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A B S T R A C T

The standard way to train neural-network-based solutions in healthcare does not consider
clinical criteria, leading to models that are not necessarily clinically acceptable. In this study, we
look at this problem from the perspective of the forecasting of future glucose values of people
with diabetes. We propose a new training methodology that achieves the best possible tradeoff

between accuracy and medical requirements set by health authorities. Starting from a solution
maximizing the prediction accuracy, we progressively relax the accuracy constraints to focus more
on the medical ones. This is achieved by considering a new loss function specifically designed
for glucose prediction. We evaluate the proposed approach on both people with type-1 and type-2
diabetes. We show that it improves the clinical acceptability of the predictions. Moreover, for
given clinical criteria, we are able to find the optimal solution that maximizes the accuracy while
at the same time meeting clinical the criteria.

1. Introduction

With 4.2 million of imputed deaths in 2019, diabetes is undoubtedly one of the major diseases of our modern world (Federation (2019)). There
are three main categories of diabetes: type-1 diabetes mellitus, type-2 diabetes mellitus and gestational diabetes. Compared to healthy persons,
people with diabetes experience trouble in the regulation of their blood glucose level within an acceptable range (homeostasis around 90 mg/dL).
The pancreas is responsible for most of the regulation in healthy individuals, releasing two different hormones: the insulin and the glucagon (see
Figure 1). However, for people with diabetes, this negative feedback loop is damaged. In type-1 diabetes, the pancreas does not secrete insulin
anymore. On the other hand, in type-2 diabetes, the body cells get increasingly resistant to the action of insulin causing the pancreas to not be
able to produce enough insulin. People with diabetes can still achieve the regulation of blood glucose through the use of medication and the
careful monitoring of several aspects of their life such as the food they eat or their physical activity. However, this task is very difficult and can
lead to severe consequences if not done correctly. Failing to regulate the blood glucose level puts the person with diabetes at risk of getting in
states of hypoglycemia and hyperglycemia. In hypoglycemia (blood glucose level below 70 mg/dL), the person faces short-term consequences
such as clumsiness, trouble talking, loss of consciousness or even death depending on the severity of the hypoglycemia. On the other hand, with
hyperglycemia (blood glucose level above 180 mg/dL), the consequences are more long-term with an increased risk of cardiovascular diseases,
amputation because of poor blood flow, or blindness.

In the recent years, a lot of researchers have been interested in the creation of glucose predictive models (Oviedo et al. (2017)). Using past
glucose values, carbohydrate (CHO) intakes and insulin infusions information, the models can forecast the future glucose values 30 to 60 minutes
ahead of time (Oviedo et al. (2017)). For people with diabetes, being able to know the future values of their glycemia could be highly beneficial
as hypo/hyperglycemia events could be anticipated. Historically, glucose predictive models were based on autoregressive processes (Sparacino
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Fig. 1: Blood glucose level negative feedback loop.

et al. (2007); Saiti et al. (2020)). However, thanks to the advance in machine learning, but also to the increased availability of data, we are
currently witnessing a shift in favor of more complex models, and in particular models based on artificial neural networks. The use of standard
feedforward neural networks has been explored with, for instance, the works of Pappada et al. (2011), Georga et al. (2013) and Ali et al. (2018).
Recurrent neural networks, and in particular those based on long short-term memory (LSTM) units, are probably the most popular deep models
for glucose prediction. Aliberti et al. (2019) showed that they are more accurate than standard autoregressive models. Mirshekarian et al. (2017)
demonstrated their superiority over support vector regression (SVR) models that use expert physiological features. Moreover, they have also been
shown to benefit from the addition of various input features such as the heart rate or the skin conductance (Mirshekarian et al. (2019); Martinsson
et al. (2019)). Lastly, other neural-network-based solutions have been recently tried out. Among them, we can highlight the promising use of
convolutional neural networks (De Bois et al. (2020b); Zhu et al. (2018)).

Models based on neural networks are trained by backpropagating the gradient of the average error to the weights of the network. In glucose
prediction, as in almost all regression problems, the average error is computed as the mean squared error (MSE). As a consequence, the models
are trained to maximize the accuracy of the predictions. However, in the benchmark study we recently conducted (De Bois et al. (2020a)), we
showed that a good statistical accuracy does not ensure that the predictions are clinically acceptable. Indeed, some errors, despite their relatively
low magnitude, can be very dangerous for the person with diabetes (e.g., errors in the hypoglycemia region). To address this issue, Del Favero et al.
proposed the glucose mean-squared error (gMSE) loss function that amplifies the weighting of the errors based on the observed glycemic region
(Del Favero et al. (2012)). They showed that using the gMSE instead of the standard MSE decreases the number of dangerous predictions at the
cost of reducing the average statistical accuracy of the model. While their methodology is promising, their study has several limitations that we aim
at addressing. First, as the approach has been evaluated on virtual people with diabetes using autoregressive models, it is unclear how it translates
to more complex models and to real people. Also, their approach focuses on only one aspect of the clinical acceptability of the predictions, which
is the point clinical accuracy. Another aspect of the clinical acceptability of the predictions is the clinical accuracy of predicted variations (i.e.,
the difference between two successive predictions compared to the observed variations), which is taken into account in the widely used continuous
glucose-error grid analysis (CG-EGA) metric (Kovatchev et al. (2004)). Indeed, inaccurate predicted glucose variations can be very dangerous as
they can confuse the person with diabetes in the understanding of the future evolution of his/her glycemia.

Our contributions are:

1. We propose the coherent mean squared glycemic error (gcMSE) loss function. Compared to the standard MSE loss function, it includes
constraints directly related to the clinical acceptability of the predictions. In particular, it penalizes the model during its training not only
on prediction errors, but also on predicted variations errors (De Bois et al. (2019)). Moreover, it makes possible to increase the importance
of specific regions in the error space (e.g., the hypoglycemia region).

2. Optimizing the parameters of the gcMSE loss function is a multi-objective optimization problem. Indeed, by incentivizing the model to
focus more making clinically acceptable predictions, we reduce the statistical accuracy constraints. However, for the model to be useful for
the people with diabetes, the predictions needs to be accurate. To address this challenge, we propose the PICA (progressive improvement of
the clinical acceptability) algorithm that iteratively relaxes the accuracy constraints so that the focus of the learning is progressively more
in favor on the satisfaction of the clinical constraints. This enables the creation of a model that maximizes the accuracy while at the same
time that satisfying the given clinical constraints.

3. We evaluate the proposed solutions on two diabetes datasets, the IDIAB dataset and the OhioT1DM dataset, characterized by their hetero-
geneity. Whereas the IDIAB dataset, collected by ourselves, is made of 6 individuals with type-2 diabetes, the OhioT1DM dataset has been
released by Marling et al. and comprises data from 6 individuals with type-1 diabetes (Marling & Bunescu (2018)).

4. We have open-sourced the code written in Python that has been used in this study in a GitHub repository (De Bois (2020)).
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The paper is organized as follows. First, after introducing the CG-EGA metric in more details, we present the whole framework of integrating
clinical acceptability criteria within the training of deep models. Then, we describe the machine learning pipeline, with the preprocessing of the
data, the models we used, and the evaluation process. Finally, before concluding, we present and discuss the experimental results.

2. Integrating Clinical Criteria into the Training of Deep Models

In this section we propose a method to integrate clinical criteria based on the CG-EGA into the training of deep models. First, we introduce
the CG-EGA metric, how it is computed and used to assess the clinical acceptability of the predictions. Then, we present the gcMSE loss function
that integrates the clinical constraints. Finally, we propose a methodology to use this new loss function in practice.

2.1. Presentation of the CG-EGA
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Fig. 2: Example of the CG-EGA classification with the P-EGA (left) and R-EGA (right).

Originally proposed by Kovatchev et al. for the evaluation of the clinical acceptability of blood glucose sensors (Kovatchev et al. (2004)),
the continuous glucose-error grid analysis (CG-EGA) is a widely used metric to assess the clinical acceptability of glucose predictive models
(Zarkogianni et al. (2015); Li et al. (2018); Georga et al. (2016); Yu et al. (2018)). It is made of the combination of two different evaluation
grids: the point-error grid analysis (P-EGA) and the rate-error grid analysis (R-EGA). While the P-EGA measures the clinical accuracy of the
predictions, the R-EGA measures the clinical accuracy of the predicted variations. The predicted variations are computed as the rate of change
between two consecutive predictions. Both grids attribute a score from A (best) to E (worst) to a given prediction, evaluating the dangerousness of
the prediction. Figure 2 gives a graphical representation of the P-EGA and the R-EGA. The scores in both grids are then combined into a final label
assessing the clinical acceptability of the prediction. A prediction can either be an accurate prediction (AP), a benign error (BE), or an erroneous
prediction (EP).

Table 1 details the reasoning behind the CG-EGA scores. First, the CG-EGA has a different behavior depending on the glycemic region
(hypoglycemia, euglycemia, or hyperglycemia) the person with diabetes is in. Essentially, the glycemic region impacts the way bad R-EGA scores
(C to E) are accounted. Bad R-EGA regions are split into upper and lower regions (e.g., uE and lE) to have more flexibility in the assessment of
the final CG-EGA score. For instance, in the hypoglycemia region, a lE score in the R-EGA, representing a fast predicted decrease in glycemia
while a fast increase is observed, can lead to a benign error (BE) if the last prediction is accurate (A in the P-EGA). In the hypoglycemia region, the
CG-EGA states that it is not dangerous for the patient to predict a decrease in glycemia as it will not lead to life-threatening actions from the user.
On the other hand, the absence of detection of negative variations in the uD and uE zones is extremely dangerous: the hypoglycemia is becoming
much worse, which could result in consequences such as coma or even death. Overall, for a prediction to be labelled as an accurate prediction
(AP), it needs good scores (A or B) in both the P-EGA and R-EGA.

In summary, compared to standard accuracy metrics such as the root mean squared error (RMSE), the CG-EGA also evaluates the accuracy
of the predicted variations. And, most importantly, the evaluation depends on the observed glycemic region. These aspects should be taken into
account if we want to add clinical constraints based on the CG-EGA into the training of the models.

2.2. Coherent Mean Squared Error

In deep learning, the models are trained by backpropagating the gradient of the loss function to the weights of the articial neural network.
By modifying the objective function, it is possible to modify the predictive behavior of the model. We can find numerous loss functions in the
literature, the most used being the cross-entropy for classification problems and the mean squared error (MSE) for regression problems. Since the
task of glucose prediction is a regression task, deep models in the field use the MSE in their training. Equation 1 describes the MSE as the squared
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Table 1: Classification of glucose predictions performed by the CG-EGA. Depending on the scores obtained on the P-EGA and R-EGA, a prediction is classified as an accurate
prediction (AP), a benign error (BE) or erroneous prediction (EP).

P-EGA

Hypoglycemia Euglycemia Hyperglycemia

A D E A B C A B C D E

R
-E

G
A

A AP EP EP AP AP EP AP AP EP EP EP

B AP EP EP AP AP EP AP AP EP EP EP

uC BE EP EP BE BE EP BE BE EP EP EP

lC BE EP EP BE BE EP BE BE EP EP EP

uD EP EP EP BE BE EP BE BE EP EP EP

lD BE EP EP BE BE EP EP EP EP EP EP

uE EP EP EP EP EP EP EP EP EP EP EP

lE BE EP EP EP EP EP EP EP EP EP EP

AP: Accurate Prediction; BE: Benign Error; EP: Erroneous Prediction

difference between the observed g and predicted ĝ glucose values, averaged over N samples. In this study, we propose modifications to the MSE
loss function to improve the clinical acceptability of the predictions.

MS E(g, ĝ) =
1
N

N∑
n=1

(gn − ĝn)2 (1)

First, as shown by the analysis of the CG-EGA, it is essential to penalize predicted variation errors in addition to prediction errors. To do
this, we can use the coherent mean squared error (cMSE) loss function, previously proposed in a work from our team (De Bois et al. (2019)). The
cMSE is the MSE of the predictions weighted by the MSE of the predicted variations. Equation 2 describes the cMSE loss function with ∆g and
∆ ĝ representing, respectively, the observed and predicted glucose variations. We call the weighting coefficient c the coherence factor. It represents
the relative importance we give to the accuracy of the predicted variations compared to the accuracy of the predictions.

cMS E(g, ĝ) = MS E(g, ĝ) + c · MS E(∆g,∆ ĝ)

=
1
N

N∑
n=1

(gn − ĝn)2 + c · (∆gn − ∆ĝn)2
(2)

ŷt+PH−1 ŷt+PH

NN ... NN NN

Xt−H Xt−1 Xt

Fig. 3: General architecture of a two-output recurrent neural network that has been unrolled H times, where H is the length of the history of input data to the model. Xt are the input
data to the model at time t (e.g., glucose, insulin, and carbohydrates at time t), and ŷt+PH is the model prediction (e.g., blood glucose prediction) at t + PH, where PH is the prediction
horizon.

To use the cMSE in the training process, we can use a recurrent neural network (e.g., LSTM) with two outputs (see Figure 3). The two outputs
represent the prediction at the given prediction horizon PH and the prediction at PH − ∆T , ∆T being the time interval between two predictions.
For instance, with a prediction interval of 5 minutes and a prediction horizon of 30 minutes, the network outputs the predictions at the horizons 30
and 25 minutes. These two outputs enable the computation of the predicted variations, as depicted by Equation 3. The architecture of recurrent
neural networks is particularly suited to this task as it naturally computes the prediction of the previous time-step (see Figure 3).

∆ĝt+PH =
ĝt+PH − ĝt+PH−∆T

∆T
(3)
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2.3. Coherent Mean Squared Glycemic Error

The analysis of the CG-EGA showed us that the magnitude of the glucose prediction and predicted variation errors are not fully correlated with
clinical errors. Moreover, even though clinical errors are generally of high magnitude, they are quite rare in practice, thus representing only a small
portion of the gradient in the updating of the network’s weights during its training. Therefore, minimizing the MSE (or, equivalently, the cMSE)
does not directly reduce the number of clinical errors. Indeed, most of the weights’ updates are focused towards the improvement of the accuracy
of predictions that already have a good clinical acceptability. In the field of multi-class classification, it is very common to weight samples from
under-represented classes by artificially increasing their presence within the training set. In their work on object recognition within images, Lin et
al. proposed to dynamically weight the learning samples according to their difficulty (a sample being considered easy when the probability of the
corresponding class is very high, showing a high degree of confidence of the model in the prediction) (Lin et al. (2017)). By reducing the weights
of easy samples, the training of the model focuses on the samples for which it has the most difficulty. Finally, Del Favero et al. proposed, in the
context of glucose prediction, to modify the MSE to better account for the dangerous regions of the P-EGA (Del Favero et al. (2012)). In particular,
they proposed that samples with observed hypoglycemia or hyperglycemia are given a higher weighting. Although their work was evaluated on
autoregressive models and virtual patients, their results showed that this new loss function reduces the number of predictions in zone D and E of
the P-EGA.

Taking inspiration from their work, we propose to dynamically penalize prediction errors as well as predicted variation errors. This new loss
function, named coherent mean squared glycemic error (gcMSE), penalizes predictions differently depending on the P-EGA and R-EGA regions
(see Equation 4). In Equation 4b, PX and px, X ∈ {A, B, uC, lC, uD, lD, uE, lE} and x ∈ {a, b, uc, lc, ud, ld, ue, le}, represent the P-EGA regions
and their respective weights. Contrary to the original P-EGA, we have segmented the C, D and E regions in two, as it is already the case for the
R-EGA. This gives us more flexibility in assigning the weights. Equivalently, in Equation 4c, RX and rx, X ∈ {A, B, uC, lC, uD, lD, uE, lE} and
x ∈ {a, b, uc, lc, ud, ld, ue, le} represent the regions of the R-EGA and their respective weights.

gcMS E(g, ĝ) = P(g, ĝ) · MS E(g, ĝ) + c · R(∆g,∆ ĝ) · MS E(∆g,∆ ĝ) (4a)

with,

P(g, ĝ) =



pa, if {g, ĝ} ∈ PA

pb, if {g, ĝ} ∈ PB

puc, if {g, ĝ} ∈ PuC

plc, if {g, ĝ} ∈ PlC

pud , if {g, ĝ} ∈ PuD

pld , if {g, ĝ} ∈ PlD

pue, if {g, ĝ} ∈ PuE

ple, if {g, ĝ} ∈ PlE

(4b)

and,

R(∆g,∆ ĝ) =



ra, if {∆g,∆ ĝ} ∈ RA

rb, if {∆g,∆ ĝ} ∈ RB

ruc, if {∆g,∆ ĝ} ∈ RuC

rlc, if {∆g,∆ ĝ} ∈ RlC

rud , if {∆g,∆ ĝ} ∈ RuD

rld , if {∆g,∆ ĝ} ∈ RlD

rue, if {∆g,∆ ĝ} ∈ RuE

rle, if {∆g,∆ ĝ} ∈ RlE

(4c)

Using the gcMSE instead of the standard MSE introduces 14 new hyperparameters to be optimized: the coherence factor c, and the weights
associated with the P-EGA and R-EGA regions. This task being particularly laborious, we propose simplifications reducing the number of hyper-
parameters:

• First, it is not interesting to improve the accuracy of the predicted variations in zones A and B. Indeed, all predictions belonging to these
zones are clinically sufficiently accurate. Thus, we can set ra = rb = 0.

• From the perspective of the possible maximization of the AP rate, BE and EP predictions can be seen as equally important. This allows us
to set most of the C, D and E zones to the same value. Moreover, the coherence factor c alone allows us to weight the compromise we want
between the accuracy of the predictions and the accuracy of predicted variations. Thus, we can set all these weights to 1.

• Only the hypoglycemic P-EGA regions D and E (PuD and PuE) require a special treatment in order to increase the importance of samples
in the hypoglycemic region. We denote the weight associated to these areas by phypo.

Equation 5 summarizes the design simplifications, allowing the gcMSE cost function to have only 3 hyperparameters: pab, phypo, and c. The
choice of these hyperparameters depends on both the learning objective and the experimental conditions. The coherence factor c must be chosen
depending on the importance of the loss function MS E(∆g,∆ ĝ) compared to the MS E(g, ĝ). The choice of the coefficient phypo must be made
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according to the size of the datasets. When few hypoglycemic samples are available, it is possible to give a value of phypo > 1. As for pab, it
represents the accuracy constraint we give during the training of the model. The lower its value, the more its training focuses on improving its
clinical acceptability at the expense of its accuracy.

P(g, ĝ) =


pab, if {g, ĝ} ∈ {PA, PB}

phypo, if {g, ĝ} ∈ {PuD, PuE }

1, else

(5a)

and,

R(∆g,∆ ĝ) =

0, if {∆g,∆ ĝ} ∈ {RA,RB}

1, else
(5b)

2.4. Progressive Improvement of the Clinical Acceptability

In order to be able to use the gcMSE loss function, we need to formulate the general learning objective, and in particular the relative importance
of improving the clinical acceptability. Indeed, as shown in the work of Del Favero et al. (2012), an improvement in the clinical acceptability is
often matched by a deterioration in the statistical accuracy . Our previous work also showed that when too little constraints are set on the accuracy
of the model, the predictions end up being of no use for the user De Bois et al. (2019).

The presence of two objectives competing against each other makes this problem a multi-objective optimization (MOO) problem. In the MOO
field, there is often no optimal solution (a solution that is the best one for all the objectives), but a set of solutions that are said to be Pareto-optimal
(Marler & Arora (2004)). We can define a solution that is Pareto-optimal as a solution for which there exists no other solution that is simultaneously
better for all the objectives. The solving of a MOO problem is generally a two-step process, where the Pareto-optimal solutions are first identified
and one of them is then selected given selection criteria.

These two steps are challenging in our application context. First, while selection criteria could be formulated as clinical acceptability re-
quirements, no official standards have been set by the health authorities for glucose predictive models yet. Second, finding a single solution is
computationally expensive as it involves the full training of a neural network. It makes the identification of the set of Pareto-optimal solutions
through a standard grid search approach not practical. While other approaches based on genetic programming, often, used in the MOO field (e.g.,
NSGA-II, Deb et al. (2000)) converge faster, they present the same issue.

To address these challenges, we propose the progressive improvement of clinical acceptability (PICA) algorithm that leverages our under-
standing of the search space. First, we define a hypothetical selection criterion as a minimum threshold in AP or/and a maximum threshold in EP
following the CG-EGA (e.g., minimum 95% of predictions being labeled as AP by the CG-EGA). Our optimization problem can then be reformu-
lated as the maximization of the accuracy of the predictions while meeting the set clinical criteria. To reduce the number of solutions that need to
be computed, we start from a Pareto-optimal solution maximizing the accuracy of the model without considering the clinical acceptability of the
predictions. Other solutions are then computed by progressively relaxing the accuracy constraints, gradually shifting the emphasis on the clinical
acceptability. By doing so, we aim at navigating the Pareto front, only computing solutions that are worth considering for our problem. Once the
clinical criterion is met, we stop the search of other solutions and select the last one as the solution that maximizes the accuracy while satisfying
the clinical constraints.

Algorithm 1: Progressive Improvement of the Clinical Acceptability (PICA)
Data: clinical criteria C, model M, update coefficient α, smoothing coefficient β
Result: Model maximizing the accuracy while respecting the clinical criteria C or −1

1 i← 0
2 M0 ← train(MSE)
3 g0, ĝ0 ← predict(M0)
4 ĝ∗0 ← smooth( ĝ0, β)
5 while C(gi, ĝ∗i ) = False and MASE(gi, ĝ∗i ) < 1 do
6 i← i + 1
7 gcMSEi ← gcMSE with pab ← αi−1

8 Mi ← finetune(M0, gcMSEi)
9 gi, ĝi ← predict(Mi)

10 ĝ∗i ← smooth( ĝi, β)

11 if MASE(gi, ĝ∗i ) < 1 then
12 return Mi

13 else
14 return −1

Algorithm 1 gives the technical details of the steps made by PICA algorithm. The updating law of the weights pab, representing the constraints
in the statistical accuracy, is to be chosen according to the experimental conditions. In this study, we use the law defined by the Equation 6 (with
α ∈ [0, 1] being the speed of the relaxation of the accuracy constraints). As for the MASE metric (mean absolute scaled error, proposed by
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Hyndman & Koehler (2006), see Equation 7), it is used as a stopping criterion when the chosen clinical criteria are not achievable. The algorithm
stops when the MASE exceeds 1, meaning that a naïve prediction (a prediction that is equal to the last known observation) is more accurate
than the predictions made by the model in average. Finally, we smooth the predictions by using an exponential smoothing technique. It is used
to attenuate the important fluctuations of the predictions in the first steps of the algorithm. By being small, it allows a significant gain in the
clinical acceptability, in return for a minimal loss of accuracy. For more details on the exponential smoothing of the predictions, please refer to the
post-processing steps in Section 3.3.

pab = αi−1 (6)

MAS E(g, ĝ, PH) =

1
N ·
∑N

n=1 |gn − ĝn |

1
N−PH ·

∑N
n=PH |gn − gn−PH |

(7)

Algorithm 2: Standard Grid Search
Data: clinical criteria C, model M, grid step size α, smoothing coefficient β, maximal number of iteration N
Result: Model maximizing the accuracy while respecting the clinical criteria C or −1

1 Function train_and_test(loss):
2 m← train(loss)
3 g, ĝ← predict(m)
4 ĝ∗ ← smooth( ĝ, β)
5 return m, g, ĝ∗

6 grid ← [1, α−1, ..., αN−1]
7 M0, g0, ĝ∗0 ← train_and_test(MSE)
8 for i← 1 to N do
9 gcMSEi ← gcMSE with pab ← grid[i]

10 Mi, gi, ĝ∗i ← train_and_test(gcMSEi)

11 candidates← [M0, ...,MN ] if C(gi, ĝ∗i ) = True
12 if candidates is not empty then
13 return argmin

MAS E
candidates

14 else
15 return −1

To better understand what the benefits of using the PICA algorithm are, we can compare it to a standard grid search of the hyperparameter pab

which is described by Algorithm 2. To optimize by grid search, we first need to define a search space. Here we characterize the search space by the
step size α in a logarithmic scale and by the number of elements inside the grid. With the same value of α, loss functions evaluated by the PICA
algorithm are guaranteed to be also evaluated by the grid search. Instead of stopping the search when the best pab coefficient is found, a standard
grid search waits to compute all the different solutions before selecting the best one. Among these solutions, the solutions that satisfy the clinical
constraints but have a worse accuracy than the best solution are not computed by the PICA algorithm, making it faster. As a consequence, the best
solutions selected by both algorithms are identical. Moreover, each iteration (except the first one) is in itself faster using the PICA algorithm as we
are finetuning the first model maximizing the accuracy, instead of fully training a new one from scratch. Finetuning a model requires much less
epochs than a full training, and thus allows the algorithm to run even faster.

3. Experimental Methodology

In this section, we present the whole methodology that has been followed for the evaluation of the proposed loss functions and the PICA
algorithm. First, we present the experimental datasets and their preprocessing. Then, we provide details about the post-processing of the predictions
and the evaluation of the models. Finally, we describe the different models with their implementation.

We have made the code implementation of the whole study available in a GitHub repository (De Bois (2020)).

3.1. Experimental Data

In this study, we used two datasets made of several people with diabetes: the IDIAB dataset and the OhioT1DM dataset. While the IDIAB
has been collected by us between 2018 and 2019 after the approval by the French ethical committee (ID RCB 2018-A00312-53), the OhioT1DM
dataset has recently been released by Marling & Bunescu (2018).
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3.1.1. IDIAB Dataset (I)

The IDIAB dataset is made of 6 individuals with type-2 diabetes (5F/1M, age 56.5 ± 9.14 years old, body mass index of 33.52 ± 4.17 kg/m2).
The patients had been monitored for 31.17 ± 1.86 days in free-living conditions. We collected glucose values (in mg/dL) by using FreeStyle Libre
continuous glucose monitoring devices (Abbott Diabetes Care). As for carbohydrate (CHO) intakes (g) and insulin infusion values (unit), they
have been manually recorded with the mySugr coaching application for diabetes.

3.1.2. OhioT1DM Dataset (O)

The OhioT1DM dataset is made of data coming from 6 people with type-1 diabetes (4F/2M, age between 40 and 60 years old, body mass index
not disclosed) that had been monitored for 8 weeks in free-living conditions. For more information concerning the experimental system, please
refer to Marling & Bunescu (2018). We restrict ourselves to the glucose values, the insulin infusions, and the CHO intakes to remain consistent
with IDIAB data.

3.2. Preprocessing

Preprocessing

Files
Loading Cleaning

Samples
Creation

Recovering
Missing
Data

Splitting
Feature
Scaling

history
length

prediction
horizon

sampling
frequency

cross-validation
factor

time-series time-series samples samples cv. folds train. folds

valid. folds

test. folds

scaler mean
and std

Fig. 4: Preprocessing of the data.

The preprocessing stage aims at preparing the data for their use in the training and the evaluation of the models. It is made of several steps
depicted by Figure 4 and described in the following paragraphs.

3.2.1. Cleaning

The glucose time-series from the IDIAB dataset is comprised of several erroneous values. These values are characterized by peaks lasting
only one sample (see Figure 5). We decided to remove these samples from the data as keeping them would be hurtful for the training as well as
for the evaluation of the models. Instead of removing them by hand, we used an automated methodology proposed in our previous work (De Bois
et al. (2019)). A sample is flagged as erroneous if the surrounding rates of change are incoherent with the typical distribution of rates of change,
and if they are of opposite signs.
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Fig. 5: Glycemia of one patient from the IDIAB dataset, for which the value recorded at 13h24 is an anomaly as it is incoherent with the overall signal.
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3.2.2. Samples Creation
The two datasets have been resampled to a sample every 5 minutes which is the sampling frequency of the OhioT1DM glucose signal. While

we took the mean of the glucose signals, the CHO and insulin values have been accumulated.
The input samples have been obtained by using a sliding window of length H of 3 hours (36 samples) on the three signals. The prediction

objective is, for each sample, the glucose value 30 minutes (6 samples) in the future (prediction horizon, PH, of 30 minutes).

3.2.3. Recovering Missing Data
Both datasets contain numerous missing values coming either from sensor or human errors. Moreover, contrary to the OhioT1DM dataset, the

upsampling of the IDIAB glucose signal (from 15 minutes to 5 minutes) has also introduced a lot of missing values. We can artificially recover
some of them by following this strategy for every sample:

1. linearly interpolate the glucose history when the missing value is surrounded by two known glucose values;
2. extrapolate linearly in the opposite case, usually when the missing glucose value is the most recent data;
3. discard samples when the ground truth yt+PH is not known to prevent training and testing on artificial data.

3.2.4. Splitting
The datasets are split into training, validation, and testing sets. While the testing set is used for the final evaluation of the models, the validation

is used as a prior evaluation for the optimization of the models’ hyperparameters.
The testing set is made of the last 10 days for the OhioT1DM dataset and of the last 5 days for the IDIAB dataset, the latter being around two

times smaller. The remaining days have been split into training and validation sets following an 80%/20% distribution with 5 permutations.

3.2.5. Feature Scaling
Finally, the samples have been standardized (zero mean and unit variance) with respect to their training set.

3.3. Post-processing and Evaluation
The evaluation of the predictive models is done following the steps described by Figure 6. In this study, we focus on models that are

personalized to the patient and that predict future glucose values with a 30-minute prediction horizon. Before evaluating the predictions, we follow
two mandatory post-processing steps. We rescale and reshape the predictions to their original scale and shape (see the preprocessing step). Finally,
an optional step is the smoothing of the predictions of the models, as it is done in the PICA algorithm. In the experimental results section, we will
report the performance of the models with both smoothed and raw predictions.

Post-processing for every paired fold

Smoothing

Rescaling Reshaping Evaluation

predictions

ground truths

RMSE

MAPE

MASE

CG-EGA

scaler mean
and std

sampling
frequency

sampling
frequency

prediction
horizon

predictions

ground truths

predictions

ground truths

Fig. 6: Post-processing and evaluation of the predictions.

3.3.1. Exponential Smoothing
The PICA algorithm involves the smoothing of the predictions at each iteration. The goal of the smoothing is to reduce excessive fluctuations

in the predicted glucose signal. These oscillations are not representative of actual glucose variations and are therefore dangerous for the patient.
We chose the exponential smoothing technique rather than the moving average technique because it gives more weight to recent predictions.

Exponential smoothing can be defined as recursive, with each value of the smoothed signal being equal to a weighting between the value of the
original signal and the previous value of the smoothed signal (see Equation 8, where ĝ∗t represents the smoothed value of the glucose prediction ĝt

and β the smoothing coefficient) (Brown (2004)).

ĝ∗t =

ĝ0, if t = 0

β · ĝt + (1 − β) · ĝ∗t−1, else
(8)

The higher β is, the stronger is the weight given to the original signal, and the less smooth the outputted signal is. The choice of the β
smoothing coefficient in [0, 1] must be made carefully. Indeed, a too aggressive smoothing will result in a temporal shift of the signal. In the
context of glucose prediction, this will greatly reduce the accuracy of the model, and therefore its usefulness for the patient.

To our knowledge, although common in signal processing (e.g., power consumption prediction - Taylor & McSharry (2007)), no post-
processing smoothing has been done in the literature of glucose prediction. We can nevertheless note the occasional use of low-pass filters
(which act similarly to the exponential smoothing technique) on the input signal (Sparacino et al. (2007); Pérez-Gandía et al. (2010)).
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3.4. Metrics

To evaluate the models, we use four different metrics: the root mean-squared error (RMSE), the mean absolute percentage error (MAPE), the
mean absolute scaled error (MASE) and the CG-EGA. For each metric, the performance is averaged over the 5 test subsets of each patient linked to
a 5-fold cross-validation on the training/validation permutations. They are then also averaged on all the patients from the same dataset. The RMSE,
MAPE and MASE metrics give a complementary measure of the accuracy of the prediction. While the RMSE is closely related to the prediction
scale, the MAPE is scale independent and is expressed in percentage. As for the MASE, it measures the average usefulness of the predictions
compared to naïve predictions (predictions equal to the last known observations). The MASE is computed following Equation 7, presented in the
previous section. On the other hand, the CG-EGA measures the clinical acceptability of the prediction by analyzing the clinical accuracy as well as
the coherence between successive predictions. It classifies a prediction either as an accurate prediction (AP), a benign error (BE), or an erroneous
prediction (EP). A high AP rate and a low EP rate are necessary for a model to be clinically acceptable. The rates can be either averaged over all
the test samples, or over the samples within a specific glycemic region (i.e., hypoglycemia, euglycemia and hyperglycemia).

3.5. Glucose Predictive Models

The aim of the study is to improve the clinical acceptability of deep models. To this end, we have first proposed a new loss function cMSE
which penalizes the model during its training not only on prediction errors but also on predicted variation errors. We have then proposed the
gcMSE, which is the cMSE customized to the task of glucose prediction. In particular, it introduces weighting coefficients based on the CG-EGA
to enhance the clinical acceptability of the model. Finally, we proposed the PICA algorithm that progressively improves the clinical acceptability
of the models through the use of the gcMSE function. The models that we present here aim at evaluating these different proposals.

As reference models, we use the support vector regression model (SVR) and long short-term memory recurrent neural network (LSTM) from
the GLYFE benchmark study (De Bois (2019)). Since the preprocessing steps are identical in this study and the present one, the results are fully
comparable. The SVR and LSTM models represent, respectively, the best model and the best deep model in this benchmark.

• The SVR model uses the radial basis function (RBF) kernel. All its hyperparameters have been individually optimized for every patient.
The kernel coefficient, the penalty, and the wideness of the no-penalty tube have been grid searched in the ranges [10−4, 10−2], [100, 103],
and [10−3, 100] respectively.

• The LSTM model has 2 hidden layers made of 256 long short-term memory units. It is trained with the Adam optimizer (mini-batches of 50
samples) and the MSE loss function. The learning rate has been grid-searched within [10−4, 10−3]. Finally, the early stopping methodology
(after 50 epochs of non-improvement on the validation set) and a L2 penalty (10−4) have been used for regularization purposes.

First, to analyze the potential improvement of the clinical acceptability through the cMSE and gcMSE cost functions, we evaluate the pcLSTM
and gpcLSTM models respectively. These two models are based on a two-output LSTM architecture, which, apart from the presence of the two
outputs, is identical to the LSTM model of the GLYFE benchmark study. They are respectively trained to minimize the cMSE and gcMSE loss
functions with a coherence factor c set to 8 for the IDIAB dataset and 2 for the OhioT1DM dataset. The difference in the coherence factor
between the two sets is explained by a MSE of the predicted variations being approximately 4 times higher for the OhioT1DM dataset. As for the
coefficients pab and phypo of the gcMSE, we have set them to 1 and 10 respectively. These coefficients are identical to those from the first iteration
of the PICA algorithm. In addition, we propose to evaluate an additional variant of the gcMSE whose coefficient pab is set to 0. This model,
denoted gpcLSTMCA, is a model that aims at maximizing the clinical acceptability, without taking into account the accuracy of the model beyond
clinical acceptability needs.

The PICA algorithm uses the exponential smoothing technique to stabilize successive predictions. In order to fully evaluate the impact of the
loss functions and the PICA algorithm, we use the exponential smoothing technique on all the models presented in this study. The smoothed variant
of each model is represented by a superscript asterisk (e.g., LSTM∗, pcLSTM∗, gpcLSTM∗CA). All these models use a smoothing coefficient of
0.85, as it degrades only slightly the accuracy of the predicted signal.

The PICA algorithm makes a compromise between the gpcLSTM∗ and gpcLSTM∗CA models. The emphasis on clinical acceptability of this
compromise is progressive over the iterations of the algorithm. However, the accuracy constraint, through the coefficient pab is never equal to 0
(model gpcLSTM∗CA), because such a model has an accuracy far too low to be useful for people with diabetes. This is why the PICA algorithm
stops when the MASE exceeds the value of 1 on the validation set. We represent by the model gpcLSTM∗PICA the results obtained when the PICA
algorithm stops. These results represent the upper bounds of clinical acceptability while maintaining a useful accuracy. In the PICA algorithm,
we use the update law of the coefficient pab presented by Equation 6. It involves the coefficient α, the rate at which the constraint in accuracy is
relaxed, which has been set to 0.9 in this study. A higher coefficient gives better control over the final trade-off, in return for a slower execution
time (more iterations before convergence). The PICA algorithm uses the exponential smoothing technique on the model’s predictions to increase
the stability of the predicted signal. The smoothing coefficient β, as for all the smoothed variants of the other models, has been fixed at 0.85.

4. Results

In this section we present the experimental results of this study. These results are represented in the form of two tables: Table 2 and 3. While
Table 2 describes the general results of the different models in terms of RMSE, MAPE, MASE and general CG-EGA, Table 3 gives a more detailed
description, by region, of the CG-EGA.

Within our two reference models, SVR and LSTM, the SVR model is the model with the best clinical acceptability (general or regional CG-
EGA) for comparable accuracy. In particular, the SVR model has one of the best clinical acceptability in the hypoglycemia region (69.39% and
49.71% AP for the IDIAB and OhioT1DM datasets respectively). The exponential smoothing improves the clinical acceptability of the SVR model
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Table 2: Mean (with standard deviation) of statistical accuracy (RMSE, MAPE, and MASE) and general clinical acceptability (CG-EGA) for a prediction horizon of 30 minutes and
for the IDIAB and OhioT1DM datasets.

Model RMSE MAPE MASE
CG-EGA (general)

AP BE EP

IDIAB Dataset

SVR 20.32 (6.02) 8.66 (0.44) 0.85 (0.15) 92.69 (2.81) 5.34 (2.06) 1.97 (1.23)
LSTM 19.85 (6.00) 9.04 (1.11) 0.85 (0.10) 92.20 (2.99) 5.05 (1.71) 2.76 (1.82)
SVR* 20.67 (6.20) 8.86 (0.44) 0.88 (0.15) 93.62 (2.57) 4.47 (1.69) 1.92 (1.35)

LSTM* 20.27 (6.30) 9.25 (1.21) 0.87 (0.09) 93.16 (3.13) 4.16 (1.75) 2.68 (2.00)

pcLSTM 21.89 (5.68) 10.28 (1.34) 0.96 (0.11) 94.04 (3.26) 3.20 (1.66) 2.76 (2.07)
pcLSTM* 22.63 (6.04) 10.64 (1.40) 1.00 (0.11) 94.24 (3.35) 2.94 (1.73) 2.82 (2.07)
gpcLSTM 21.21 (5.64) 9.35 (0.92) 0.91 (0.13) 94.03 (2.66) 3.91 (1.48) 2.06 (1.54)
gpcLSTM* 21.86 (5.94) 9.66 (0.95) 0.94 (0.13) 94.53 (2.84) 3.38 (1.55) 2.08 (1.57)

gpcLSTMCA 40.68 (11.20) 18.14 (5.55) 1.91 (0.55) 95.34 (2.76) 3.29 (2.56) 1.37 (0.91)
gpcLSTM*

CA 41.15 (11.18) 18.36 (5.47) 1.93 (0.54) 95.35 (2.87) 3.20 (2.61) 1.45 (0.92)
gpcLSTM*

PICA 24.03 (7.15) 10.43 (1.18) 1.03 (0.09) 95.00 (2.74) 3.38 (1.99) 1.61 (1.22)

OhioT1DM Dataset

SVR 20.15 (2.33) 9.12 (2.11) 0.85 (0.02) 83.35 (3.91) 12.38 (2.83) 4.28 (1.83)
LSTM 20.46 (2.08) 9.24 (2.10) 0.86 (0.02) 80.03 (4.17) 14.83 (2.88) 5.14 (2.11)
SVR* 20.17 (2.30) 9.18 (2.12) 0.85 (0.02) 85.00 (4.05) 10.97 (2.72) 4.03 (1.90)

LSTM* 20.43 (2.03) 9.26 (2.10) 0.86 (0.02) 82.14 (3.94) 13.06 (2.51) 4.81 (2.04)

pcLSTM 21.53 (2.23) 10.07 (2.32) 0.93 (0.03) 87.45 (3.76) 8.46 (2.05) 4.09 (2.14)
pcLSTM* 21.71 (2.22) 10.19 (2.35) 0.94 (0.03) 87.89 (3.61) 8.15 (1.94) 3.96 (2.12)
gpcLSTM 21.66 (2.69) 9.65 (2.14) 0.92 (0.03) 86.97 (3.63) 9.50 (2.52) 3.53 (1.48)
gpcLSTM* 21.82 (2.69) 9.76 (2.16) 0.93 (0.03) 87.59 (3.45) 9.01 (2.31) 3.41 (1.49)

gpcLSTMCA 47.70 (6.31) 22.43 (2.76) 2.37 (0.53) 90.46 (2.85) 7.16 (1.66) 2.37 (1.28)
gpcLSTM*

CA 47.82 (6.27) 22.47 (2.76) 2.37 (0.53) 90.51 (2.88) 7.12 (1.64) 2.37 (1.30)
gpcLSTM*

PICA 23.50 (2.49) 10.46 (2.09) 1.01 (0.03) 88.72 (3.59) 8.20 (2.23) 3.08 (1.64)

Table 3: Mean (with standard deviation) of per-region clinical acceptability (CG-EGA) for a prediction horizon of 30 minutes and for the IDIAB and OhioT1DM datasets.

Model
CG-EGA (per region)

Hypoglycemia Euglycemia Hyperglycemia
AP BE EP AP BE EP AP BE EP

IDIAB Dataset

SVR 69.39 (33.51) 0.35 (0.70) 30.27 (33.54) 95.17 (2.01) 4.33 (1.83) 0.50 (0.47) 89.51 (6.09) 7.43 (3.86) 3.06 (2.53)
LSTM 40.94 (30.73) 0.00 (0.00) 59.06 (30.73) 95.78 (1.48) 3.83 (1.55) 0.39 (0.38) 89.55 (5.60) 7.35 (3.21) 3.10 (2.45)
SVR* 66.37 (31.47) 0.17 (0.35) 33.45 (31.51) 96.13 (1.81) 3.49 (1.66) 0.39 (0.36) 90.61 (5.67) 6.60 (3.23) 2.79 (2.79)

LSTM* 37.99 (31.22) 0.00 (0.00) 62.01 (31.22) 96.71 (1.35) 2.95 (1.46) 0.33 (0.38) 91.02 (6.04) 6.18 (3.67) 2.80 (2.58)

pcLSTM 34.59 (29.27) 0.00 (0.00) 65.41 (29.27) 97.58 (0.90) 2.13 (0.82) 0.29 (0.20) 92.60 (5.81) 4.94 (3.18) 2.46 (2.80)
pcLSTM* 32.20 (27.83) 0.00 (0.00) 67.80 (27.83) 97.96 (0.98) 1.81 (0.91) 0.23 (0.11) 92.81 (6.25) 4.68 (3.48) 2.51 (2.85)
gpcLSTM 64.79 (24.95) 0.00 (0.00) 35.21 (24.95) 96.60 (1.11) 3.03 (0.99) 0.37 (0.26) 92.06 (5.12) 5.42 (2.83) 2.51 (2.46)
gpcLSTM* 61.87 (25.17) 0.00 (0.00) 38.13 (25.17) 97.23 (1.17) 2.46 (1.02) 0.31 (0.22) 92.65 (5.60) 4.85 (3.09) 2.50 (2.68)

gpcLSTMCA 87.95 (9.58) 1.71 (3.43) 10.34 (8.15) 97.37 (1.36) 2.12 (1.03) 0.51 (0.40) 92.17 (4.46) 5.11 (4.52) 2.72 (2.39)
gpcLSTM*

CA 87.77 (9.53) 1.71 (3.43) 10.51 (8.13) 97.50 (1.32) 1.97 (0.97) 0.52 (0.44) 92.10 (4.69) 5.03 (4.70) 2.87 (2.33)
gpcLSTM*

PICA 68.49 (27.85) 0.57 (1.14) 30.94 (28.22) 97.35 (1.18) 2.32 (1.08) 0.33 (0.15) 93.16 (4.84) 5.08 (3.53) 1.76 (1.49)

OhioT1DM Dataset

SVR 49.71 (18.75) 5.62 (4.02) 44.67 (18.70) 86.35 (4.24) 10.71 (3.26) 2.94 (1.23) 80.85 (3.24) 14.77 (3.01) 4.37 (1.84)
LSTM 38.37 (23.17) 3.97 (3.72) 57.67 (24.23) 83.78 (5.33) 12.70 (4.06) 3.52 (1.47) 76.86 (3.70) 17.87 (2.73) 5.27 (2.21)
SVR* 46.95 (21.11) 5.97 (4.05) 47.09 (21.65) 87.83 (4.22) 9.46 (3.21) 2.71 (1.22) 82.81 (3.43) 13.12 (2.98) 4.07 (2.00)

LSTM* 37.34 (23.50) 4.11 (4.15) 58.56 (24.17) 85.71 (4.83) 11.10 (3.58) 3.19 (1.37) 79.27 (3.55) 15.85 (2.40) 4.88 (2.24)

pcLSTM 25.28 (19.11) 3.64 (3.73) 71.08 (19.35) 90.79 (3.43) 6.93 (2.53) 2.28 (1.01) 85.78 (3.64) 10.83 (2.55) 3.40 (2.03)
pcLSTM* 23.82 (18.23) 3.72 (3.48) 72.45 (18.55) 91.20 (3.17) 6.67 (2.35) 2.13 (0.96) 86.33 (3.54) 10.44 (2.50) 3.23 (1.96)
gpcLSTM 53.66 (22.59) 4.34 (3.83) 42.00 (22.86) 89.39 (3.91) 7.99 (2.90) 2.63 (1.12) 84.61 (3.84) 11.79 (3.20) 3.61 (2.01)
gpcLSTM* 52.37 (22.06) 4.32 (3.15) 43.30 (22.42) 90.02 (3.69) 7.47 (2.77) 2.52 (1.04) 85.27 (3.69) 11.31 (2.95) 3.42 (2.02)

gpcLSTMCA 91.17 (8.50) 1.26 (2.08) 7.57 (8.01) 91.61 (2.03) 6.62 (1.39) 1.77 (0.74) 87.97 (5.00) 8.67 (2.64) 3.36 (2.63)
gpcLSTM*

CA 91.02 (8.49) 1.21 (1.97) 7.77 (8.00) 91.71 (2.02) 6.55 (1.34) 1.75 (0.77) 87.95 (5.05) 8.69 (2.69) 3.36 (2.62)
gpcLSTM*

PICA 61.30 (20.12) 2.92 (2.38) 35.79 (20.23) 90.84 (3.57) 7.04 (2.57) 2.11 (1.07) 86.48 (3.95) 10.07 (2.66) 3.45 (2.31)

(SVR* model) by -12.79%1 of AP rate for an increase of +0.90% in RMSE (decrease in accuracy). The LSTM* model is subject to similar changes

1Here we represent the decrease, in %, of what is metrically improvable. For the AP, which has a maximum of 100%, the ratio of change is calculated as (100− AP1)/(100− AP2).
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with -11.44% AP and +0.98% RMSE. Table 3 shows that these improvements in clinical acceptability occur in the euglycemia or hyperglycemia
regions, and not in the hypoglycemia region (small decrease in AP).

The pcLSTM model and its smoothed variant pcLSTM*, using the cMSE loss function as well as the two-output architecture of the LSTM
network, are showed to improve the clinical acceptability while deteriorating the accuracy. In particular, the pcLSTM* model compared to the
LSTM* model has -24.18% AP, and +8.95% RMSE. The improvement in clinical acceptability is greater for the OhioT1DM dataset (-32.19%
AP) than for the IDIAB dataset (-16.16% AP). For a comparable decrease in accuracy, the OhioT1DM dataset benefits more from the cMSE loss
function than the IDIAB set. Moreover, the pcLSTM* model has among the best clinical acceptability scores in the euglycemia and hyperglycemia
regions. However, in comparison with the LSTM or LSTM* models, the clinical acceptability in the hypoglycemia region is deteriorated, especially
for the OhioT1DM dataset.

The gpcLSTM and gpcLSTM* models, using the gcMSE loss function, cMSE customized to blood glucose prediction, show a degradation
of the RMSE and an improvement of the AP rate similar to the pcLSTM and pcLSTM* models. However, the gpcLSTM and gpcLSTM* models
have a lower EP rate (-19.53% and -20.07% respectively), suggesting an improved clinical acceptability. Table 3 shows that this improvement is
mainly in the hypoglycemia region with much lower EP rates.

The models gpcLSTMCA and gpcLSTM*
CA use a gcMSE function with the coefficient pab of 0. Thus, these models focus only on improving

the clinical acceptability. By not seeking to improve the accuracy of predictions beyond the required clinical accuracy (P-EGA Zone B), these
models have a very poor RMSE, MAPE and MASE. Nevertheless, they have the best clinical acceptability, with the highest AP and the lowest EP
rates. The improvement is particularly important in the hypoglycemia region, as can be seen in Table 3.

The gpcLSTM*
PICA model represents the last iteration of the PICA algorithm with a MASE on the validation set of less than 1. This model is

intended to maximize the clinical acceptability, while having a reasonable accuracy (MASE less than 1). Compared to the gpcLSTM*
CA model, it

has a slightly lower clinical acceptability (but better than all other models, thanks in particular to its low EP rate).

5. Discussion

The results show us that the exponential smoothing technique reduces the benign error (BE) rate in favor of a better AP rate, by reducing the
amplitude of the variations between successive predictions. This improvement is valid for most of the models and has for counterpart a rather small
decrease in the statistical accuracy of the model. Thus, exponential smoothing, used softly (coefficient β of 0.85) is an efficient method to improve
the stability of the prediction signal, making it safer for the people with diabetes. However, it remains useless in the hypoglycemia range where the
majority of clinical prediction errors are due to poor accuracy.

The benefits from using the cMSE loss function on glucose predictions are similar: successive glucose predictions are more consistent with
each other, resulting in a large reduction in the BE rate. The effects are greater for the OhioT1DM dataset, which sees its EP rate decrease at
the same time. It can be explained by a higher noise in the predicted glucose signal of the OhioT1DM dataset, noise that comes from the initial
glucose signal. With its lower sampling frequency, the IDIAB glucose signal manages to be less noisy in comparison. The cMSE allows successive
predictions to be made with a rate of change that better reflects the actual rate of change and thus improves its clinical acceptability. However, like
exponential smoothing, improvements in clinical acceptability are not generalized to all glycemic regions. In particular, the hypoglycemic region
appears to suffer from the use of cMSE with an increase in its EP rate, especially for the OhioT1DM dataset.
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Fig. 7: Predictions of the LSTM* , pcLSTM* , gpcLSTM* and gpcLSTM*
PICA models for the patient 575 from the OhioT1DM dataset for a given day.

The gcMSE action is more focused on the decrease of the EP rate, as shown by the models gpcLSTM, gpcLSTMCA, gpcLSTM*
PICA. In

contrast with the exponential smoothing technique and the cMSE loss function, the gcMSE improves all glycemic regions, and in particular the
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hypoglycemic region. Moreover, these improvements allow the LSTM neural network to surpass, in clinical acceptability, the SVR model which
is the best model of the GLYFE benchmark study. Through Figure 7, we can appreciate the differences in the predictions of the different models.
First, we can see the large variations and noise in the predicted glucose signal of the LSTM model. These oscillations are reduced for the other
models, becoming closer to the observed glucose signal. However, when using the cMSE loss function (pcLSTM* signal in purple), we witness a
large loss of accuracy in the hypoglycemia region (between 4:00 and 8:00 am). While the signal gpcLSTM*

PICA is very close to the signal observed
in the hypoglycemia region, this is achieved at the cost of an overall drop in accuracy. Finally, gpcLSTM*, is a compromise between the two.

Although we can conclude on the strength of using the gcMSE loss function in the training of deep models predicting future glucose levels
of people with diabetes, the different results show us that there are many possible tradeoffs between accuracy and clinical acceptability. The PICA
algorithm proposed in this study aims at selecting efficiently the best compromise between accuracy and clinical acceptability based on selection
criteria. Figure 8 gives a graphical representation of the changes in MASE, general AP rate and general EP rate of the models throughout the PICA
algorithm for all the patients. As previously discussed, there is no clinical criterion for glucose predictive models yet, so the only criterion for
stopping the algorithm here was the MASE exceeding 1. The figure first shows us that the number of iterations before stopping the algorithm is
variable from one dataset to another, and also from one patient to another (25.0 ± 3.96 for the IDIAB dataset, and 11.66 ± 5.06 for the OhioT1DM
dataset). This is explained, first of all, by the variable initial accuracy of the different patients, some patients being easier to predict than others (see
iteration 0 on Figures 8a and 8b). As we have observed through the analysis of Table 2, the main improvements in clinical acceptability are made at
the first iteration (iteration 1) of the algorithm when introducing the gcMSE loss function and exponential smoothing. Nevertheless, throughout the
algorithm, the clinical acceptability gradually improves at the expense of the accuracy. We can see that the rate of deterioration and improvement
is different from one patient to another, showing the very high inter-person variability of the diabetic population.

From Figure 8, we can also derive the computing time gained by using the PICA algorithm instead of standard grid search in the identification
of the optimal solution. Here the calculations are made given that a full training of a model and its finetuning last for 250 and 50 epochs, respectively.
In average, 1492 and 833 epochs were needed for the PICA algorithm for the IDIAB and OhioT1DM datasets respectively. In comparison, a grid
search of 30 and 20 iterations would have taken a total of 7750 and 5250, yielding a 5 to 6-fold decrease of the computing time made by the PICA
algorithm.

Even though there is currently no clinical criterion for glucose prediction models, we can analyze the use of two hypothetical criteria through
Table 4: a minimum AP rate, and a maximum EP rate. As expected, the harder the clinical criteria (higher threshold and/or combination of criteria),
the lower the number of patients passing the clinical test. Only one patient in the IDIAB dataset managed to have simultaneously more than 97%
AP and less than 1% EP. In addition, we can note a greater success of IDIAB patients on these clinical tests, compared to OhioT1DM patients.
As previously mentioned, these differences in clinical performance are due to the difference in experimental systems. While the final evaluation
of the OhioT1DM dataset is done every 5 minutes, it is done every 15 minutes for the IDIAB dataset. In addition, the glucose signal of IDIAB
patients is overall less noisy, and therefore more stable and easier to predict. Thus, for a future practical use, the clinical criteria must be rigorously
standardized.

Finally, we note that the MASE on the testing set (the one reported in Tables 2 and 3) is slightly higher than 1 (1.03 and 1.01 for the IDIAB
and OhioT1DM datasets). Using such a stopping criterion, we could have assumed that the final MASE on the testing set would be less than 1, as
it is the case on the validation set. This happens because the test subset is not fully representative of the validation subset. This is due to the general
small quantities of data in the datasets, negatively impacting the representativeness of these subsets. We also note that the standard deviation for
the IDIAB dataset is higher, showing that the final value of the MASE is highly variable depending on the subject. Thus, the accuracy of the PICA
algorithm would be improved by using more data (which would also improve the performance of the models in general).

Table 4: Number of patients within a given dataset that can satisfy different clinical criteria (minimal AP rate or maximal EP rate) through the PICA algorithm.

Clinical Criterion Dataset

AP (≥) EP (≤) IDIAB Ohio

80 - 6 6
90 - 6 3
95 - 4 0
97 - 3 0

- 7 6 6
- 5 6 4
- 3 6 3
- 1 4 0

80 7 6 6
90 5 6 3
95 3 4 0
97 1 2 0

6. Conclusion

In this study, we have proposed a framework for the integration of clinical criteria into the training of deep models. Clinical criteria are often
different from standard statistical metrics used as loss functions. As a consequence, the best model, given a loss function used during its training,
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Fig. 8: Evolution of the MASE and CG-EGA (AP and EP) metrics throughout the PICA algorithm for the IDIAB and OhioT1DM datasets. Iterations 0 and 0*

respectively represent the results of the model trained with the MSE loss function before and after smoothing the predictions.
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is not necessarily the model with the best clinical acceptability. We address this issue from the perspective of the challenging task of predicting
future glucose values of people with diabetes.

In glucose prediction, the CG-EGA metric measures the clinical acceptability of the predictions. In particular, it assesses the safety of
the predictions by looking at the prediction accuracy and the predicted rate of change accuracy. Moreover, the metric behaves differently for
the different glycemic regions, some errors being more dangerous than others without being high amplitude errors. Starting from the cMSE loss
function we proposed in a previous work (De Bois et al. (2019)) that penalizes the model during its training not only on prediction errors but also on
predicted variation errors, we proposed to personalize the loss function to the glucose prediction task. Based on the CG-EGA, this personalization,
called gcMSE, weights the errors differently depending on the scores obtained in the P-EGA and R-EGA. Finally, we proposed the PICA algorithm
to obtain the solution that maximizes the accuracy of the model while at the same time satisfying given clinical criteria.

We evaluate the different proposed loss functions and the PICA algorithm with two different diabetes datasets, the IDIAB and the OhioT1DM
dataset. First, we showed that the cMSE loss function increases the coherence of successive predictions, improving the clinical acceptability of
the models. However, this improvement comes at the cost of a decrease in the accuracy of the model. Then, we showed that the gcMSE further
improves the clinical acceptability by reducing the rate of life-threatening errors. Finally, we demonstrate the usefulness of the PICA algorithm
that help in the selection of the desired tradeoff between general accuracy and clinical acceptability.

LSTM recurrent neural networks are not the only models that can use the proposed approaches. In future works, it would be interesting to
apply them to other promising models. For instance, they could be used with models that, by nature, predict the whole signal trajectory up to the
prediction horizon (e.g., kernel adaptive filters Yu et al. (2018)).

The analysis of different clinical criteria showed that not all the patients were able to meet them easily. This is related to the difficulty of the
glucose prediction task of the patient, varying from patient to patient, but also to the nature of dataset, and in particular to the devices used for
the data collection. These factors would need to be taken into account when creating future regulations for the use of such models by people with
diabetes.
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