1 shows
the two midrange layers used in this paper. The third
layer contains all nodes with a distance 2

√
2, 3, or

√
10

to the center node. The distance for the fifth layer is 5,

√
26, or

√
29. Figure 2 illustrates the non-coalescence re-

pulsion applied at the interface node x (filled red node)
when two droplets are detected in contact. The red cir-
cles denote droplet nodes. The blue squares denote con-
tinuous fluid nodes. For the node x, its third layer of
neighbors is searched, and three droplet nodes labeled
with a different index are found. Thus, three repulsions
are applied to the droplet phase at the node x. The total
non-coalescence repulsion at the node x can be given as
follows.

F (d)
rep(x) = −ψ(d)(x)Grep

∑
i∈X

liψ
(d)(x+ ci∆t)ci∆t (14)

where Grep is the strength of the repulsion. ci are dis-
crete velocity sets for third layer of neighbors. Domain
X contains all the nodes with a different droplet index on
the third layer. li are the repulsion weights for velocity
sets ci, and they may be given in many forms. In this
paper, it is given by:

li =
1

|ci∆t|3
. (15)

This choice is made to compensate for the difference in
velocity length |ci|, where a larger |ci| corresponds to
a smaller li, ensuring that the non-coalescence repulsion
from each neighbor is appropriately weighted. We have
found that using a constant value for all li also leads
to a stable suspension but with a slightly higher mass
transfer.

3. Control of mass transfer

Although the method described above can suppress
the droplet coalescence, the mass of each droplet is not
perfectly constant, but material is exchanged between
droplets in an analogous way to Ostwald ripening occur-
ring in foams or in suspensions [76]. Indeed, in the LB
pseudopotential model, the discrete phase is partly mis-
cible in the continuous phase allowing material exchange
between droplets. In some situations this mass varia-
tion is unwanted. To solve this, we propose to slightly
adjust the inter-component interaction strength Gσσ̃ at
each time step: when a droplet loses mass, we slightly
increase Gσσ̃ in the droplet region to acquire the mass of
droplet component dissolved in the suspending fluid and
vice versa. The slight change on Gσσ̃ at node x is given
by:

∆G(x) = k

(
1− m(I(x))

mref (I(x))

)
(16)

where mref (I(x)) is the constant reference mass of the
droplet labeled with index I(x) and m(I(x)) is the in-
stantaneous mass of the droplet. k is the mass control
strength, it is a simple scalar that controls the magnitude
of ∆G.
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The pseudopotential inter-component interaction is
thus modified as follows.

F
(σ)
inter(x) =− ψ(σ)(x)(Gσσ̃ +∆G(x))

∑
i

ωi

× ψ(σ̃)(x+ ci∆t)ci∆t.

(17)

III. NUMERICAL RESULTS

A. Model stability validation

The objective of this test is to evaluate the stabil-
ity of the proposed non-coalescence method by simu-
lating confined highly concentrated suspensions (HCS)
with size distributions under both low and high gravita-
tional forces. We first test confined HCS with unit den-
sity and viscosity ratios and perform a parameter study
(Sec. III A 1). Then, we show the effectiveness of the
proposed non-coalescent method in simulating confined
HCS with a viscosity ratio of around 41 (Sec. III A 2) and
a density ratio of around 10 (Sec. III A 3).

1. Size distribution and control parameter

FIG. 3: The initialization of confined HCS where
droplets with the same radius have the same color. All

units are in lattice units.

To launch a confined HCS simulation, we choose a
lattice system with Nx × Ny = 560 × 560 (in lattice
units). The bounce-back boundary condition [77–79] is
applied in all directions, and the wall is completely non-
wetting to the droplet phase and completely wetting to

the continuous phase. The interaction strength between
different components is Gσσ̃ = 4. The viscosity (ν(σ))
is 1/6 for both components, resulting in a uniform τm
value of 1 throughout the simulation domain. Initially, 16
droplets are placed equidistant in the computational do-
main with 3 radii (50∆x, 60∆x, and 70∆x), and droplets
with the same radius are represented by the same color
(see Fig. 3). Inside the droplets, the initial fluid den-
sities are ρ(d) = 1 and ρ(c) = 0.013, and the opposite
densities for the outside of the droplets. We first let
the droplets relax for 1 × 104 time steps, enabling the
droplet masses to reach equilibrium with slight devia-
tions from their initial values. Then a gravitational force
is introduced in the upward vertical direction, acting on
the dispersed droplet phase. Both high [g = 3 × 10−5

(in lattice unit)] and low [g = 2× 10−6 (in lattice unit)]
gravities are used in simulations. We also investigate the
cases with (k > 0) and without (k = 0) mass control. In
the case of mass control, the reference masses (mref ) are
chosen as the droplet masses at t = 104∆t. The third
layer non-coalescence repulsion is employed to prevent
droplets from merging.

(a) Low gravity, k = 0 (b) High gravity, k = 0

(c) Low gravity, k = 20 (d) High gravity, k = 20

FIG. 4: Confined HCS with the unit viscosity and
density ratio between the dispersed and continuous

phases. In all cases, Grep = 5. In (a) and (c),
g = 2× 10−6 (in lattice unit). In (b) and (d),

g = 3× 10−5 (in lattice unit). In (a) and (b), there is no
mass control (k = 0). In (c) and (d), the mass control

strength k = 20.

Figure 4 shows confined HCS obtained at t = 3×106∆t
with the non-coalescence repulsion strength Grep = 5. In
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Fig. 4(a) and Fig. 4(c), droplets in contact remain spheri-
cal in shape since low gravity is applied, while in Fig. 4(b)
and Fig. 4(d), droplets are strongly deformed and orga-
nized like a dry foam due to the high gravity. To quanti-
tatively show the mass transfer between droplets without
[Fig. 4(a) and Fig. 4(b)] and with [Fig. 4(c) and Fig. 4(d)]
mass control, we plot the evolution of normalized masses
of droplets A and B in Fig. 5, where droplets A and B
(see Fig. 4) correspond to the droplets with the highest
normalized mass (mmax/m

ref
max) and the lowest normal-

ized mass (mmin/m
ref
min), respectively, after running sim-

ulations for 3× 106 time steps, which is sufficiently long
for the suspensions with mass control to reach a stable
regime. Figure 5 shows that for both low gravity and high
gravity cases with mass control (k = 20), droplet masses
remain almost constant throughout simulations. How-
ever, for the low gravity case without mass control, there
is mass change throughout the simulation and reaching a
maximum of around 20% at the end. For the high gravity
case without mass control, there is a sharp mass transfer
at the initial stage when droplets are moving upwards
rapidly due to the high gravity. Then the suspensions
become stable and there is no mass exchange.

(a) Low gravity (b) High gravity

FIG. 5: Normalized masses of droplet A (mmax/m
ref
max)

and droplet B (mmin/m
ref
min) with respect to t.
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FIG. 6: The mean absolute relative error of the droplet
masses at t = 3× 106∆t with respect to (a) the

non-coalescence repulsion strength Grep and (b) the
mass control strength k.

We then study the influence of the non-coalescence re-
pulsion strength Grep [Fig. 6(a)] and the mass control

strength k [Fig. 6(b)] on mass transfer. The y-axes of
both figures are kept identical to facilitate comparison.
The mean absolute relative mass difference, defined as

Eav =
1

16

16∑
i=1

∣∣∣(mi −mref
i )/mref

i

∣∣∣ (18)

at t = 3× 106∆t, is used as a measure of mass transfer.
The non-coalescence repulsion strengthGrep is tested in a
confined HCS system without mass control, and its value
ranges from 3 to 6. This range is determined to ensure
that Grep is large enough to prevent coalescence in the
high gravity case while avoiding system instability due
to excessively large values. Figure 6(a) shows that mass
transfer is not very sensitive to the value of Grep. The
errors in low gravity cases are higher compared to those
in high gravity cases. This is because for low gravity
cases, there is mass transfer throughout the simulation
and the suspensions do not have a stable regime, while
for all high gravity cases, the suspensions rapidly reach a
stable regime and mass transfer stops quickly. The mass
control strength k is studied in a system with Grep = 5.
The range of k is set from 0 to 50, considering that exces-
sively large k values lead to suspension instability, while
negative k values accelerate mass transfer. Figure 6(b)
shows that in the absence of mass control (k = 0), the
mean error of mass is around 5% for the low gravity case
and 1.5% for the high gravity case. The error decreases
dramatically to around 0.03% for the low gravity case
and 0.2% for the high gravity case when k is increased to
10. Further increase of k continues to reduce the error.
Remarkably, when k is increased to 50, the error is re-
duced to 0.01% for the low gravity case and 0.06% for the
high gravity case ensuring an almost null mass transfer
between droplets.

2. Viscosity ratio

In order to demonstrate the ability of the non-
coalescence method in simulating stable confined HCS
with a high viscosity ratio, we conduct a new test case
using the same configurations as described in Sec. IIIA 1,
except for the viscosity ratio. In this test, we set ν(d) =
1/600 and ν(c) = 1/6. By computing the mixture relax-
ation time τm(x) through Eq. (6) at each time step, we
obtain an effective viscosity ratio of approximately 1/41
between the dispersed phase and the continuous phase,
which is large enough to model real microfluidic emul-
sions. The mass transfer, in this case, is equivalent to
the case with unit viscosity and density ratios, and the
implementation of the mass control scheme reduces it
to almost zero. Figure 7 shows the viscosity contours
of confined HCS under low gravity [Fig. 7(a)] and high
gravity [Fig. 7(b)] at the stationary regime with mass
control (k = 20). The mixture viscosity is approximately
0.164 in the continuous phase region and 0.004 in the
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FIG. 7: The viscosity contours of confined HCS
obtained at the stationary regime. The viscosity ratio

between the dispersed and continuous phases is
approximately 1/41, and the density ratio is unity.
Both cases have mass control with k = 20. (a) Low

gravity g = 2× 10−6 and (b) high gravity g = 3× 10−5.
All units are in lattice units. See Videos 1 and 2 in

Supplementary Material [83].

dispersed phase region. At droplet interfaces, there is a
smooth transition of viscosity.

3. Density ratio

The non-coalescence method is also tested in a liquid-
gas system. Due to the stability issue of the pseudopo-
tential multicomponent model with a very high density
ratio, we use a density ratio of around 10 in this test.
We adopt similar configurations as Sec. III A 1 with a few
modifications. In this test, we set Gσσ̃ = 3.5 to induce
the separation of different components and Gσσ = −6
within the continuous-phase component, which leads to
the phase separation. The initial fluid densities are
ρ(d) = 0.27 and ρ(c) = 0.0041 inside the bubble, and
ρ(d) = 0.0087 and ρ(c) = 2.91 outside the bubble. A low
gravity [g = 2×10−5 (in lattice unit)] and a high gravity
[g = 2×10−4 (in lattice unit)] are applied to the dispersed
phase. We find that the third layer non-coalescence re-
pulsion is not sufficient to prevent bubbles from merg-
ing, even though with a large repulsion strength Grep.
To solve this problem, we employ the fifth layer repul-
sion, which allows the repulsion to be applied to more
nodes at contacting interfaces. The repulsion strength
Grep is set to 15. The mass transfer in this case is faster
than in the case of unit viscosity and density ratios, but
the mass control scheme still reduces it to almost zero.
Figure 8 shows the density contours confined HCS (the
density ratio is approximately 10) obtained at the sta-
tionary regime with mass control (k = 20).

B. From highly concentrated suspensions toward
foams

The objective of this work is not to perform an exten-
sive study of foams, but to show how the newly proposed

FIG. 8: The density contours of confined HCS obtained
at the stationary regime. The density ratio between the
dispersed and continuous phases is approximately 1/10,

and the viscosity ratio is unity. (a) Low gravity
g = 2× 10−5 and (b) high gravity g = 2× 10−4. All

units are in lattice units. See Videos 3 and 4 in
Supplementary Material [83].

model can simulate realistically foams and HCS. 2D and
3D foams and HCS are studied and typical properties of
like yield stress and visco-elasticity are put in evidence.
As discussed in Sec. III A 3, with this simple LB model,
a modest density ratio of around 10 is obtained, far from
the density ratio of a real foam which is around 1000.
For simplicity, we nevertheless call these systems foams,
while for a density ratio of 1, the name Highly Concen-
trated Suspensions is also used.

To create a realistic polydisperse foam before generat-
ing any flow, the following procedure is used. First, a
simple regular pattern made of cells filled with the dis-
continuous phase and walls with the continuous phase is
generated (see Fig. 9, t = 0). The thickness of the cell
walls is chosen to control the volume ratio of the discrete
to the continuous phases, allowing a continuous transi-
tion from a wet foam to a dry foam (see Fig. 10). Each
cell is numbered and associated with a volume that is ran-
domly generated. The sizes of the cells are uniformly dis-
tributed between dmin and dmax such that dmax=2dmin

and such that the total surface fraction in 2D and the
volume fraction is equal to Fd, the wanted fraction of the
discrete phase. The initial volume of each cell is then al-
lowed to relax to its final volume. Two relaxation proce-
dures have been tested. The first procedure uses the mass
control method proposed in Sec. II B 3. This method is
rather slow, typically 106 LB time steps, since it uses the
natural miscibility of each component of the LB pseu-
dopotential model and cells can only exchange material
that has to diffuse through the continuous phase. In the
second method, the node densities of each cell are multi-
plied by a factor (1 + ε (V (i)− Vt(i)) /V (i)) where Vt(i)
and V (i) are the instantaneous and final volume of the
ith cell respectively. ϵ is a factor chosen small enough
such that the simulation is stable during the volume re-
laxation. With this procedure, the polydisperse foam is
obtained in typically 15000 time steps (Fig. 9 and Video
5 in Supplemental Material [83]). After relaxation, the
mass of each cell is controlled to keep all volumes un-
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t=0 t=2000

t=4000 t=15000

FIG. 9: Relaxation of a HCS to obtain a droplet size
distribution. Time is expressed in the LB time step.
The continuous phase is colored in blue, the discrete

phase is colored in a random mixture of red and green.
The domain is a lattice of 1000× 1000 and 100 cells

(bubbles) are generated. See Video 5 in Supplementary
Material [83].

changed using the mass control method of Sec. II B 3.

To allow the foam to flow, the periodic boundary con-
dition is chosen in the horizontal directions (in 2D and
3D), and no-slip boundary conditions for the top and
bottom walls. The partially saturated method is applied
at the top and bottom walls, but as they are parallel to
the lattice and placed equally spaced between two LB
nodes, this simplifies to fullway bounce-back. During
the relaxation of the foam, the wall surface properties
are such that they equally attract each phase and as a
consequence, the contact angle of all interfaces is nearly
90◦.

When the initial relaxation is finished, gravity is ap-
plied horizontally to induce a flow in the foam. To pre-
vent experimentally a slip of the foam at the wall, a usual
technique is to use grooved walls with grooves having a
size comparable to that of the bubbles [84]. Numerically,
this implies complex boundary conditions, and a simpler
method is used. The wall surface properties of each solid
node are modified such that the densities of both phases
are equal to the ones of the closer fluid node. As can
be seen from Videos 6 to 9 (see Supplemental Material
[83]) or by comparing Figs. 9 and 10, the layers of cells
in contact with the wall do not slip at all.

1. From wet to dry

In this first series of 2D simulations, the influence of
the volume fractions of the discrete Fd and continuous Fc

phases is highlighted. Fd is in the range [0.71; 0.92] and
Fc = 1− Fd in the range [0.08; 0.29]. As the initial den-
sity and viscosity ratios are equal to one, the system is a
Highly Concentrated Suspension. Figure 10 shows 4 typ-
ical HCS of increasing discrete volume fraction where the
geometry of the discontinuous phase evolves from round
shapes to polygonal cells.

Fd = 0.71 Fd = 0.8

Fd = 0.9 Fd = 0.92

FIG. 10: Examples of HCS flowing in a channel, four
dispersed phase volume fractions are considered, from
Fd = 0.71 to 0.92. Pictures are taken when the flows

have reached a stationary regime t/t0 ≃ 0.3. See Videos
6 and 7 in Supplementary Material [83].

A gravity equal to g = 1.5 10−6 (in lattice unit) is ap-
plied horizontally towards the right on both phases in
Fig. 10. For the 3 lowest volume fractions of the dis-
crete phase, a flow is obtained, while for Fd = 0.92, the
applied force is not strong enough and after a few oscil-
lations, the system remains frozen (see Videos 6 and 7 in
Supplemental Material [83]).
Figure 11 shows the time evolution of the HCS mean

velocity for various continuous phase volume fractions
Fc. Time and velocity are normalized using the equiv-
alent single-phase flow whose mean velocity evolves like
v0(1−exp(−t/t0), where v0 is the stationary mean veloc-
ity and t0 is the typical time of flow establishment. As
expected, higher is the continuous phase volume fraction
Fc, higher is the mean velocity. Nevertheless, even for
volume fraction as large as Fc ≃ 30%, the mean veloc-
ity remains small, around 10% of that of the equivalent
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FIG. 11: Time evolution of the mean velocity for
different continuous-phase volume fractions Fc and a
gravity g = 1.5 10−6. v0 is the mean velocity of the

equivalent single-phase flow.

single-phase flow.
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FIG. 12: Mean velocity versus continuous phase volume
fraction Fc. The applied gravity is g = 1.5 10−6, and v0
is the mean velocity of the equivalent single-phase flow.

Figure 12 reports the stationary mean velocity as a
function of the continuous phase volume fraction. The
curve shows a threshold around Fc = 0.08 where no flow
is obtained for the applied gravity (g = 1.5 10−6). This
confirms the yield stress nature of HCS and foam [76].

The yield stress nature of the HCS can also be appre-
hended from the velocity profiles presented in Fig. 13.
All velocity profiles present a plug flow at the center of
the channel. In a Poiseuille flow, the highest shear is at
the side walls while the shear decreases towards the cen-
ter of the channel to be exactly null at the center-line.
The widths of the plug flows increase with decreasing Fc,

-0.01
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0.04

0.05

0.06

0.07

0.08

0 0.2 0.4 0.6 0.8 1

v
/v

0

0.17
0.13
0.1

0.24
0.2

Fc = 0.29

y/H

FIG. 13: Velocity profiles for different continuous phase
volume fractions Fc. The applied gravity is g = 1.5 10−6

and v0 is the center-line velocity of the equivalent
single-phase flow.

indicating an increase of the yield stress with the volume
fraction of the discontinuous phase. This can be seen in
Fig. 10 where the cells near the top and bottom walls
are stretched and elongated while in the center of the
channel, the cells are more circular for a wet case, and
polygons are more “regular” for a dry HCS.

2. 2D and 3D flows

0

0.01

0.02

0.03

0.04

0.05

0 0.1 0.2 0.3 0.4 0.5

t/t0

1.75 10−6

1.5 10−6

1.25 10−6

1 10
−6

g = 2 10
−6

v
/v

0

FIG. 14: Time evolution of the mean velocity for
different applied gravity g and a continuous phase

volume fraction of Fc = 0.1. v0 is the mean velocity of
the equivalent single-phase flow for g = 1.5 10−6.

The effect of the applied driving force is now consid-
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ered. The previous HCS with a discontinuous phase vol-
ume fraction of Fd = 0.9 is used with increasing grav-
ity force ranging from g = 10−6 to 2 10−6 (expressed
in lattice units). Figure 14 shows the time evolution of
the flow mean velocity for the various gravity forces that
are applied instantaneously at t = 0. Time and velocity
are reduced like in the previous section. Indeed, as the
equivalent single-phase velocity depends on the applied
gravity, the case with g = 1.5 10−6 is used as a reference.
Two different behaviors are obtained, above a threshold
(g > 1.25 10−6), a flow is obtained and stronger is the
gravity force, larger is the mean velocity. For lower ap-
plied forces, after a transient phase due to a reorganiza-
tion of the HCS, the mean velocity oscillates and decays.
For g = 1.25 10−6, a nice sinusoidal oscillation is obtained
indicating that the applied force is very near the thresh-
old and confirming the visco-elastic nature of HCS and
foams.

Larger gravity forces have been tested, but they rapidly
induce the breakage of cells near the endwalls. For the
case g = 210−6 in Fig. 14, the simulation was stopped at
t/t0 = 0.5 since for longer times, cell breakages happen
and the mean velocity goes on increasing since a HCS
with smaller cells flows more easily.

0

0.01

0.02

0.03

0.04

0 0.2 0.4 0.6 0.8 1

v
/v

0

1.75 10−6

1.5 10−6

y/H

g = 2 10
−6

FIG. 15: Velocity profile for different applied gravity.
The continuous phase volume fraction is Fc = 0.1. v0 is
the center-line velocity of the equivalent single-phase

flow for g = 1.5 10−6.

Figure 15 shows the velocity profiles for the various
applied gravity forces that induce a flowing HCS. As ex-
pected, stronger is the gravity force, larger is the veloc-
ity. The yield stress nature of the HCS can again be
apprehended from the plug flow at the center of the flow
whose width reduces when the applied gravity increases.
More surprising is the negative velocities obtained near
the side walls. To our knowledge, such negative velocities
have never been reported in flowing HCS nor in flowing
foams. To understand the origin of these negative veloc-

ities, the velocity vector field near a side wall (y = 0) is
presented (Fig. 16) and shows a recirculation flow inside
the next wall cells. This LBM model allows to capture
the flow inside each cell but also the flow in the continu-
ous phase that separate the cells.

 0.2  0.25  0.3  0.35  0.4
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

y
/H

x/H

FIG. 16: Velocity field near the side wall for a HCS
with Fc = 0.1 and a gravity g = 1.75 10−6.

FIG. 17: Examples of 3D HCS flowing in a channel with
an applied gravity g = 1.5 10−6 for two lattice sizes: (a)
a 6003 lattice and (b) a 300× 300× 600 lattice. See
Videos 8 and 9 in Supplementary Material [83].

Figure 17 presents the equivalent 3D flowing HCS for
two lattice sizes, (a) a 6003 lattice and (b) a 300× 300×
600 lattice. We recognize the usual structure of 3D HCS
and foams including bubbles, faces, edges (plateau bor-
ders) and vertices [76]. To generate a flowing 3D HCS,
the same procedure as in 2D is applied: relaxation of
the bubble volumes such that dmax = 2dmin (see Video
X in S.M.), coating of the top and bottom wall to pre-
vent any slip and application of a horizontal gravity force
g = 1.5 10−6 on both phases at t = 0 that induces a
flow thanks to the x-y periodic boundary conditions (see
Videos Y and Z in S.M.). The mean cell size is around 60
lattice nodes giving 1000 cells for the large lattice (6003)
and 250 cells for the small one (600×300×300).
Figure 18 shows the time evolution of the flow mean
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FIG. 18: Time evolution of the mean velocity for
different applied gravity g and for the two studied

lattice sizes. v0 is the mean velocity of the equivalent
single-phase flow for g = 2.5 10−6.

velocity for various gravity forces and the two studied
lattice sizes. Time and velocity are reduced using the
equivalent single-phase flow. The large lattice (6003) is
only simulated for a reduced time (t/t0 ≃ 0.1) since it re-
quires about 300 Gbytes of memory and has run for two
weeks on a 48-core computer. It nevertheless shows that
the smaller lattice gives very close results compared to
the large one. Like in the 2D case, a threshold is obtained
in the applied gravity force below which no flow occurs
and only decaying oscillations are observed, confirming
the yield stress viscoelastic nature of a HCS. When grav-
ity is increased, a flow occurs and as expected, larger is
the gravity, larger is the flow. Velocity profiles are not
reported since they are very similar to 2D cases with a
central plug flow and negative velocities near the walls.

3. Changing density, toward a real foam

As already stated, the used multiphase LBM model
is too simple to obtain a density ratio comparable to
those observed experimentally in real foams. A modest
density ratio of 10 is obtained allowing to show some
differences between a HCS and a foam. Flows of foams
with a density ratio of 10 have been simulated and they
give velocity profiles and video extremely similar to HCS
with no density ratio. As a consequence, they are not
reported here.

Differences are observed when comparing T1 transfor-
mations during the relaxation process in the foam and in
the HCS [Figs. 19(a)-(f)]. The previous 2D 1000×1000
lattice with 100 cells is used again, but with 4 walls that
are non-wetting to the discrete phase. The continuous
phase volume fraction is Fc = 0.1. The initial square
lattice of cells rapidly relaxes to an irregular lattice (See

Video XX and YY in Supplementary Materials). The
sizes of the cells are modified extremely slowly like in
Sec. III B to reach dmax = 2dmin, but instead of previ-
ously 15000 time steps, the relaxation is performed in
t0 = 5105 time steps. This relaxation period is cho-
sen long enough such that T1 transformations are dis-
tinguishable over time. A relaxation rate is computed
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(g) ρc/ρd = 1
ρc/ρd ≃ 10

FIG. 19: Example of T1 transformations (indicated by
thick arrows) in a foam (a) to (c) and in a HCS (d) to
(f), see Videos XX and YY in Supplementary Materials.
(g) Time evolution of the relaxation rate for the foam

and the HCS.

according to

R =
1

Nδt

N∑
i

∣∣fdi (t+ δt)− fdi (t)
∣∣ (19)

where fdi (t) is the fraction of the discrete phase at the
node i at time t. The sum is made over all the N lattice
nodes and δt, the time between two pictures, is taken
equal to δt = 1000 time steps. R measures the rate of
modification between two systems distant of 1000 time
steps. Figure 19(g) reports the time evolution of the
relaxation rate where the relaxation time t0 is used to
rescale the time axis. After a rapid relaxation occurring
before t/t0 ≃ 0.2, R decays exponentially but with T1
transformations that are visible as peaks in the relaxation
rate curve. The peaks indicated by arrows correspond to
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the T1 transformations illustrated in Fig. 19(a)-(f). T1
transformations occur two to three times more rapidly
for a foam with a density ratio of 10 compared to the
HCS without a density ratio. Indeed, for T1 transforma-
tion occurring in foam, liquid films are reorganized while
the gas in each bubble plays no role. In a HCS, the liq-
uid in the adjacent cells is moving as well, slowing down
the process due to inertia and the liquid viscosity. Even
though a modest density ratio of 10 is achieved with this
LB multiphase model, and differences in T1 transforma-
tion in foams and HCS can be put in evidence. These few
examples demonstrate how efficient is this LB pseudopo-
tential model with the proposed non-coalescent scheme
to study foams and HCS.

C. Microfluidic simulation

FIG. 20: The geometry of the microfluidic flow-focusing
device. All units are in lattice units

The proposed non-coalescence method is also applied
to model concentrated oil/water emulsions through a mi-
crofluidic flow-focusing device, whose geometry is shown
in Fig. 20. This geometry is the same as the one used by
Du et al. [64], and it has a dispersed inlet, two contin-
uous inlets that are symmetric, and an enlarged outlet.
Droplet formation in this channel occurs through the pe-
riodic pinch-off of the dispersed phase by the continuous-
phase flow. This pinch-off process is influenced by the
combined effects of interfacial tension, viscous forces, and
inertial forces. In the simulations, we adopt a 3D lat-
tice system with Nx × Ny × Nz = 400 × 90 × 30 (in
lattice units). Since the channel has a curved geome-
try, the recently proposed improved partially saturated
method [7], which is a curved boundary condition for the
LB pseudopotential flows, is used to simulate the wetting
wall boundary condition. At the dispersed inlet, the wall
is completely wetting to the dispersed phase and com-
pletely non-wetting to the continuous phase. At other
parts of the channel, the wetting condition is the reverse.
The diameter of the inlet channels is 30∆x, and each lat-
tice spacing ∆x responds to 10/3 µm in the experiment.

The interaction strength between different components
is Gσσ̃ = 4. To achieve a viscosity ratio ϕν consistent
with the experiment, we set the viscosity ν(d) = 0.479
and ν(c) = 0.087, which gives an effective viscosity ratio
ϕν of around 5.1 between the dispersed and continuous
phases [64]. At the three inlet layers, we impose the
Poiseuille velocity profile. Outlet boundary conditions
are complex for a two-phase flow and there is a lot of
ongoing work on that. For simplicity, we impose at the
outlet the velocity profile obtained for a single phase flow
and simply adjust the total flow rate to be exactly equal
to the inlet flow rate. Two layers of ghost nodes next to
the outlet layer are updated at each time step in order to
calculate the pseudopotential interaction at the outlet.
The ghost densities are given by solving the convective
boundary condition with the average velocity at the out-
let layer [85]. With this procedure, we notice that the
movement of droplets leaving the numerical domain is
almost not perturbed and the previous droplets are not
perturbed at all (see Video 12-15 in Supplementary Ma-
terial [83]). We set non-coalescence repulsion strength
Grep = 5, and there is no need to apply mass control
since droplets leave the short outlet channel quickly and
mass transfer between droplets is almost negligible.

Figure 21 presents concentrated emulsions obtained
from experiments and 3D simulations. Snapshots at the
x-y midplane [Fig. 21(b) and Fig. 21(e)] are compared
with experimental results [Fig. 21(a) and Fig. 21(d)]. Ad-
ditionally, 3D snapshots of dispersed droplets are shown
in Fig. 21(c) and Fig. 21(f) to better show the spatial
arrangement of droplets inside the channel. To numeri-
cally reproduce the experimental results, we ensure that
Reynolds numbers (Re = UD/ν) of the dispersed and
continuous inlet flows in our simulation match the val-
ues used in the experiments. This ensures that the flow
characteristics, such as the velocity and viscosity, are
consistent between the numerical and experimental se-
tups. Additionally, we also match the capillary num-
bers (Ca = ρνU/γ) of both the dispersed and contin-
uous phases to those used in the experiments. This
ensures that the interfacial tension effects and the rel-
ative importance of viscous and surface tension forces
are accurately represented in the simulation, allowing for
a meaningful comparison with the experimental results.
In Fig. 21(a)-(c), the concentrated emulsion is obtained
with Red = 0.21, Cad = 1.3 × 10−2, Rec = 0.45, and
Cac = 1.08 × 10−3. The droplets maintain spherical
shapes and have a relatively large size. They are in close
contact with each other and organized in a staggered way.
In Fig. 21(d)-(f), Rec and Cac are, respectively, increased
to 1.51 and 3.59 × 10−3 while Red and Cad remain the
same. As a result, the droplet size decreases, which is at-
tributed to the higher viscous shear force exerted by the
continuous-phase flow, which makes it easier to pinch off
the droplets.

To further demonstrate the effectiveness of the pro-
posed non-coalescence method in simulating microfluidic
concentrated emulsions, we adopt the same microfluidic
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FIG. 21: Comparison of the concentrated emulsions obtained by the experiments [(a) and (d)] and the 3D
simulations [(b), (c), (d), and (f)]. In (a)-(c), Red = 0.21, Cad = 1.3× 10−2, Rec = 0.45, and Cac = 1.08× 10−3. In
(d)-(f), Red = 0.21, Cad = 1.3× 10−2, Rec = 1.51, and Cac = 3.59× 10−3. See Videos 12 and 13 in Supplementary

Material [83].

FIG. 22: Highly concentrated emulsions obtained in the 3D microfluidic simulations with ϕν ≈ 1/13. (a)
Cad = 1.06× 10−3, Cac = 1.02× 10−3, and the flow rate ratio ϕQ = 20/3. (b) Cad = 1.06× 10−3,

Cac = 2.04× 10−3, and ϕQ = 10/3. See Videos 14 and 15 in Supplementary Material [83].

channel to simulate a system where the continuous phase
has a significantly higher viscosity compared to the dis-
persed phase (ϕν ≈ 1/13). This is equivalent to a system
where oil is the continuous phase. This large viscosity
contrast enables the continuous phase to readily pinch

off the dispersed phase even at relatively low flow rates.
Conversely, the dispersed phase exhibits a higher flow
rate, causing the droplets to occupy a larger portion of
the channel and become closely packed, even with defor-
mations in their shapes. Figure 22 shows 3D snapshots
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of obtained highly concentrated emulsions. In Fig. 22(a),
the flow rate ratio between the dispersed and continuous
phases is ϕQ = 20/3. The droplets are closely packed
in a single row, almost completely filling the channel.
They exhibit strong deformations, resembling cubic-like
shapes. We then maintain the flow rate of the dispersed
phase and decrease the flow rate of the continuous phase
by half (ϕQ = 10/3), resulting in the formation of smaller
droplets self-assembling into two rows [Fig. 22(b)]. The
droplets deform into triangular shapes since they are in
close contact.

IV. CONCLUSION

To conclude, we have proposed a droplet non-
coalescence method based on the LB pseudopotential
model. By assigning unique indexes to each droplet and
applying pseudopotential repulsion forces, we have effec-
tively prevented droplet coalescence. In situations where
mass exchange occurs, we have introduced a mass control
method to compensate for such transfers. We conducted
simulations of confined HCS with different viscosity and
density ratios under low and high gravitational forces to
evaluate the stability of the proposed non-coalescence
method. We have shown that the method can prevent
droplet coalescence, and stable suspensions can be ob-
tained when the mass control scheme is implemented.
The proposed non-coalescence method has been success-
fully applied to model flows of highly concentrated sus-
pensions, foams, and concentrated oil/water emulsions in
a microfluidic flow-focusing device. To reproduce the ex-
perimental results numerically, we matched Re and Ca
numbers in our simulations to that of the experimen-
tal setup. The simulation results show agreement with
experimental observations. Additionally, the method is
further validated by simulating a system with a large
viscosity contrast, where the continuous phase readily
pinches off the dispersed phase even at a low flow rate to
form highly concentrated emulsions. The obtained emul-
sions exhibit close packing of droplets and deformations
in their shapes. These findings demonstrate the effective-
ness of the non-coalescence method in simulating various
types of microfluidic concentrated emulsions.

ACKNOWLEDGMENTS

We would like to thank Dr. Jiupeng DU for perform-
ing microfluidic experiments. Centre de Calcul Intensif
d’Aix-Marseille University is acknowledged for granting
access to its high performance computing resources.

Appendix A: A droplet labeling algorithm

In the algorithm, D is the simulation domain. Iold is
the droplet index field for the previous time step t−∆t,
and I is the field of droplet indexes for the current time
step t. At the initial time step, unique indexes for all
droplets should be assigned to Iold, and then, Iold is
updated from I at the beginning of the labeling pro-
cess. Starting from Iold, we use the same indexes to label
droplets in I. As a result, the indexes for each droplet
remain constant throughout the simulation. However,
when new droplets are generated from the breakup, new
indexes will be assigned to them.

Algorithm 1 An algorithm to label each droplet with
a unique index for a 2D case

1: Iold ← I
2: I ← 0
3: isearch← 0
4: indexused← 0
5: searchtable← 0
6: indexmax←Max(Iold)
7: for each node (x, y) ∈ D do

8: if (Iold(x, y) > 0 & ρ(r)(x, y) ≤ ρmin) then
9: Iold(x, y)← 0

10: end if
11: if (Iold(x, y) > 0 & I(x, y) = 0) then
12: if (indexused(I(x, y)) = 0) then
13: index← Iold(x, y)
14: I(x, y)← index
15: isearch← isearch+ 1
16: searchtable(:, isearch)← (x, y)
17: indexused(I(x, y))← 1
18: else
19: index← indexmax+ 1
20: indexmax← index
21: I(x, y)← index
22: isearch← isearch+ 1
23: searchtable(:, isearch)← (x, y)
24: indexused(I(x, y))← 1
25: end if
26: while (isearch > 0) do
27: isearchold← isearch
28: m← searchtable(1, isearch)
29: n← searchtable(2, isearch)
30: if ((m+ 1, n) ∈ D) then

31: if (ρ(r)(m+ 1, n) > ρmin) then
32: if (I(m+ 1, n) = 0) then
33: I(m+ 1, n)← index
34: isearch← isearch+ 1
35: searchtable(:, isearch)←

(m+ 1, n)
36: end if
37: end if
38: end if
39: Repeat if statement from line 30 to 38 for

nodes (m− 1, n), (m,n+ 1), and (m,n− 1)
40: if (isearch = isearchold) then
41: isearch← isearch− 1
42: end if
43: end while
44: end if
45: end for
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