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(Dated: November 26, 2023)

This paper extends the partially saturated method (PSM), used for curved or complex walls, to
the lattice Boltzmann (LB) pseudopotential multicomponent (MC) model and adapts the wetting
boundary condition to model the contact angle. The pseudopotential model is widely used for
various complex flow simulations due to its simplicity. To simulate the wetting phenomenon within
this model, the mesoscopic interaction force between the boundary fluid and solid nodes is used
to mimic the microscopic adhesive force between the fluid and the solid wall, and the bounce-
back (BB) method is normally adopted to achieve the no-slip boundary condition. In this paper,
the pseudopotential interaction forces are computed with eighth-order isotropy since fourth-order
isotropy leads to the condensation of the dissolved component on curved walls. Due to the staircase
approximation of curved walls in the BB method, the contact angle is sensitive to the shape of
corners on curved walls. Furthermore, the staircase approximation makes the movement of the
wetting droplet on curved walls not smooth. To solve this problem, the curved boundary method
may be used, but due to the extrapolation process, most curved boundary conditions suffer from
massive mass leakage when applied to the LB pseudopotential model. Through three test cases, it is
found that the improved PSM scheme is mass conservative, that nearly identical static contact angles
are observed on flat and curved walls under the same wetting condition, and that the movement
of a wetting droplet on curved and inclined walls is smoother compared to the usual BB method.
The present method is expected to be a promising tool for modeling flows in porous media and in
microfluidic channels.

I. INTRODUCTION

After three decades of development, the lattice Boltz-
mann (LB) method has become an efficient and power-
ful tool to simulate fluid flows [1–4]. The LB method
is widely used in simulating multicomponent (MC) flows
[5]. Currently, there exist four categories of MC models:
the free-energy model [6–8], the color-gradient model [9–
12], the phase-field model [13–15], and the pseudopoten-
tial model [16, 17]. Among these models, the pseudopo-
tential model shows a great advantage due to the sim-
plicity of implementation. In the pseudopotential model,
the mesoscopic interactions of pseudopotentials (based
on component densities) are used to represent the micro-
scopic intermolecular interactions and the separation of
different components is a result of the mesoscopic repul-
sions.

One popular topic in the LB method is fluid-structure
boundary conditions. The bounce-back (BB) method
[18–20] is certainly the simplest and oldest boundary con-
dition method. This method is exactly mass-conserving,
and it leads to second-order accuracy when it is applied
to a flat wall. However, this method suffers from accu-
racy issues when the wall geometry is complex since it
uses a staircase to approximate curved walls. To over-
come this problem, several curved boundary condition
methods have been proposed. Based on the BB method,
Noble and Torczynski [21] proposed the partially satu-
rated method (PSM). They modified the collision oper-
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ators based on the coverage of the fluid and the solid at
the boundary nodes. This method is also exactly mass-
conserving. Compared to the BB method, it makes the
motion of fluid with complex boundary shapes smoother
[22]. This method is more efficient when dealing with
rest walls. While for moving walls, it is difficult to up-
date the solid fractions of the boundary nodes at each
time step. Bouzidi et al. [23] developed the interpolated
bounce-back (IBB) method to improve the BB method.
Their idea is to use linear or quadratic interpolation to
correct the BB process according to the location of the
wall. Their method can reach second-order accuracy for
complex boundaries. But it may cause problems when
the boundary is too narrow since there are not enough
fluid nodes to do the interpolation. Furthermore, because
of the interpolation process, the total mass in the system
is not conserved [24]. Another group of curved boundary
methods can be categorized as the ghost method [25–28].
The idea of the ghost method is to extrapolate the fluid
property at boundary fluid nodes to virtual solid nodes at
the boundary. The ghost methods are good at handling
complex rest boundaries if they are properly applied. For
moving boundaries, it is difficult to detect the position
of the boundary at each time step. Besides, due to the
extrapolation process, most of the ghost methods violate
mass conservation.

The study of wetting phenomena is another popular
topic in the LB method. Based on the BB method
and the pseudopotential model, several wetting bound-
ary methods were proposed to simulate the contact an-
gle. Martys and Chen [29] first used the interaction force
between fluid and adjacent solid nodes to mimic the ad-
hesive force between the fluid and the wall. By adjusting
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the fluid-solid interaction strength, different contact an-
gles can be obtained. Benzi et al. [30] developed the
virtual density method. They gave a constant virtual
density to the wall so that they can use two free pa-
rameters to adjust contact angles. According to Young’s
equation [31], Huang et al. [32] developed an equation
to approximate the contact angle using only interaction
strength and equilibrium densities. Huang et al. [33] also
simplified the virtual density scheme to have just one free
parameter. The solid-fluid interaction strength is exactly
the same as the fluid-fluid interaction strength, and one
can change the contact angle by adjusting the virtual wall
density. Different from previous methods, Li et al. [34]
proposed a method in which the virtual wall density is
not constant for the whole solid region, but has the same
value as the local fluid density. In their method, since the
virtual wall density is close to the local boundary fluid
density, the fluid-solid and the fluid-fluid interactions are
more consistent.

In this paper, we aim to extend the partially saturated
method (PSM) to the LB pseudopotential MC model and
adapt the wetting boundary condition to model the con-
tact angle. The fluid-fluid and the fluid-solid interactions
are computed with eighth-order isotropy since fourth-
order isotropy leads to the condensation of the dissolved
component on curved walls. The LB pseudopotential
model is widely applied to simulate the flows in porous
media and microfluidic channels where the flow behavior
is dominated by wetting phenomena [35–37]. Currently,
most wetting boundary condition schemes [29, 30, 32, 34]
are based on the BB method due to its mass-conserving
nature and simplicity. However, the staircase approx-
imation of the BB method is not accurate enough to
simulate the curved or complex walls of porous media
and microfluidic channels [36–38]. One solution to this
problem is to use a curved boundary condition. But
most of the aforementioned curved boundary methods
suffer from massive mass leakage when they are applied
to the LB pseudopotential model since the extrapolation
or the interpolation processes violate mass conservation
[39]. Hence, in this paper, we choose the partially satu-
rated method (PSM) which is a mass-conserving curved
boundary method. The rest of this article is organized as
follows. In Sec. II, we first review the original LB pseu-
dopotential MC model and then introduce our improved
PSM for the pseudopotential MC model. In Sec. III, we
conduct three test cases to compare the performance of
our improved PSM method and the wetting boundary
condition based on the BB scheme. Finally, the conclu-
sion and perspective are given in Sec. IV.

II. NUMERICAL MODEL

A. The LB pseudopotential MC model

Among the LB-based MC models, the pseudopoten-
tial MC model proposed by Shan and Chen [16, 17] is

frequently used due to its simplicity. In the pseudopo-
tential MC model, a repulsive force is introduced between
components to create the separation of different compo-
nents. There can be an arbitrary number (more than
1) of components. In this article, we only focus on the
study of the two-component model, and the two compo-
nents are represented by the red (r) and blue (b) colors.
The distribution function for each component σ is given
by the following discrete Boltzmann equation:

f
(σ)
i (x+ci∆t, t+∆t) = f

(σ)
i (x, t)+Ω

(σ)
i ∆t+S

(σ)
i ∆t (1)

where Ω
(σ)
i is the Bhatnagar-Gross-Krook (BGK) colli-

sion operator given by:

Ω
(σ)
i = −f

(σ)
i (x, t)− feq(σ)i (x, t)

τ (σ)
(2)

where τ (σ) is the relaxation time for the fluid σ. Through-
out this article, τ (σ) = 1. The kinematic viscosity of the
fluid σ is dependant on τ (σ) by ν(σ) = (τ (σ) − 0.5)/3 =

1/6. f
eq(σ)
i (x, t) is the equilibrium distribution function

defined by:

f
eq(σ)
i (x, t) = ρ(σ)ωi

(
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u · u

2c2s

)
(3)

where discrete weights ωi depend on velocity sets. In this
article, D2Q9 and D3Q19 are used respectively for 2D
and 3D simulations [40]. The speed of sound cs = 1/

√
3.

The fluid density for the component σ, the total fluid
density and velocity are defined by:

ρ(σ) =
∑
i

f
(σ)
i (x, t), ρ =

∑
σ

ρ(σ) (4)

and

u =
1

ρ

∑
σ

(∑
i

f
(σ)
i ci +

F
(σ)
tot ∆t

2

)
. (5)

The source term S
(σ)
i is calculated by Guo forcing

scheme [41]:

S
(σ)
i = ωi

(
1− ∆t

2τ (σ)

)(
ci − u

c2s
+

(ci · u)ci
c4s

)
F

(σ)
tot .

(6)

The total force on the σ component F
(σ)
tot is composed

of three parts. They are respectively the gravitational

force F
(σ)
g , the intermolecular interaction force F

(σ)
int , and

the solid-fluid interaction force F
(σ)
s :

F
(σ)
tot = F (σ)

g + F
(σ)
int + F (σ)

s (7)

where the gravitational force is given by:

F (σ)
g = ρ(σ)g. (8)
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In the pseudopotential model [16, 17], the repulsive
interaction is applied between components at adjacent
nodes:

F
(σ)
int (x) = −ψ(σ)(x)Gσσ̃

∑
i

ωiψ
(σ̃)(x + ci∆t)ci∆t (9)

where ψ(σ)(x) is the pseudopotential of the component σ,
and Gσσ̃ is the interaction strength between two compo-
nents. In this study, ψ(σ)(x) = ρ(σ)(x), and Gσσ̃ = 4.5.

To simulate the interaction between the solid wall and
fluid components, the no-slip boundary condition and the
wetting condition are required. The no-slip boundary
condition can be realized by the BB scheme [18–20]. For
the wetting condition, the adhesive force between fluid
nodes and their adjacent solid nodes should be consid-
ered. Martys and Chen [29] developed a simple method
to simulate this adhesion:

F (σ)
s (x) = −Gσsρ(σ)(x)

∑
i

ωis(x + ci∆t)ci∆t (10)

where s(x + ci∆t) is a switch function. Its value is 1
for solid nodes and 0 for fluid nodes. Gσs is the adhesive
strength between the fluid and the wall. Different contact
angles can be obtained by tuning Gσs.

Benzi et al. [30] proposed a virtual density scheme by
adding a virtual solid density to Eq. (10):

F (σ)
s (x) = −Gσsρ(σ)(x)

∑
i

ωis(x + ci∆t)ρ
s(σ)ci∆t

(11)
where ρs(σ) is the virtual solid density for the component
σ, which is a constant value. One can change both Gσs
and ρs(σ) to adjust contact angles. Huang et al. [33]
simplified the virtual density scheme by setting Gσs =
Gσσ̃. The contact angle is only controlled by ρs(σ). In
the rest of this study, the virtual solid density scheme
simplified by Huang et al. [33] is used.

Originally, discrete weights ωi used in calculation of

F
(σ)
int and F

(σ)
s are the same as that in Eq. (3), and it

retains fourth-order isotropy of the interactions. To re-
duce spurious currents and increase the stability of the
system, the calculation of the interactions can easily be
extended to eighth-order isotropy by including the in-
teractions with next-nearest fluid neighbors [42, 43]. At
the walls, next-nearest virtual solid neighbors are also re-
quired to apply the virtual density scheme with eighth-
order isotropy.

B. An improved PSM scheme for the LB
pseudopotential MC model

The BB method [18–20] is a widely used boundary
condition method because of its locality, efficiency, and

simplicity. However, when it is applied to complex sim-
ulation geometries, it has an accuracy problem since it
uses a staircase to approximate curved walls. Thus, No-
ble and Torczynski [21] proposed the partially saturated
method (PSM) to solve this problem. In the PSM, a lat-
tice boundary cell can be considered as pure solid, pure
liquid, or a mixture of the solid and the fluid (partially
saturated). The solid fraction depends on the solid cov-
erage of a cell. The LB distribution function for the com-
ponent σ is modified as:

f
(σ)
i (x + ci∆t, t+ ∆t) =f

(σ)
i (x, t) + (1−B(σ))Ω

f(σ)
i ∆t

+B(σ)Ω
s(σ)
i ∆t

+(1−B(σ))S
(σ)
i ∆t (12)

where Ω
f(σ)
i is the standard collision operator for fluid

nodes, and it has the same form as Eq. (2). The collision

operator for solid nodes is Ω
s(σ)
i , which can be written in

the following way:

Ω
s(σ)
i =(f

(σ)

i
(x, t)− feq(σ)

i
(ρ(σ),u))

−(f
(σ)
i (x, t)− feq(σ)i (ρ(σ),us)) (13)

where i is the opposite direction of i. u is the local fluid
velocity, and it is calculated the same way as Eq. (5).
At pure solid nodes, u = us where us is the velocity of
the solid boundary. In this study, since walls are static,
us = 0.

The solid weightB(σ) is dependant on the solid fraction
ε and the relaxation time τ (σ) :

B(σ)(x) =
ε(x)(τ (σ) − 0.5)

(1− ε(x)) + (τ (σ) − 0.5)
(14)

where the solid fraction ε value varies between 0 and 1.

The calculation of gravitational force does not change.
The pseudopotential interaction force is modified to in-
clude the fluid-fluid interaction at partially saturated
nodes:

F
(σ)
int (x) =−ρ(σ)(x)

∑
σ̃

Gσσ̃
∑
i

ωi(1− ε(x + ci∆t))

×ρ(σ̃)(x + ci∆t)ci∆t. (15)

The solid-fluid interaction force is proposed as:
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F (σ)
s (x) =

{
−ρ(σ)(x)Gσσ̃

∑
i ωin

(σ̃)ε(x + ci∆t)ρ(x + ci∆t)ci∆t if 0 < ε(x + ci∆t) < 1

−ρ(σ)(x)Gσσ̃
∑
i ωin

(σ̃)ε(x + ci∆t)ρ
sci∆t if ε(x + ci∆t) = 1

(16)

where both partially and pure solid walls interact with
the fluid. The partially solid density is approximated by
the multiplication of the local fluid density and the local
solid fraction: ε(x)ρ(x). The pure solid density ρs has a
constant value and depends on the average fluid density
at the boundary. The solid density consists of σ and σ̃
parts. n(σ) is the proportion of the solid density for the
σ part. n(σ) is between 0 and 1, and the summation of
two proportions is 1: ∑

σ

n(σ) = 1. (17)

In practice, after giving a value to the pure solid den-
sity ρs, one can tune the proportion parameter n(r) =
1−n(b) to generate the desired contact angle. For exam-
ple, when n(r) = 1 and n(b) = 0, the wall is completely
wetting for the r component; When n(r) = n(b) = 0.5,
the contact angle is approximately 90◦; When n(r) = 0
and n(b) = 1, the wall is completely non-wetting for the
r component. According to Young’s equation [31] and
inspired by Huang et al. [32], the obtained contact angle
θc can be approximated by:

cos(θc) ≈ n(r) − n(b). (18)

III. NUMERICAL RESULTS AND DISCUSSION

In this section, three test cases are conducted to com-
pare the performance of the BB virtual density and the
improved PSM schemes. For the improved PSM scheme,
the solid fraction at curved boundary nodes is calcu-
lated by the cell decomposition method [44]. The wetting
boundary conditions are chosen according to 11 groups
of values given in Table I. For the BB virtual density
scheme, we use the same wetting condition according to

this table since the improved PSM scheme reduces to
the BB virtual density scheme developed by Huang et al.
[33] by setting ε(x) = 1 for ε(x) > 0.5, and ε(x) = 0 for
ε(x) ≤ 0.5. In the following test cases, we only specify
the value of n(r) for simplicity, but the value of n(b) and
ρs are also the same as in Table I.

TABLE I: Different wetting conditions according to
different values of n(r), n(b) and ρs.

n(r) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n(b) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
ρs 1.05 0.8 0.7 0.68 0.66 0.65 0.66 0.68 0.7 0.8 1.05

A. 2D case: static contact angles

Here we test the ability of the improved PSM and the
BB virtual density wetting boundary condition methods
to generate the desired contact angle on flat and curved
walls. We first generate droplets on a flat wall and on the
inner wall of a circular semicylinder, which is a concavely
curved wall. The lattice system is chosen as Nx×Ny =
300×150 (in lattice unit). The radius and the location of
the center of the semicylinder are respectively 145∆x and
(150.5∆x, 150∆x). Initially, two droplets with the same
radius R = 30∆x are placed on the flat and the concavely
curved walls respectively. The centers of droplets (xi, yi)
are respectively (150.5∆x, 33∆x) and (150.5∆x, 120∆x).
Figure 1 shows the initialization of the droplets on the flat
and the concavely curved walls with (a) the BB virtual
density scheme and (b) the improved PSM scheme. The
eighth-order scheme gives the same figure as the fourth-
order scheme. The initial fluid densities at position (x, y)
are given by:

{
ρ(r)(x, y) = 1, ρ(b)(x, y) = 0.005 if (x− xi)2 + (y − yi)2 ≤ R
ρ(r)(x, y) = 0.005, ρ(b)(x, y) = 1 otherwise.

(19)

Figure 2 shows the contact angles obtained on the flat
and the concavely cylindrical walls at t = 9 × 104∆t.
The BB virtual density scheme with fourth-order and
eighth-order isotropy and the improved PSM scheme with
eighth-order isotropy are applied. To measure the con-
tact angle, we first apply the marching squares algorithm
to find the droplet interface. Then, due to the symme-
try of the system, we randomly select two points on the

droplet interface to find the fitted circle. Finally, we find
the intersection of the fitted circle with the wall and cal-
culate the contact angle. Each contact angle is measured
three times (each time different random interface points
are selected to find the fitted circle), and the average
value is given in this article. The maximum difference
between the three measurements is 0.3◦ for both eighth-
order schemes and 1.5◦ for the fourth-order BB virtual
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(a) BB (b) PSM

FIG. 1: The initialization of the droplets on the flat and
the concavely curved walls. The red and blue colors

represent the r and b components, respectively.

density scheme. It is shown in Fig. 2 that both schemes
can be used to achieve different contact angles by tun-
ing wetting boundary parameters. However, there is a
condensation problem with the fourth-order BB virtual
density scheme. As shown in Fig. 2(c), due to the con-
densation of the dissolved red fluid, two small droplets
appear at the lower left and lower right parts of the
cylinder wall. There is also the same condensation prob-
lem with the fourth-order improved PSM scheme (the
figure is not presented here). Meanwhile, no condensa-
tion problem is observed for the BB virtual density and
the improved PSM schemes with eighth-order isotropy
(Figs. 2(f) and 2(i)). Besides, as shown in Fig. 2(c), the
contact angle on the flat wall is 8.3◦ larger than that
on the concavely curved wall when the fourth-order BB
virtual density scheme is applied. In contrast, when we
switch to eighth-order isotropy, the contact angles on the
flat and the concave walls are more consistent with both
the BB virtual density and the improved PSM schemes.

We also generate droplets on the outer wall of a cylin-
der, which is a convexly curved wall. The lattice system
is chosen as Nx×Ny = 300× 300 (in lattice unit). The
periodic boundary condition is applied in all directions.
The radius and the location of the center of the cylinder
are respectively 75∆x and (150.5∆x, 101∆x). The radius
of the droplet is 50∆x, and the center of the droplet is
(150.5∆x, 221∆x). The fluid densities are ρ(r) = 1 and
ρ(b) = 0.005 inside the droplet and the opposite densi-
ties for the outside of the droplet. The initialization of
the droplet on the convexly curved wall with the BB vir-
tual density scheme and the improved PSM scheme are
presented in Fig. 3(a) and Fig. 3(b), respectively.

Figure 4 presents the contact angles obtained on the
convexly cylindrical wall with the fourth-order BB virtual
density and the eighth-order improved PSM schemes at
t = 9 × 104∆t. As the eighth-order BB scheme gives
pictures very close to the eighth-order improved PSM
method, it has not been presented. Figure 4(c) shows
the condensation of a small droplet on the bottom of the
cylinder wall when fourth-order isotropy is used to com-
pute the interactions. On the contrary, there is no con-
densation problem with the eighth-order isotropy case.
The contact angles achieved by the fourth-order BB vir-
tual density scheme on the convexly curved wall are not
consistent with the contact angles on the flat and the
concavely curved walls (Fig. 2) under the same wetting

condition. While for the eighth-order improved PSM
scheme, contact angles are consistent for all three kinds
of walls.

To compare the consistency of the contact angles on
the flat and the curved walls by using the BB virtual
density with both fourth-order and eighth-order and the
improved PSM schemes with eighth-order isotropy, all
11 groups of wetting boundary condition parameters in
Table I are applied to generate contact angles on the
flat, the concavely curved, and the convexly curved walls.
All contact angles are measured after running the sim-
ulations for 9 × 104∆t time steps when the eighth-order
schemes give the static contact angles. For the fourth-
order BB virtual density scheme, the unphysical conden-
sation droplets continue to grow after 9 × 104∆t time
steps, and there is no static regime for the system. The
numerical results and the predicted contact angles ac-
cording to Eq. (18) are plotted in Fig. 5. Compared with
the fourth-order BB virtual density scheme, the contact
angles obtained with the eighth-order BB virtual den-
sity and the eighth-order improved PSM schemes have a
better agreement with the predicted contact angles from
Eq. (18). There is a relatively large inconsistency of the
contact angles on the flat and the curved walls under the
same wetting condition when the fourth-order BB virtual
scheme is applied (Fig. 5(a)), and small inconsistency
for the eighth-order BB virtual scheme (Fig. 5(b)). In
contrast, with the eighth-order improved PSM scheme,
the contact angles on the three different walls almost
overlap (Fig. 5(c)). To better show the improvement of
the improved PSM scheme over the BB virtual density
scheme in terms of consistency of contact angles on dif-
ferent walls, we plot the maximum difference of contact
angles on the flat, the concavely curved, and the con-
vexly curved walls with respect to the wetting parameter
n(r) (Fig. 5(d) ). With the eighth-order improved PSM
scheme, the maximum contact angle difference is smaller
than 1◦ under all the wetting conditions. However, for
most of the partially wetting cases, the maximum contact
angle difference is between 2◦ and 4◦ with the eighth-
order BB virtual density scheme, and between 10◦ and
14◦ with the fourth-order BB virtual density scheme. On
average, the eighth-order improved PSM provides a maxi-
mum contact angle difference that is around twenty times
smaller than the fourth-order BB virtual density scheme
and around five times smaller than the eighth-order BB
virtual density scheme when the wall is partially wet-
ting. Since the computation of the interactions with the
fourth-order isotropy leads to the condensation problem
on the curved walls and the large inconsistency of the
contact angles on different walls, we only use the eighth-
order isotropy to compute the interactions for the follow-
ing tests.
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(a) θflat ≈ 121.6◦; θconcave ≈ 119.1◦ (b) θflat ≈ 90.5◦; θconcave ≈ 87.7◦ (c) θflat ≈ 40.3◦; θconcave ≈ 32.0◦

(d) θflat ≈ 126.9◦; θconcave ≈ 129.1◦ (e) θflat ≈ 90.6◦; θconcave ≈ 89.9◦ (f) θflat ≈ 38.7◦; θconcave ≈ 35.0◦

(g) θflat ≈ 126.9◦; θconcave ≈ 127.1◦ (h) θflat ≈ 90.6◦; θconcave ≈ 90.7◦ (i) θflat ≈ 38.7◦; θconcave ≈ 37.9◦

FIG. 2: The contact angles on the flat and the concavely curved walls at t = 9× 104∆t. The red and blue colors
represent the r and b components, respectively. In (a), (b), and (c), the BB virtual density scheme with fourth-order
isotropy of interactions is implemented with n(r) = 0.2, 0.5, and 0.9, respectively. In (d), (e), and (f), the BB virtual
density scheme with eighth-order isotropy is implemented with n(r) = 0.2, 0.5, and 0.9, respectively. In (g), (h), and

(i), the improved PSM scheme with eighth-order isotropy is applied with n(r) = 0.2, 0.5, and 0.9, respectively.

(a) BB (b) PSM

FIG. 3: The initialization of the droplet on the convexly
curved wall. The red and blue colors represent the r

and b components, respectively.

B. 2D case: a droplet sliding inside a rotating
circular cylinder

This test is performed to study the influence of the
curved wall on the movement of the wetting droplet
when the BB virtual density and the improved PSM
schemes with eighth-order isotropy are applied. To
make the droplet rotate along the cylinder wall, a ro-

tating gravity is applied to the droplet component in-
stead of rotating the cylinder wall. The simulation box
is Nx×Ny = 300×300 (in lattice unit). The radius and
the location of the center of the cylinder are 145∆x and
(150.5∆x, 150.5∆x), respectively. Initially, a red droplet
with the radius 30∆x and the center (150.5∆x, 34∆x) is
surrounded by the blue fluid. Inside the droplet, the fluid
densities are ρ(r) = 1 and ρ(b) = 0.005, and the opposite
densities for the outside of the droplet. The magnitude
of the rotating gravity g is fixed to be 1×10−4 (in lattice
unit) throughout the simulation. The direction of g is
fixed at (0,-1) before t = 1 × 104∆t to let the droplet
relax, and then, from t = 1× 104∆t to t = 5.2× 105∆t,
gravity rotates in clockwise direction with the angular
velocity ωg = 2π/T , where T = 1.6 × 105∆t is the rota-
tion period. After gravity rotates by a certain angle, the
droplet starts to follow gravity and rotate on the wall.
Figure 6 shows a partially wetting droplet (n(r) = 0.5)
on the inner cylinder wall under rotational gravity with
the improved PSM scheme. To quantify the smoothness
of droplet movement inside the cylinder, a droplet front
point P is detected at each time step. P is defined as the
intersection of the droplet interface with a circle (concen-
tric with the cylinder) of radius 140 and it is computed
by bicubic interpolation. In Fig. 6(a), gravity starts to
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(a) θconvex ≈ 129.7◦ (b) θconvex ≈ 86.5◦ (c) θconvex ≈ 28.8◦

(d) θconvex ≈ 127.2◦ (e) θconvex ≈ 91.1◦ (f) θconvex ≈ 37.7◦

FIG. 4: The contact angles on the convexly curved wall at t = 9× 104∆t. The red and blue colors represent the r
and b components, respectively. In (a), (b), and (c), the fourth-order BB virtual density scheme is applied and the
wetting parameter n(r) is respectively 0.2, 0.5, and 0.9. In (d), (e), and (f), the eighth-order improved PSM scheme

is applied and the wetting parameter n(r) is respectively 0.2, 0.5, and 0.9.

rotate and the droplet is in the static state. Figure 6(b)
shows the system after gravity has rotated for 90◦ and
the droplet follows gravity with its rotation angle smaller
than 90◦.

Figure 7 shows the angular velocity ωd (rad/∆t) of the
droplet front point P at the stationary regime for a quar-
ter rotation period under the BB virtual density and the
improved PSM schemes with eighth-order isotropy. The
capillary number of the system is around 5.6×10−3, and
the Laplace number is around 330. To reach the station-
ary regime, we first let the droplet rotate for 2 perimeters,
and then set t to 0 and start the measurement. As shown
in Fig. 7(a), when the wall is non-wetting (n(r) = 0) for
the red fluid, the angular velocities of both the BB vir-
tual density and the improved PSM schemes are smooth.
Figures 7(b) and 7(c) show that the PSM angular veloc-
ities are smoother than the BB angular velocities under
the partially wetting conditions, and the highest BB ve-
locity variation is obtained for the n(r) = 0.5 case. The
mean relative error of the angular velocity ωd (in the
n(r) = 0.5 case) is 21.4% for the eighth-order BB scheme

and 5.1% for the eighth-order PSM scheme. The PSM
scheme gives approximately four times smaller error than
the BB scheme. When Ca is decreased to 2.8 × 10−3

(T = 3.2 × 105∆t), this error increases to 41.3% for
the BB scheme and 11.0% for the PSM scheme. Both
schemes perform worse, but the PSM error is still around
four times smaller than the BB error. When the capil-
lary number is increased to 1.1×10−2 (T = 8.0×104∆t),
this error decreases to 5.2% for the BB scheme and 2.2%
for the PSM scheme. Both schemes perform better. The
PSM error is around 2.4 times smaller than the BB error,
bringing it closer to the latter.

The droplet interface evolution at the stationary
regime is shown in Fig. 8. The BB virtual density and
the improved PSM schemes are applied. The droplet in-
terface moves from the red line to the magenta line, and
the time step difference between two adjacent interfaces
is 1000∆t. As shown in Figs. 8(d), 8(e), and 8(f), the
droplet moves smoothly on the cylinder wall with the
improved PSM scheme at all the wetting conditions. In
contrast, for the BB virtual density scheme, droplet in-
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(a) (b)

(c) (d)

FIG. 5: (a)-(c) Contact angles w.r.t n(r) on the flat, the concavely curved, and the convexly curved surfaces with
different schemes. (d) The maximum difference of contact angles on the flat, the concavely curved, and the convexly

curved walls under the same wetting condition w.r.t the wetting parameter n(r).

terfaces are only equally spaced in the completely non-
wetting case (Fig. 8(a)). As shown in Figs. 8(b) and 8(c),
droplet interfaces are not equally spaced when the wall is
partially wetting, especially in the n(r) = 0.5 case. This
is because in the BB partially wetting cases, the move-
ment of the droplet is affected by the local corners on
the staircase approximated wall. While in the BB non-
wetting case, since the staircase wall is completely wet
by the blue fluid, the corners of the wall are covered by
the wetting fluid. Thus, it is equivalent that the droplet
slides on the blue fluid instead of moving on the wall

explaining why droplet interfaces are equally spaced.

C. 3D case: migrating of a droplet inside a square
channel under gravity

In this test, we study the motion of a droplet inside
a square channel under gravity. To investigate the in-
fluence of the inclination of the wall on the velocity of
the droplet, the channel is placed with the wall respec-
tively inclined (31◦, 45◦ and 53◦) and aligned (0◦) with
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(a) t = 1 × 104∆t (b) t = 5 × 104∆t

FIG. 6: The rotation of the droplet (n(r) = 0.5) inside
the circular cylinder under the effect of rotational

gravity with the improved PSM scheme. The red and
blue colors represent the r and b components,

respectively.

0 1 2 3 4

t 10 4

10 -5d

(a) n(r) = 0

0 1 2 3 4

t 10 4

10 -5d

(b) n(r) = 0.5

0 1 2 3 4

t 10 4

10 -5d

(c) n(r) = 0.8

FIG. 7: The angular velocity ωd (rad/∆t) of the droplet
front point P at the stationary regime for a quarter
rotation period under the eighth-order BB virtual

density method (red line) and the eighth-order
improved PSM method (black line). The capillary

number of the system is around 5.6× 10−3, and the
Laplace number is around 330.

the axis of the lattice. The aligned case is chosen as the
reference since the PSM channel is equivalent to the BB
channel when all channel walls are aligned with the axis
of the lattice. If the inclined wall is smooth enough, the
velocity of the droplet must not be affected by the incli-
nation angle of the wall. The height and width of the
channel are both 40∆x, and the length of the channel is
dependent on the inclination of the channel wall, but all
the lengths approximate 233∆x. Initially, a rectangular
red droplet with a length of approximately 48∆x is in-

troduced in the channel and is surrounded by the blue
fluid. Inside the droplet, the fluid densities are ρ(r) = 1
and ρ(b) = 0.005, and the opposite densities for the out-
side of the droplet. The gravitational force g parallel to
the channel walls and directed from left to right acts on
the two fluids. The magnitude of gravity is 5.8 × 10−5

(in lattice unit). The contact angle of the droplet is ob-
tained according to the values of parameters in Table I.
Figure 9 presents a snapshot of the droplet (n(r) = 0.5)
inside a 31◦ inclined square channel at t = 1.5 × 104∆t.
The periodic boundary condition is applied between the
left and right boundaries, and also the top and bottom
boundaries. The BB channel has a staircase approxima-
tion of the inclined wall (Fig. 9(a)), which appears to be
less smooth than the PSM inclined wall (Fig. 9(b)).

A series of tests are performed to compare the aver-
age velocity (in lattice unit) of the droplet in channels
with different wall inclination angles. The average veloc-
ity of the droplet at the stationary regime is measured
(Fig. 10). As the droplet velocity changes under different
wetting conditions, the capillary number of the system
ranges from 3.6× 10−3 to 4.7× 10−3. The Laplace num-
ber is around 220. The droplet velocities of the improved
PSM scheme with eighth-order isotropy are almost unaf-
fected by the wall inclination under the same wetting
condition. The variation in the velocities is very small
(smaller than 2%). However, for the BB virtual density
scheme, the droplet velocities at different wall inclination
angles are not consistent when the wall is partially wet-
ting, especially when the wetting parameter n(r) is close
to 0.5 where the contact angle is around 90◦. The varia-
tion of the velocities reaches a maximum value of about
7% at n(r) = 0.5. When n(r) increases from 0.5 to 0.9
or decreases from 0.5 to 0, the variation of the velocities
becomes smaller but remains significant.

The evolution of the droplet interface in the
yz−midplane at the stationary regime with n(r) = 0.5 is
plotted in Fig. 11 (see also supplementary Video 4 [45]).
The droplet interface moves from the red line to the ma-
genta line, and the time step difference between the two
adjacent interfaces is 500∆t. According to Figs. 11(e),
11(f), 11(g), and 11(h), the droplet interfaces are equally
spaced at all inclination angles when the improved PSM
scheme with eighth-order isotropy is used. For the BB
virtual density method, the droplet moves smoothly on
the 0◦ (Fig. 11(a)) and 45◦ (Fig. 11(c)) inclined walls.
However, when the wall inclination is 31◦ (Fig. 11(b)) or
53◦ (Fig. 11(d)), the droplet interfaces are not equally
spaced and asymmetrical with respect to the axis of the
channel. This problem is mainly caused by the imbal-
ance of the interaction force at the local corners of the
inclined wall. In contrast, when the wall is 45◦ inclined,
all the corners are the same, and when the wall is aligned,
there is no corner on the wall. Similar to the previous
test case, we find that when n(r) is closer to 0 or 1, the
movement of the droplet becomes smoother with the BB
virtual density scheme. This is because when the wall is
closer to completely non-wetting or completely wetting,
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(a) 8th-order BB; n(r) = 0

150 200 250

x

0

20

40

60

80

y
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(c) 8th-order BB; n(r) = 0.8
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(f) 8th-order PSM; n(r) = 0.8

FIG. 8: The droplet interface evolution at the stationary regime (see supplementary Video 1, 2, and 3 [45]). The
droplet interface moves from the red line to the magenta line, and the time step difference between two adjacent

interfaces is 1000∆t.

(a) 8th-order BB

(b) 8th-order PSM

FIG. 9: A snapshot of the droplet (n(r) = 0.5) inside a
31◦ inclined square channel at t = 1.5× 104∆t. The red

color represents the r component.

the corners of the inclined wall are more covered by the
wetting fluid. Thus, the non-wetting fluid tends to slide
on a layer of the wetting fluid instead of moving on the
wall.

IV. CONCLUSION AND PERSPECTIVE

In this work, we proposed an improved PSM scheme
to simulate pseudopotential MC flows. This proposed
scheme is fully mass-conserving so that the droplet size
does not change while flowing. The pseudopotential in-
teractions are computed with eighth-order isotropy since
fourth-order isotropy leads to a condensation problem on
the curved walls and a large inconsistency of the contact
angles on the flat and the curved walls. It should be em-
phasized that eighth-order isotropic terms are only used
to compute the pseudopotential interaction forces, so the
increase in computation time is acceptable. It has been
found that our method is capable of producing nearly
identical contact angles on the flat, the concavely curved,
and the convexly curved walls when the same wetting
condition is applied, and the contact angles obtained in
the simulations are in good agreement with Eq. (18) given
according to Young’s equation [31]. Whereas for the BB
virtual density scheme, there is around a five times higher
inconsistency of the contact angles on the different walls
when the partially wetting boundary condition is applied.
Furthermore, the improved PSM method reduces grid de-
pendence of the moving contact line [46–49]. It is shown
that with the improved PSM scheme, the droplet moves
smoothly on the curved and inclined walls and the ve-
locity of the droplet is almost not affected by the wall
inclination angle with respect to the lattice under all
wetting conditions. However, for the BB virtual density
scheme, when the wall is partially wetting, the local cor-
ners on the curved and inclined walls affect the movement
of the droplet. When the wetting condition of the wall is
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(a) 8th-order BB (b) 8th-order PSM

FIG. 10: The average velocity (in lattice unit) of the droplet w.r.t n(r) at different inclinations of the wall. As the
droplet velocity changes under different wetting conditions, the capillary number of the system ranges from

3.6× 10−3 to 4.7× 10−3. The Laplace number is around 220.
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(d) 8th-order BB; 53◦ inclined

20 40 60 80 100

y

0

20

40

60

80

z

(e) 8th-order PSM; 0◦ inclined

0 20 40 60 80

y

40

60

80

100

120

z

(f) 8th-order PSM; 31◦

inclined

0 20 40 60 80

y

60

80

100

120

140

z

(g) 8th-order PSM; 45◦

inclined

0 20 40 60 80

y

100

120

140

160

180

z

(h) 8th-order PSM; 53◦
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FIG. 11: The evolution of the droplet interface in the yz−midplane at the stationary regime with n(r) = 0.5 (see
supplementary Video 4 [45]). The droplet interface moves from the red line to the magenta line, and the time step

difference between the two adjacent interfaces is 500∆t.

closer to completely non-wetting or completely wetting,
the movement of the droplet becomes smoother and the

wall inclination angle has less influence on the droplet
velocity since the corners on the staircase approximation
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are covered with a layer of the wetting fluid, which in-
creases the smoothness of the walls.

Overall, our improved PSM scheme is superior to the
BB virtual density scheme in simulating pseudopotential
MC flows with curved or complex wall geometries over a

wide range of wetting boundary conditions. The present
method appears to be a powerful tool for simulating MC
flows in porous media and in microfluidic channels.
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