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A Deep Reinforcement Learning Decision-Making Approach for
Adaptive Cruise Control in Autonomous Vehicles*

Dany Ghraizi', Reine Talj! and Clovis Francis

Abstract—1In the evolving automobile industry, Adaptive
Cruise Control (ACC) is key for aiding autonomous traffic
navigation. Ideal ACC systems can decelerate to low speeds
in stop-and-go traffic, maintain a safe following distance,
minimize rear-end collision risks, and lessen the driver’s need
to continually adjust vehicle’s speed to match traffic flow. In
this paper, we offer a Deep Reinforcement Learning-based
adaptive cruise control (DRL-ACC) system that creates safe,
flexible, and responsive car-following policies agents. Instead
of using discrete incremental and decremental values or a
continuous action space, we suggest constructing a discrete
high-level action space to accelerate, decelerate, and hold
the current speed. We also provide a comprehensive, easy-
to-interpret multi-objective reward function that reflects safe,
responsive, and rational traffic behavior. This strategy, trained
on a single steady-state flow car-following scenario, promotes
steadiness, responsiveness, and shows better generalization to
diverse car-following scenarios. Results are also compared to
the conventional Intelligent Driver Model (IDM). We further
explore the model’s potential to avoid rear-end collisions and
facilitate future integration of lane-change maneuvers, which
will increase its effectiveness in emergency situations.

I. INTRODUCTION

As the research towards fully autonomous vehicles is still
in progress [1], users now have easy access to lesser degrees
of vehicle automation with a variety of driver-assist technolo-
gies called Advanced Driver Assistance Systems (ADAS)
[2], these technologies include (adaptive) cruise control [3],
lane-keeping assistance [4], automated emergency braking
[5], and lane departure warning, among others.

Adaptive Cruise Control (ACC) systems have become
an essential component in the development of intelligent
transportation systems, they contribute to safety as they
help maintain a safe following distance to reduce the risk
of rear-end collisions. They also reduce the need for the
driver to constantly adjust the vehicle’s speed in response to
changing traffic conditions leading to almost full longitudinal
and lateral accelerations thus enhancing passenger’s comfort.
Some more advanced ACC systems can even stop the vehicle
completely and then resume moving, which can be very
helpful in congested areas [6]. In contrast, a poor performing
ACC system will lead to congestion and traffic oscillation,
relying on Driver Intervention thus wasting commuter’s time
and increasing energy consumption and pollution while de-
feating the purpose of having an automated driving assistance
feature and increasing the driver’s workload and stress levels.
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Elementary classical control theory models such as P,
PI, or PID controllers can be employed [7], [8]. However,
adjusting the controller gain to the optimal setting can
pose challenges for more complex systems. More advanced
approaches such as Model Predictive Control (MPC) have
been used on a dynamic model of the system being controlled
to predict future behavior and optimize a control sequence
over a finite time horizon [9]. Alternatively, the Krauss model
[10] or the Intelligent Driver Model (IDM) [11], both model-
based strategies, consider the desired time headway, desired
speed, and speed difference between the ego vehicle (the
vehicle under control) and the leading vehicle to calculate the
appropriate acceleration or deceleration. Constraints on these
approaches arise from the ability to handle uncertainties, and
the size of the prediction horizon.

Leveraging Deep Reinforcement Learning (DRL), we can
now optimize autonomous vehicles’ driving behaviors, sig-
nificantly enhancing safety, efficiency, and performance in
a way that was not feasible before [12]. The application of
Deep Reinforcement Learning (DRL) to ACC has recently
gained significant attention due to its ability to solve the
issues mentioned while also achieving better performance
by handling high-dimensional state spaces, discrete and con-
tinuous control actions, and intricate, dynamic environments
[13]. When there are no modeling mistakes and the testing
inputs fall within the training data range, the authors of [14]
show that the DRL solution is equivalent to MPC with a long
enough prediction horizon. Additionally, they draw attention
to DRL’s shortcomings with regard to machine learning
generalization and its performance when there are modeling
mistakes. In [15] they generate car-following policies that
are safe, human-like, and comfortable. The methodology
differs from current approaches by defining the action space
of the DRL agent using discrete incremental/decremental
actions instead of continuous ones, reflecting how human
drivers adjust throttle and brake pedal levels and also in-
clude explicit actions for holding and coasting, which are
typically excluded in ACC systems. The reward terms are
also completely derived from the real-world dataset collected
from a human driver. ACC 4S [16] is a DRL approach
imposing state-specific safe sets as output constraints on
the policy. The authors sought to prevent rear-end collisions
with the vehicle in front where the safe sets were derived
from the Responsibility-Sensitive Safety model [17] and
regulatory standards, which provided an upper bound for the
demanded acceleration. On the other hand, combining Deep
Deterministic Policy Gradient (DDPG) [18] and Coopera-
tive Adaptive Cruise Control (CACC) [19], the authors in
[20] model the car-following process as a Markov decision
process (MDP) to calculate CACC and DDPG concurrently
at each frame. The highest reward determines which of the
CACC and DDPG actions is better. A rule to guarantee that
the acceleration change rate stays below a desired value is



also included in the approach in a similar way. However,
integrating multiple control strategies introduces additional
complexity, making the system more sensitive to modeling
errors or inaccuracies.

In this study we describe the design and implementation
of our DRL-based ACC system, providing an overview of
the perception, decision-making, path planning and control
modules. We also detail the observation-space, the high-
level action-space, the architecture of the DRL agent and
the reward function. The efficacy of the proposed system is
evaluated through extensive simulations under varying traffic
scenarios. The main contributions of this study are:

o Providing a modular and distinctive Al-based ACC
system with good generalization capabilities which
adaptively responds to dynamically changing traffic
situations without the need for large datasets or the
challenging process of fine-tuning. This proposed strat-
egy alleviates the drawbacks of static model based
techniques.

« Providing a high-level discrete-action model that aims to
build the velocity profile (low-level) within a trajectory
planner for the controller to follow through the accel-
erator and brake pedals paired with a holding action,
which is a simpler action space for the neural network
as opposed to the typical discretization of acceleration
data into incremented/decremented values or the usage
of a continuous action space.

o Placing the ACC behavior within the framework of an
MDP structure with a complete and straightforward re-
ward function, drawing on prior transportation research.
By employing a deep-Q network, vehicles can respond
safely and more effectively in complex and continually
evolving traffic conditions.

The rest of the paper is organized as follows: Section II
describes the proposed DRL-based ACC approach, including
the DRL framework, the ACC system’s design, and the re-
ward function. Section III describes the methodology adopted
in this study, including the training and its environment.
Section IV presents the simulation results, demonstrating the
effectiveness of the proposed system in optimizing collision
avoidance, car following behavior, and speed modulation. Fi-
nally, Section V concludes the paper and discusses potential
avenues for future research.
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Fig. 1: Decision-Making DRL-ACC Architecture

II. PROPOSED DRL-BASED ACC ARCHITECTURE

Fig. 1 represents our DRL-based ACC Decision making
architecture which is based on our previous work on Trajec-

tory Planning [21] presented in Fig. 2.

A. Perception

The perception block is beyond the scope of this paper. In
this study, the output of the perception module is considered
as a representation of an occupancy grid, as explained in
[21]. In summary, a global occupancy grid is generated from
a global map. The local occupancy grid is then derived from
the global occupancy grid based on the vehicle’s position
and orientation. The local occupancy grid consists of cells
measuring 400 * 400, with each cell representing an area
of 25 * 25 cm. These dimensions are chosen to match the
perception system’s horizon. To enhance collision checking
in terms of accuracy, efficiency, and time consumption, the
local occupancy grid is then converted into a clearance map
[22].

B. Observation Space

The state of the MDP is defined by a tuple (Seg0,S;)
in the Frenet Frame [23] where the first vector Scg, is
the ego vehicle states and S; is the state vector of the
4 nearest surrounding vehicles where i indicates the i
vehicle. Sego = (vegm theadwaya wegoa dcenterlanea laneego)
consists of the ego vehicle’s speed v¢4,, the time headway to
the preceding vehicle tjcqadway. the ego vehicle orientation
Yego, the distance to lane center deenteriane, and the lane
occupancy laneego. Sothers = (Vi, long;, lat;, 1;, lane;) are
the respective other vehicles’ states which are the relative
speed with respect to the ego vehicle v;, relative longitudinal
distance long;, relative lateral distance lat;, relative orienta-
tion v;, and lane occupancy lane;. If the ego vehicle is faster
than the other vehicles then v; would be negative, and vice
versa if it is slower. Similarly, if the other vehicle is behind
the ego vehicle then long; would be negative, and vice versa
if it is in front of it. All the states that can be normalized are
normalized before being passed into the network according
to the equation below. For example the urban speed limits
used are defined by the traffic laws in France [24]. Some of
the observation states are shown in Fig. 3.

X - sz'n
XNormalized = —————— 1
Normalized Xmax — Xmin ( )

where X refers to the state to be normalized.

C. Action Space

The action space (a1, as,a3) consists of accelerate aq,
brake ag, and a holding action that maintains the current
speed as, where the vehicle follows a predefined velocity
profile starting from a desired velocity profile of the base
frame and is calculated for each point of the candidate path,
detailed in [21]. This takes into consideration the speed limit
(V) [24], and is imposed by the velocity limits of the base
frame and curvature of the road, and the lateral acceleration
to improve vehicle stability and passenger comfort criteria by
keeping the lateral acceleration under a maximum threshold
|Gye | = 4m /s as stated in [25].

D. Vehicle Dynamic Model and Control

Our algorithm incorporates a comprehensive longitudinal
and lateral vehicle model developed using the multi-body
formalism described in [26]. The model takes wheel driv-
ing/braking torque (7,,) and steering angle (§) as inputs.
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Fig. 3: Some observation states of the system and the zone
occupancy of the ego vehicle. Ego vehicle in yellow and
other vehicles in green.

Utilizing the Dugoff model for estimating tire forces and per-
forming model matrix calculations, it generates the following
outputs: longitudinal () and lateral (3j) vehicle accelerations,
yaw rate (¢), and wheel angular velocities (w;;).

For control purposes, we have opted for a second-order
sliding mode based on the super-twisting algorithm. This
choice ensures robust stability while minimizing chattering, a
common issue in sliding mode control. The complete model
has been validated using the SCANeR studio simulator
across various driving conditions. In summary, our algorithm
incorporates a thorough vehicle model and employs advanced
control techniques to optimize performance. Through ex-
tensive validation, we have ensured that the model behaves
accurately and reliably in different scenarios.

E. Reward Function

If rewards are sparse, it’s difficult for the agent to figure
out which actions are beneficial and which are not. There-
fore the reward function is a rich multi-objective function
(consisting of safety, collision avoidance, and car-following
behaviors) that utilizes the reward shaping technique, based
on logical driving behavior, where additional rewards are
provided to guide the agent towards the desired behavior.
It consists of a safety reward R,fety and a speed reward
Rspeeq. The safety reward consists of 3 sub-rewards where
each of them is weighted w; along with the speed reward in
the main reward. The weights were chosen through testing in
order to balance the bias of the agent. The Reward function
is as follows:

Rsafety =w - Rfront + wa - Rpger + w3 - Reotlision
R = Rsafety + wy - Rspeed
2

where w; = [1, 0.5, 1, 0.35].

o Safety R, ct,: The safety reward is split into 3 rewards

that govern the collisions R;oiiision, and the front
Ryront and back Rpecr, gap of the ego vehicle with
other vehicles. According to Fig. 3 the vehicle could be
in one of 3 zones at each time: 1) car-following zone
where the ego vehicle is following the front vehicle
at a safe distance with a fairly similar speed, 2) risk
zone where the ego vehicle is too close to the front
(or back) vehicle such that the relative distance and
time headway are less than the desired values, and 3)
catch-up zone where the ego vehicle is too far away
from the front vehicle such that the relative distance
and time headway are more than the desired values.
The agent is rewarded in the car-following zone if it
is within 40.5s of the Desired Time Headway DT H
which is set at 2 seconds or within +3 meters of the
Distance Error DE and penalized otherwise, when it
is in the other zones, according to the Time Headway
T'H and the Distance Error. Additionally, it is rewarded
if it maintains the same speed as the other vehicle
when in the car-following zone but penalized otherwise,
in the risk zone it is rewarded if it slows down and
penalized otherwise, and it is rewarded in the catch-up
zone if it accelerates to catch up when it lags behind, but
penalized if it is slower. The calculations are achieved
according to the equations below:

TH =2 ,DTH=2
ego
vz (€)
DE D - DSO + ﬁ

c—max

Where agec—mae 18 the maximum deceleration, D is a
minimum safety gap and D is the distance between the
two vehicles, V.4, is the ego vehicle velocity. Together,
DE is the error with the safe-stop-distance.

In the risk zone, we apply the penalty P;, and in the
catch-up zone we apply the penalty P». The equations
are shown below:

Py =—(ki-(TH — DTH)* +ky-DE?) (4
Py = RB — (|Dyront| x k) 5)

where k1 = 0.5 and ko = 0.5 are weighting factors,
k = 1 is the rate of the negative reward, RB = —0.5
is the Reward Baseline, D,..,¢ is the relative distance
to the front vehicle.

Based on the relative speed of the ego vehicle, in the



car-following zone we apply the reward-penalty SRy,
in the risk zone we apply the reward-penalty S Ro, and
in the catch-up zone we apply the reward-penalty S R3.

V;—(=0.015) .
SRy = { 0015-(-0.015) if —0.015<V; <0.015
—abs(V;) -k otherwise
(6)
v .
_ Joos it V; >0.05
ot {abS(Vi) -k otherwise D

She %}231) if —0.1<V;<—0.05 ®
3 —abs(V;) -k  otherwise

where V; is the normalized relative speed, and k = 2 is
the rate of the negative reward.

For o = DT H + 0.5, and the above equations motivat-
ing the vehicle to either speed up, slow down, or hold
its speed, the front gap reward would be:

SRy +1 if (DTH <TH < a)
R B V(0 < DE < 3)
front = SRy + P, if TH < DTHV DE <0
SR3 + P, otherwise

©))
For the vehicles behind the ego vehicle, there is only a
penalty for when they are in the risk zone:

{SR3 + P, if (TH < DTH)V (DE < 0)
Rback =

0 otherwise
(10)
In case of collisions the vehicle is also penalized:
P.onision 1f collision
collision — . 11
Reon {0 otherwise an

o Speed R,p..q: The speed reward is based on the speed
limits of 57.6 km/h and 36 km/h since we consider
a common range in an urban environment [24]. This
however does not limit the agent’s decision to go beyond
these limits as can be seen in the testing results in
section V.

SP—-0.5 .
Rapoeqg = { 0-8-05 if SP <0.8
" —abs(SP) -k otherwise

12)

where SP is the normalized speed of the ego vehicle.

FE. Network Architecture

In Adaptive Cruise Control (ACC), the problem of learning
optimal control policies is formulated as a Markov Decision
Process (MDP) within Deep Reinforcement Learning (DRL)
[27]. ACC involves the DRL agent dynamically adjusting
the vehicle’s acceleration or deceleration actions a based
on the observed state s, which includes factors like the ego
vehicle’s speed, distance and relative speed with respect to
the leading vehicle. The agent’s objective is to maintain a
safe and comfortable distance from the leading vehicle while
adapting to traffic conditions. Through interactions with the
environment, the agent receives rewards R(s,a,s’) during
transition from state s to state s’ by taking the action a.

This reward function is evaluated based on the achieved
performance in terms of safety, comfort, and efficiency (when
energy consumption is considered) in the form of feedback
s'. These units form the MDP tuple (s,a,T, R) where the
transition function T(s, a, s’) defines the probability of
transitioning from state s to state s’ upon taking action a.

In our approach, we employ a Double Deep Q-Network
(DDQN) [28], [29] agent. A decision motivated by several
compelling factors, a DQN can adeptly manage environments
characterized by high-dimensional state spaces, effectively
process and learn from complex inputs, and provide inherent
generalization capabilities. Moreover, the stability and data
efficiency offered by DQN were additional factors influenc-
ing our choice. Techniques such as Experience Replay [30]
and Target Networks, integral to the DQN architecture, where
adopted to significantly enhance the learning process.

The agent’s architecture consists of a 2D convolutional
layer, configured with a 3x3 kernel and 128 filters, a stride
of 1 and padding set to ’same’. Subsequent to the convolution
operation, a Rectified Linear Unit (ReLU) activation function
is utilized to introduce non-linearity, supporting the extrac-
tion of complex features from the given inputs. Subsequent
operations involve a sequence of three fully connected layers.
The first layer houses 128 neurons, followed by a second
layer with 64 neurons where both are supplemented by
a ReLU activation function. The final layer comprises a
number of neurons equivalent to the number of elements
in the action space. The input of the architecture is the tuple
(Sego, Si) and the output is one of the actions (a1, as,as)
which consists of accelerate a;, brake as, and a holding
action that maintains the current speed as. The complete
network is designed to estimate Q-values for the agent’s
actions in response to its observations. The hyperparameters
of the DRL-ACC model are summarized in Table I.

Hyperparameter Value
Use DoubleDQN true
Minibatch Size 32
Look-Ahead Period 64 Steps
Target Update Frequency 1 Step
Experience Buffer Length 50,000
Optimizer ADAM
Learning Rate 0.01
Discount Factor 0.99

TABLE I: Hyperparameters of the DQN Agent

III. METHODOLOGIES

For training the DRL-Based ACC, the DRL inputs are
the observation space and the output is one of the actions
defined. The scenario used for training is car-following where
only 1 vehicle is placed in front of the ego vehicle on
the same lane where it accelerates and then maintains its
velocity throughout the rest of the episode. The road chosen
is a straight 2-lane road that extends up to 1000m. The
initial conditions for the position and speed are randomly
generated within the intervals [1,100]m, and [36, 54]km/h
respectively. Training is done on 5 seeds where the seed is
randomly chosen. The training initial conditions are consid-
ered to represent common normal car-following scenarios



with the starting distance headway between the vehicles
of each scenario varying between 15 and 40 meters. The
training episode length is 1000steps where the episode could
last between 30 and 90 seconds allowing the vehicle to
reach the end of the road successfully, however the episode
terminates if the leading vehicle goes out of the range
of perception for more than 50steps. This is because we
allow the agent during training to correct its situation by
catching up to the leading vehicle as defined within the
reward function. We trained the policy for 800episodes of a
total of 380 thousand steps, with a timestep of ¢ = 0.125s,
with an observed convergence of the discounted long-term
reward, and the moving average reward (windowsize = 50)
in Fig. 5. Based on the ranges presented in Table II, the other
vehicles are controlled using the Intelligent Driver Model
(IDM) [31] with the following parameters: a maximum
acceleration of 2m/ s2, a maximum comfort deceleration of
—3m/s?, a randomly generated desired velocity in the range
[36,54]km/h, an acceleration exponent of 4, and desired
distance and time headway of 3m and 1.8s respectively.

e
& S
& W«.{“

Beginning

/g

-

)
(N

Fig. 4: Testing Map

TABLE II: IDM Parameters [31]

Parameter Range Normal = Aggressive
(0) acceleration exponent {2, 4} 4 4

(Smin) min. desired distance gap 4.0-1.0 m 2.0 1.0

(v*) desired velocity 54-140 km/h  57.6 64.8

(tgap) desired time gap 1.8-1.0 s 1.5 1.0
(@mazx) Max. acceleration 1.0-2.0 m/s? 1.4 2.0
(beom r) comfort deceleration 1.0-3.0 m/s®> 2.0 3.0

IV. SIMULATION RESULTS

This section details the testing results of the DRL-Based
ACC where we can see that the reward function designed
was able to guide the agent towards the desired behavior in
scenarios which it was not trained in. The scenarios used for
testing are: 1) car-following a leading vehicle in front, 2) car-
following with both a leading vehicle and a following vehicle
in front and behind the ego vehicle respectively, 3) similar
to the second scenario, but the road is no longer straight
as it is a map of a rather realistic situation obtained from
the SCANeR studio simulator, which has both curved and
straight portions, as can be seen in Fig. 4, and finally 4) cut-in
and cut-out (4.1 and 4.2 respectively) of the leading vehicle
situated between the ego vehicle and another front vehicle.
As an added perspective to the behavior of the agent, we test

Reward per episode
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g
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>
100 £ —
0
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Fig. 5: Training Results

5) rear-collision avoidance with the vehicle behind the ego
vehicle that does not slow down when it is close to the ego
vehicle. We also added two additional scenarios, outside of
the training data speed, to the ego vehicle testing: 6) similar
to (2) where the leading vehicle accelerates aggressively,
and 7) an emergency case with sudden braking to near-zero
speed (3.6km/h) then maintaining this speed. These scenar-
ios follow the same generation process as in the training,
however they were tested on 10 different seeds. The testing
conditions mentioned enable us to test the performance,
adaptability and response-time of our model trained only
with one scenario of car following, in several scenarios
for which it is not trained: car-following at different speed
levels including near-zero speeds, collision avoidance in both
front-end and rear-end cases, speed modulation (accelerate,
decelerate and speed holding action), and cut-in and cut-
out cases. Several performance indicators are considered and
recalled in Table III: The average velocity of the ego vehicle
and other vehicles, the average time headway and distance
error (I'H and DF) and number of collisions.

The agent successfully maintains a time headway of at
least 2 seconds and a positive normalized distance error in
a car-following scenario with a relatively similar speed to
the vehicle it is following in scenarios (1 and 2), and even
with changing road curvature in scenario (3). In the case of
cut-in and cut-out (4.1 and 4.2), the agent is able to adjust
to the changes in the environment while still maintaining
acceptable time headway and distance error values. This is
present with the lower average speed in case of cut-ins and
higher average speed in case of cut-outs. However, the agent
seems to struggle with cut-outs where the time headway
dips under 2 seconds, but it was still able to maintain an
acceptable distance error value. On the other hand, it is
motivated to accelerate when there is no vehicle in front
as can be seen in the average speed of scenario (5). We
note that the time headway and distance error in this case
are only recorded when the vehicle behind the ego vehicle
is within the perception range which means the ego vehicle
accelerated away from the previous vehicle for the majority
of the episode. In (6) the agent showed the ability to adapt
to a speed higher (Avg. V.4, = 61.5459km/h) than the
training data speed. Meanwhile in (7) the agent showed its
ability to slow down significantly to near-zero speeds, lower
than the training data speed, and follow the leading vehicle
accordingly presented in Fig. 9. In all 7 scenarios the agent



TABLE III: Testing Results

Model Scenario Avg. AVego— front AVE. TH gront AVE. DE¢ront AVE. AVego_vack AVE. T Hpacrw Avg. DEjpqacer Collisions
(km/h) (s) (m) (km/h) (s) (m)
[€)) 1.5617 2.3406 0.5805 - - - 0
2) 1.066 2.1874 0.5442 1.0955 2.4295 0.5913 0
3) 2.0474 1.9139 0.4874 1.903 2.1570 0.3271 0
DRL-ACC “4.1) -2.4357 2.0836 0.4443 -2.0962 2.6422 0.5381 1]
“4.2) 3.7764 1.8268 0.4581 2.8047 2.7694 0.7069 0
[®) - - - 9.958 2.5690 0.7549 1]
6) 1.4184 2.1853 0.7505 - - - 0
(@) 2.1981 1.9827 0.2480 - - - 0
[€)) 1.741 1.4602 0.3723 - - - 0
2) 2.0466 2.0053 0.4951 4.1764 2.7669 0.6641 0
DMy *(3) -4.036 3.2410 0.6850 4.8571 2.3698 0.5276 0
°r % 4.1)  0.2934 2.3758 0.5269 4.8708 2.7999 0.5722 0
*4.2) -1.8994 3.1181 0.7015 0.3369 3.1274 0.5984 0
[®) - - - 9.126 2.4731 0.7054 1
(1) 1.5398 2.4396 0.5981 - - - 0
2) -2.8397 2.5596 0.5803 0.2005 2.8722 0.6321 0
IDM 4 3) -1.5775 2.4674 0.5943 5.4626 2.6636 0.6134 0
99 *#4.1) 0.5508 2.3902 0.5796 2.97 2.8298 0.6255 0
*4.2) 4.446 2.3846 0.5890 2.6759 3.0272 0.7245 0
[®)) - - - 18.9082 2.6301 0.7764 0

*The model does not keep the leading vehicle in the perception range at all time-steps.

has not experienced any front-end or rear-end collisions.
We also present the results of the IDM in both Agressive
IDMg44 and Normal I DM, driving style, where the IDM
driving style parameters are according to the parameters in
[31] summarized alongside our chosen values in Table II.
IDM,,,, appears to be less cautious in (1) and (2). It also
loses sight of the leading vehicle in some cases of (3),
(4.1), and (4.2) where it shows a slow response to changes
in the environment and also manages to have 1 collision
overall. In (5) it performs similarly to our agent. I DMy,
performs similarly to our agent in (1), (2), and (3). However,
it also suffers from the same issues of IDM,,, in (4.1)
and (4.2), albeit less significantly. In (5) it presents high
acceleration, away from the vehicle behind it, as there is
no leading vehicle. As for (6) and (7), the IDM in (6) shows
similar performance, meanwhile in (7) it is noticed during
testing that the IDM tends to reach a full-stop instead of
maintaining the necessary very low speed which is not the
desired outcome from this scenario.

For further discussion, we will analyze the behavior of the
vehicle in the car-following, cut-out, and cut-in scenarios
against the IDM in both Agressive IDM,,, and Normal
IDM,,, driving styles.

« Car-Following. In the car-following scenario repre-

sented in Fig. 6, the leading vehicle brakes suddenly at
t = 12.5s and maintains its speed before it accelerates
at ¢ = 25s and decelerates again at t = 37.5s to reach
a steady state. The DRL agent is able to follow the
other vehicle and adjust its speed accordingly to a low
10km/h, while maintaining acceptable time headway
and distance errors. The actions of acceleration, braking
and holding of the agent are also better at responding to
the changes in the speed of the leading vehicle without a
huge difference in time headway and distance error. Our
DRL-Based ACC model outperforms the IDM models
in car-following as the IDM is not even able to catch-

up to the leading vehicle where the gap between them
exceeds the perception range at t = 6s and ¢ = 29.625s
which triggers the termination condition for the episode
if in training. A large steady state speed error is also
observed with both IDM models with respect to the
trained agent.

e Cut-in. In the cut-in scenario represented in Fig. 7,
the cut-in occurs at ¢ = 6.25s. Our model is able to
follow the new leading vehicle’s speed and to adjust
the time headway and distance error faster and more
appropriately than both the IDM models, even if the
time headway dips into the low value of 0.5s. However,
it maintains a time headway of less than 2 seconds
which is below the desired time headway. We notice
that the speed of 1D M, oscillates, this is because
it struggles to keep the vehicle within the range of
perception as can be seen in the time headway and
distance error figures. We also notice that DM,y
lags behind the leading vehicle but then overshoots in
acceleration to catch up to it.

« Cut-out. In the cut-out scenario represented in Fig. 8,
the cut-out occurs at ¢ = 6.25s. Our model is able to
quickly catch up to the leading vehicle and to maintain
an acceptable time headway and distance error values.
Both IDM models perform well in this scenario, how-
ever both models decelerate when cut-out occurs instead
of accelerating as our agent does, and they both show
long settling time to the reference speed, meanwhile
the I DM, loses sight of the leading vehicle for 10s
before catching up to it.

Overall the performance of the DRL-Based ACC is better
than both IDM models, presenting fast response time, better
speed following, comfortable driving, and the ability to
handle uncertainties in the car-following scenarios. This
is especially true since it was only trained on following
1 vehicle that accelerates to a constant speed which is
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maintained throughout the episode.

We believe that our model is therefore able to reduce
traffic congestion through its response to these changes thus
allowing a smoother traffic flow.

V. CONCLUSION

With respect to the training situation, we have built and
validated a car-following policy based on a discrete action
space of a DRL-ACC model with a logical and multi-
objective reward function. In addition to outperforming the
generally used comparable algorithm in terms of safety,
comfort, and response time, our thorough evaluations, carried
out in simulations encompassing numerous driving scenarios
while using car-following ACC also indicate expected logi-
cal behavior in the evaluated circumstances. The suggested
DRL-ACC policy generation and reward function, in our

opinion, is a step in the right direction toward accomplishing
tactical decision-making in the car-following environment
and resulting in behaviors that are similar to those of a human
being when accelerating, braking, and speed holding.

For future work, as it has demonstrated predictable re-
action behavior to the rear-end vehicle’s state in the en-
vironment, it may be scaled to incorporate lane-change
behavior utilizing this observation space. One such example
is the tested emergency lane change maneuver, shown in
Fig. 10, where the vehicle showed the ability to avoid
the sudden stop of a leading vehicle without having to
decelerate significantly, or the speeding of the rear vehicle
which lead to front-end and rear-end collisions respectively.
Expanding the behavior to incorporate decision-making calls
at crossroads and roundabouts would be another part. This
would necessitate updating the reward function and doing
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further testing as part of the autonomous vehicle’s whole
modular pipeline, which includes modules of perception,
planning, decision-making, and control. Then, taking into
account the fact that driving is safety-critical, we might move
forward with real-world deployment. For this, we would need
a safety monitoring algorithm that could act when necessary.
By doing so, our DRL agent might be incorporated into
human driving as a high level producer of longitudinal and
lateral decisions.
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