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Abstract: In this review we have surveyed the literature on the autonomous vehicle focusing
on the decision-making architecture. The main contribution of this paper is to provide an up-
to-date reference that tries to cover as much as possible this broad topic rapidly. Therefore,
after analyzing the body of literature, we were able to present a detailed overview of the usual
anatomy of the decision-making system, review the coverage of public reviews and surveys
available around the topic, present the environment and vehicle representation, and showcase
the literature through: trajectory planning, risk-uncertainty assessment, and mimicking human
behaviour mainly using perception-based methods. We also classified the literature according
to scenarios covered, action-space used, and whether or not they emphasize the time horizon or
frequency or time-step.

Keywords: Intelligent Autonomous Vehicles; Decision Making for Autonomous Driving in
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1 Introduction

Autonomous vehicles (AV) is a field of study and develop-
ment of great interest for automotive manufacturers and
academics. The rate at which research and development
is being done by industry and academia alike is very high
for this domain. Several competitions have been organized
around the AV, during the last decades, such as the
DARPA Challenges in the USA, the Korean competitions,
the European GCDC competitions, Bosch Future Mobility
Challenge (BFMC) etc.

The vehicles need to build, monitor, and synthesize an
internal representation of the environment around them
then use this representation to formulate decisions and
interact in an appropriate manner that respects the safety
of the driver, avoid collisions with vehicles and pedestrians,
while also respecting traffic rules. The performance of
an autonomous vehicle is assessed based on 3 modes of
operation consisting of 5 levels. The first mode is called
Assisted mode containing levels 1 and 2, the second mode
is called Automated mode containing only level 3, and
the third mode is called Autonomous mode containing
levels 4 and 5. In these levels the ability of the car
to handle different driving conditions, the amount of
attention needed from the human driver side, and the
safety issues are described.

The work will focus on finding the optimal decision archi-
tecture considering the different constraints and challenges
inherent in this problem. This allows the AV to transition
from the Assisted mode (level 2) to the Automated mode
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(levels 3) and the Autonomous mode (level 4). Therefore, it
is necessary to assess the methods, with respect to several
criterion: Learning-based or Classical-based, the ability to
tackle the uncertainty of other vehicles that is affecting
both the environment and the autonomous agent’s state
drastically, their ability to handle the vast number of
scenarios that in turn pose additional exploration on the
agent to find the safest and best decision (roundabouts
and intersections, weather conditions, driving behaviors,
etc.)

The goal of this paper is to provide researchers with an
up-to-date overview for reference in their research within
this broad field. Therefore, this study addresses the litera-
ture in Classical- and Learning- based approaches through
environment and vehicle representation, and available sur-
veys and reviews. It showcases them across end-to-end
and modular designs, trajectory planning, risk-uncertainty
assessment, and mimicking Human Behaviour through
mainly perception-based methods. It also classifies the lit-
erature through scenarios, action space, and lists the time-
horizon, timestep, and frequency rate when emphasized.

2 Survey Literature Coverage on Decision Making

Public assessments and surveys on autonomous vehi-
cle decision-making have been made available. The two
major types of research techniques are learning-based
approaches and traditional methodologies. A complete
study (Liu et al. [2021]) is offered, focusing especially
on learning-based decision-making strategies that have
recently evolved, presenting the different methods within
both classical and learning-based approaches alongside



their pros and cons, as well as an overview of applications
in autonomous cars that are presently in operation.

Table 1. Decision Making System in Modular
Approach (Badue et al. [2021])

Subsystems Methods

Route Planning
Goal

Directed
Separator Hierarchical Bounded-Hop

Path Planning
Graph

Search

Interpolating-

Curve

Behaviour Se-

lector
FSM Ontology

Markov

Decision

Process

Motion

Planning

Graph

Search

Sampling

based

Interpolating

Curve based

Numerical

Optimization

Obstacle

Avoidance

Adjust

Speed

Control

Direct

Hardware

Actuation

Path Track-

ing

Another main aspect is exploring the two main architec-
tures of the system: End-to-End, and Modular. One mod-
ular design is offered in (Badue et al. [2021]), where the
survey’s authors present a full and in-depth examination of
the whole architecture of the pipeline for autonomous cars:
The Perception System and the Decision-Making System.
Each of which is made up of a number of modules which
serve as the modular architecture’s base. As shown in
Table .1, the latter is usually separated into a large number
of subsystems that are in charge of responsibilities such as
route planning, path planning, behavior selection, motion
planning, and control. For a more detailed view on the
decision-making partition see Fig. 1.

Fig. 1. Illustration of Decision-Making System Architec-
ture Inputs and Outputs of modules presented in
(Badue et al. [2021])

In their overview, the Intelligent Autonomous Robotics
Automobile (IARA), a self-driving vehicle built by the
Universidade Federal do Esprito Santo (UFES), is also

fully discussed. IARA, the country’s (Brazil) first au-
tonomous automobile, traveled 74 kilometers on highways
and city streets in the evening of May 12, 2017. They end
by outlining important self-driving car research platforms
produced by universities and technology firms that have
received media attention. Among the most notable are: 1)
Baidu, one of China’s largest technological corporations,
which is working on the Apollo open source self-driving car
project. The project’s source code is accessible on GitHub.
2) Navya and Transdev which are both French companies
that are developing self-driving buses. Several of Navya’s
buses are already being tested in Australia, Asia, and
Europe, and Transdev is holding a public demonstration
of its self-driving buses.

Similarly in (Sharma et al. [2021]), the goal is to provide a
thorough, exhaustive, and critical analysis but mostly on
the available motion and behaviour planning methodolo-
gies for AVs in terms of their viability, capacity to deal
with dynamic restrictions and impediments, and comfort-
maximizing motion. The benefits, capability in handling
static and dynamic obstacles, vehicle limits, and limita-
tions in operating situations of the existing behaviour
planning systems have also been highlighted.

The End-to-End approach directly maps sensory inputs to
steering and acceleration commands as a single machine
learning task. A major advantage of such architecture
is its simplicity and not having to incorporate expert
designers into the system. A major disadvantage is the
black-box nature of this method where it is difficult or
impossible to figure out why the model misbehaves. On
the other hand, the Modular approach, as discussed in the
previous surveys, splits this direct mapping into separate
modules, each its own entity that contributes to the entire
performance of the system Fig. 1.

Fig. 2. Candidate End-to-End Architecture (Tampuu et al.
[2022])

Thus, End-to-end driving literature on learning strategies,
input and output modalities, network architecture, assess-
ment approaches, and evaluation methods are presented
in (Tampuu et al. [2022]). Safety and interpretability, two
concerns that remain a high priority for modern technol-
ogy, are also explored. The findings include a detailed
examination of the practices already in use and an ar-
chitecture that incorporates the most promising features

https://github.com/ApolloAuto/apollo


of fully autonomous driving systems. Actually, their ap-
proach is a compromise between the modular and end-to-
end paradigms Fig. 2.

After outlining the pipeline’s parts, despite being orga-
nized around its fundamental components — environment
modeling, modeling abstractions, state and perceptual
model descriptions, appropriate rewarding, and realization
of the underlying neural network — this study discusses
DRL theories (Aradi [2022]). On this note, the authors
of (Kendall et al. [2019]) showcase the first full-sized
autonomous car to use deep reinforcement learning for
autonomous driving in order to move away from the need
of pre-set logical rules, mapping, and direct supervision.
Using solely on-board processing, a continuous deep re-
inforcement learning system teaches the agent how to
operate a real-world autonomous car in a few episodes,
where it is able to complete training for lane following in
less than 30 minutes, controlling speed and steering angle.
The design of the algorithm is a straightforward state ma-
chine where the safety driver manages the various duties.
The four tasks are defined as train, test, undo, and done.
Although this reward function is universal, and have few
drawbacks. It excludes conditioning on a predetermined
navigational goal. It is quite sparse as well. Interventions
will happen much less frequently as the agent gets better,
which will lead to weaker training progress.

Furthermore, in (Talpaert. et al. [2019]), they go into
further detail on the DRL algorithms, DRL applications
for AV, and the components of the AV system. They
describe the major issues that must be addressed before
DRL may be widely used in AV applications. One study
argues that a reliable strategy for navigating un-signalized
junctions could be developed by examining the effective-
ness of deep reinforcement learning techniques with a
focus on responding to inadequate knowledge (Isele et al.
[2018]). As a result, they examine several DRL network
topologies and present two that they consider successful.
The ideal system determines when to start accelerating. As
a means of enhancing safety for autonomous vehicles, their
second contribution investigates exploratory behaviors, es-
pecially creeping propensities. Utilizing the networks Deep
Q-Network (DQN), DuelingDQN, and Prioritized Reply
DQN (PRDQN), it is possible for them to learn rules that
beat frequently-applied heuristic approaches in a number
of areas, including task completion time and goal success
rate, however they have a narrow range of generalizability.

On the other hand, (Zhu and Zhao [2022]) perform a com-
prehensive analysis of not only DRL, but also Imitation
Learning (IL), or Autonomous Driving Policy Learning.
Given that the performance of the decision-making system
is greatly influenced by the perception component of the
AV, (Yurtsever et al. [2020]) highlights unresolved issues
and examines the technological side of autonomous driv-
ing. An overview of the coverage of different aspects in
the AV with regard to decision making discussed in these
surveys is presented in (Table. 2). We can see from this
table that the most prevalent topics are Uncertainty-Risk
Assessment, Modular and End-to-End designs, Reinforce-
ment Learning and Classical approaches.

Before going into detail about the literature, we present
two tables that summarize the action space used (see Table

.3) and the coverage of scenarios (see Table .4). As well as
whether or not the time horizon, frequency, and time-step
information is provided (see Table .5). We can see that
the most used High-level actions are Turn Left-Right, and
Lane Change-Keep. While the most used Low-level actions
are Acceleration-Deceleration and Steering Angle. In the
scenario classification of the literature, we can conclude
that the literature consists of Urban (Cross Intersection,
Roundabout, Merging) and Lane Change in Highway
driving. However, in (Li et al. [2021]), they focus on three
common situations that encompass intersectional straight-
crossing route crashes as well as rear-end, sideswipe, and
angle collisions. Finally, it is clear from the last table
that not all papers provide us with information on their
planning horizon etc.

3 Environment and Vehicle Representation

The representation of the environment and the ego vehicle
impacts the ability to assess the reliability and accuracy of
the models and scenarios. Having a simplistic environment
does not take into consideration many of the constraints,
dynamics, and real-world challenges that autonomous ve-
hicles need to handle. On the other hand, having a complex
design is also not beneficial because it is more difficult to
scale and interpret, and it is computationally inefficient.
Therefore, striking a balance between realism and feasibil-
ity is quite important.

3.1 Traffic Participants Representation

One of the simplest and most popular approaches is to
represent the environment using cartesian coordinates and
velocity. The ego vehicle can see every car within 200
meters of the sensor’s range where the locations, speeds,
and orientation of the vehicles traffic scenario relative to
the ego vehicle projected onto the center-line of the road
define the system’s condition (Speidel et al. [2020], Li et al.
[2022], Hoel et al. [2020]).

An occupancy grid provides the agent with richer in-
formation about the static and dynamic obstacles in its
surroundings through a discretized grid in Cartesian coor-
dinates which is created from a bird’s-eye perspective of
space (Isele et al. [2018], Qiao et al. [2018]). Every vehicle
in the area is represented by its heading angle, velocity,
and an indicator term that is either 1 or 0 depending
on whether the vehicle is occupying a spot in the grid.
The generated/simulated rays from the ego vehicle are
related to the geometric data where a square grid with
a fixed size surrounding the vehicle is built at each time
step, with the center of the square representing the central
front of the ego vehicle. The square is then partitioned
into small squares. In conclusion, the agent determines the
distance and the velocity at each ray trace’s termination
(intersection) point, yielding an input observation vector.

Latent space representation is when data attributes are
learned, and representations are simplified, in order to
detect patterns. Mostly the information necessary to prop-
erly depict the original observation input is included in the
latent space representation of the data (Chen et al. [2022]),
utilizing past data such as position, velocity, the intents
of other road users, drivable zones, and road markers



Table 2. Survey Coverage of Decision Making

Literature
Liu et al.
[2021]

Talpaert.
et al. [2019]

Badue et al.
[2021]

Tampuu
et al. [2022]

Aradi
[2022]

Zhu and
Zhao [2022]

Yurtsever
et al. [2020]

Sharma
et al. [2021]

Year (20 - -) 21 19 21 21 20 21 20 21

Classical Methods X X X X

Learning
Based

Reinforcement Learning X X X X X
Imitation Learning X X

Components
Architecture

Global Planner Route and Path Planner

X X X X
Local Planner

Behavior Selector
Motion Planner
Obstacle Avoider
Control

End-to-End X X X X

Modular X X X X X

Modes of Architecture X X

Vehicle Modelling X X X X

Action Space X X

Scenario Classification X X

Uncertainty-Risk Assessment X X X X X

Candidate Architecture X X X

Table 3. Action Space based Classification of Literature

Decision Literature

High
Level

Turn Left/Right
(Li et al. [2022]), (Mitchell et al. [2020]), (Hoel et al. [2020]), (Duan [2020]), (Chen et al. [2019]), (Chen et al. [2021]),
(Hang et al. [2021]), (Naveed et al. [2021])

Lane Change-Keep
(Speidel et al. [2020]), (Li et al. [2022]), (Mitchell et al. [2020]), (Hoel et al. [2020]), (Duan [2020]), (Chen et al. [2019]),
(Chen et al. [2021]), (Hang et al. [2021]), (Naveed et al. [2021])

Emergency Braking (Speidel et al. [2020]), (Hoel et al. [2020])
Car Follow (Speidel et al. [2020])
Wait (Isele et al. [2018]), (Naveed et al. [2021])

Low
Level

Accelerate-
Deceleration

(Hubmann et al. [2017]), (Speidel et al. [2020]), (Isele et al. [2018]), (Hoel et al. [2020]), (Bernhard et al. [2019]),
(Emuna et al. [2020]), (Duan [2020]), (Chen et al. [2021]), (Li et al. [2021]), (Sharma and Sharma [2021]), (Wang et al.
[2021]), (Hecker et al. [2020]), Qiao et al. [2018], (Wang et al. [2022]), (Duhautbout et al. [2021, 2022], Karanam et al.
[2022], Said et al. [2021], Said. et al. [2022])

Maintain Velocity
(Isele et al. [2018]), (Mitchell et al. [2020]), (Duhautbout et al. [2021, 2022], Karanam et al. [2022], Said et al. [2021],
Said. et al. [2022])

Steering Angle
Change

(Emuna et al. [2020]), (Chen et al. [2021]), (Sharma and Sharma [2021]), (Hecker et al. [2020]), (Wang et al. [2022]),
(Duhautbout et al. [2021, 2022], Karanam et al. [2022], Said et al. [2021], Said. et al. [2022])

Table 4. Scenario based Classification of Literature

Scenario Literature

Urban

Driving

Cross In-

tersection

Signalized
(Ziegler et al. [2014]), (Bansal et al. [2018]), (Chen and Krähenbühl [2022], Chen et al. [2019, 2021]), (Chen

et al. [2022]), (Sharma and Sharma [2021]), (Hecker et al. [2020]), (Qiao et al. [2018]), (Wang et al. [2022])

Unsignalized

(Hubmann et al. [2017]), (Speidel et al. [2020]), (Isele et al. [2018]), (Bernhard et al. [2019]), (Ziegler et al.

[2014]), (Bansal et al. [2018]), (Chen and Krähenbühl [2022], Chen et al. [2019, 2021]), (Chen et al. [2022]),

(Sharma and Sharma [2021]), (Wang et al. [2021]), (Duhautbout et al. [2021, 2022], Karanam et al. [2022])

Roundabout
(Ziegler et al. [2014]), (Bansal et al. [2018]), (Chen and Krähenbühl [2022], Chen et al. [2019, 2021]), (Chen

et al. [2022]), (Sharma and Sharma [2021]), (Duhautbout et al. [2021, 2022], Karanam et al. [2022])

Merging
(Ziegler et al. [2014]), (Bansal et al. [2018]), (Chen and Krähenbühl [2022], Chen et al. [2019, 2021]), (Hang

et al. [2021]), (Chen et al. [2022]), (Sharma and Sharma [2021]), (Hecker et al. [2020])

Highway

Driving

Lane

Change

One

way

(Li et al. [2022]), (Mitchell et al. [2020]), (Hoel et al. [2020]), (Ziegler et al. [2014]), (Emuna et al. [2020]),

(Duan [2020]), (Bansal et al. [2018]), (Chen and Krähenbühl [2022], Chen et al. [2019, 2021]), (Hang et al.

[2021]), (Chen et al. [2022]), (Sharma and Sharma [2021]), (Hecker et al. [2020]), (Naveed et al. [2021]),

(Duhautbout et al. [2021, 2022], Karanam et al. [2022], Said et al. [2021], Said. et al. [2022])

Multi

way

(Ziegler et al. [2014]), (Bansal et al. [2018]), (Chen and Krähenbühl [2022], Chen et al. [2019, 2021]), (Chen

et al. [2022]), (Sharma and Sharma [2021]), (Hecker et al. [2020]), (Duhautbout et al. [2021, 2022], Karanam

et al. [2022], Said et al. [2021], Said. et al. [2022])

Lane

Following
(Kendall et al. [2019])

With Occlusions (Isele et al. [2018]), (Ziegler et al. [2014]), (Bansal et al. [2018]), (Karanam et al. [2022])

With Other Vehicles

(Hubmann et al. [2017]), (Speidel et al. [2020]), (Li et al. [2022]), (Isele et al. [2018]), Mitchell et al. [2020],

(Hoel et al. [2020]), (Bernhard et al. [2019]), (Ziegler et al. [2014]), (Duan [2020]), (Bansal et al. [2018]),

(Chen and Krähenbühl [2022], Chen et al. [2019, 2021]), (Hang et al. [2021]), (Chen et al. [2022]), (Sharma

and Sharma [2021]), (Wang et al. [2021]), (Hecker et al. [2020]), (Qiao et al. [2018]), (Wang et al. [2022]),

(Duhautbout et al. [2021, 2022], Karanam et al. [2022], Said et al. [2021], Said. et al. [2022])

With Pedestrians
(Ziegler et al. [2014]), (Bansal et al. [2018]), (Chen and Krähenbühl [2022], Chen et al. [2019, 2021]),

(Sharma and Sharma [2021]), (Hecker et al. [2020]), (Duhautbout et al. [2022])

Real-World Implementation (Ziegler et al. [2014]), (Bansal et al. [2018]), (Kendall et al. [2019])

etc. The autoencoder, a neural network that serves as an
identity function, is one popular deep learning model that
modifies the ’closeness’ of data in the latent space. After
compressing and decompressing the input, the system’s
speed and performance are enhanced (Iroegbu and Mad-

havi [2021]). Another element is the mask where the main
goal is to allow the system to convey comprehensible se-
mantic interpretations of its environment in order to make
it understandable. This semantic mask offers a bird’s-eye
view of the road conditions and objects. Furthermore, low



Table 5. Planning Stepsize, Frequency, and Horizon

Literature
Planning
Step-Size
(s)

Re-planning Frequency (Hz) Planning Horizon (s) Notes

Hubmann et al. [2017] 1 1 12 for 1 vehicle and 7.5 for 9 vehicles
Adaptive Belief Tree (ABT) has 11000
particles

Speidel et al. [2020] 0.2

Isele et al. [2018] 0.2
Max. number of steps per trial/episode
= 100 steps = 20s

Hoel et al. [2020] 1
Max. number of steps per trial/episode
= 100 steps

Bernhard et al. [2019] 0.2
Duan [2020] 40 Max. Steps = 5000
Kendall et al. [2019] 10 for RL and 100 for controller

Chen et al. [2021] H = 5 and in ProcGen H = 30
Where rewards are discretized from t +
H -1 at time t

Lee et al. [2017] 4 For past trajectory observations t = 2s

Chen et al. [2022] 0.1 4
Episode Length = 500, action is fixed for
every 4 environment steps due to usage of
frame skip of 4 (for temporal extension)

Wang et al. [2021]
3, 4, 5, 6 for vehicle passing
straight, and 3, 4, 5 for vehicle
steering/turning.

80 Trajectories in each.

(Duhautbout et al.
[2021, 2022], Karanam
et al. [2022])

0.2

Said et al. [2021]
The vehicle block (model and
controller): 50Hz, and the rest of
the system: 5Hz.

Said. et al. [2022]
The two last modules: 50Hz
while the others: 10 Hz.

dimensional intermediate representations of the environ-
ment called ”Affordances” (Sharma and Sharma [2021])
have the same effects. This representation is especially
used in Deep Reinforcement Learning (DRL) approaches.

There can be many indicators depicting driving conditions
(Duan [2020]). The definition and size of the state space
can also be dependent sometimes on the performance of
the agent (Bernhard et al. [2019]) where the results of the
authors’ benchmarking of the various observation spaces
reveal that the relative state information combined with
the ego-vehicle state outperformed the other represen-
tations (i.e. cartesian coordinates, distance, orientation,
velocity and Time To Collision (TTC)). In (Hubmann
et al. [2017]), Frenet-Serret formulae (Erkan and Yüce
[2018]) are used to define the locations of the cars along
the route of the vehicle at a specific location. In (Emuna
et al. [2020]) two observations (apart from the range sensor
measurements) constitute the state-space, which has 310
dimensions, in order to infer temporal information.

A privileged AV agent can have direct access to the true
state values of the environment through the simulator
where it is assumed that the ego vehicle has perfect
knowledge in specific areas (Li et al. [2021], Wang et al.
[2022, 2021]). Using the driving logs, (Chen et al. [2021])
creates a forward model of the environment that forecasts
the next state of the ego-vehicle based on the current
ego-vehicle state (compact 2D position, orientation, and
speed).

3.2 Traffic Participants Motion Behaviour

In order to define the mobility behavior of traffic partici-
pants, Toledo’s car-following model (Toledo et al. [2007])
can be used to control the movement of other automobiles.
The Intelligent Driver Model (IDM) (Treiber et al. [2000]),
used in (Isele et al. [2018]), incorporates randomization

by manipulating the speed distribution, human driving
styles, and driver imperfection control settings (based
on the Krauss stochastic driving model (Krauss [1998]))
used in (Bernhard et al. [2019]). The IDM also serves as
the foundation for the longitudinal component if a hard-
coded lateral and longitudinal control method for realistic
(virtual) background traffic is employed (Mitchell et al.
[2020]). The standard SUMO driver model (Lopez et al.
[2018]), which includes a lane change model that makes
strategic decisions to pass slower moving cars and an
adaptive cruise controller for the longitudinal motion, can
be used to operate the other vehicles (Hoel et al. [2020]).
Simulated automobiles can also be generated using the
SUMO simulator (Qiao et al. [2018]), and they are all
operated in line with the Krauss Car Following Traffic
Model.

3.3 Uncertainty of the Environment and Decision

Uncertainty of the surroundings are numerous and the
number of possible scenarios that can be formulated is
infinite. There is no possible method that allows the ego
vehicle to consider the full uncertainties as of yet. Some ex-
amples are the intentions of other vehicles and pedestrians,
occlusions, and perception uncertainties such as weather
conditions. The car is required to make a safe decision
and to adapt accordingly to the changes of the environ-
ment, this is done by assessing and predicting uncertainties
within its environment. Assumptions and simplifications
(random speeds and behaviours) and Gaussian noise, used
to account for longitudinal uncertainty initialized with
unknown probabilities for their trajectories and motions
(Hubmann et al. [2017]), can be made; however, this is far
from representing the challenges the vehicle will face in
real life (Hang et al. [2021], Chen et al. [2022]).

Bayes theory is a popular probabilistic approach when it
comes to predicting uncertainties. A stochastic observation



model that accounts for uncertainty based on the Bayes
Rule (Hubmann et al. [2017], Speidel et al. [2020], Li
et al. [2022]) is used, and takes into account probable
future observations of the nearby cars, a 2-dimensional
feature vector with a Naive Bayes classifier (velocity and
position based). Another probabilistic approach appears
in (Emuna et al. [2020]) where the travelled Euclidean
distance (arc-length), which serves as the independent
variable, is modelled using Gaussian processes (GPs) to
create the associated uncertainty distributions.

Game theory can also be used to represent adversar-
ial uncertainty. The learning agent learns a risk-neutral,
ideal strategy for the provided Stochastic Bayesian Game
(SBG) (Harsanyi [1967, 1968a,b]) by seeing a large num-
ber of episodes with various behavior patterns (Bernhard
et al. [2019]). Once the state-action distribution has been
learned, the distribution shows the inherent uncertainty
regarding the precise behavior types that will manifest at
a given episode.

One particular type of uncertainty complicating the driv-
ing decisions and increasing risk significantly is occlusions.
The representation is expanded to include an indication
to determine if a certain zone in the environment (such
as a cell in the occupancy grid) is occluded and the car’s
x and y offset to the pixel border to mitigate the effects
of discretization (Isele et al. [2018]). In (Karanam et al.
[2022]) the occluded zone is represented as a virtual agent.
In (Wang et al. [2022]) a threat model of possible danger
to neighbouring cars in the occluded region is developed
inspired by the potential field technique(Koren and Boren-
stein [1991]).

4 Trajectory Planning: Path and Speed Planning

4.1 Classical Approaches

After defining the simulation environment representation
of both the AV and other participants, the main goal
for the AV is to reach its destination. This is achieved
through generating a path for the vehicle to follow with
a certain speed without any major problems (skidding,
collisions etc.). This is done through a trajectory planning
method that computes a path based on a collection of
predetermined way-points that describe a global map
(Said et al. [2021]). The specified way-points serve as the
fundamental reference frame for a curvilinear coordinate
system, which is used to produce candidate pathways that
begin with a transient phase and end with a curve parallel
to the road. Each potential path, associated with a desired
velocity profile, is weighted against numerous parameters,
including passenger comfort, static and dynamic obstacle
avoidance, and overall trajectory tracking, using a cost
function. Many different multi-way lane scenarios were
evaluated, and the findings reveal that the vehicle behaves
well in somewhat challenging driving circumstances. The
same authors continued this work, with the main goal of
studying the algorithm’s sensitivity to parameter tuning
and determining a generic range of weighting coefficients
for the planning algorithm’s cost function in order to
make the algorithm as reliable as possible under various
driving conditions (Said. et al. [2022]). They can then
infer that the planning algorithm is resistant to changes

in cost weighting, which is a key benefit for dealing with
a variety of driving scenarios and conditions in a dynamic
environment without having to re-adjust and tune the
planning algorithm.

To investigate the various action spaces that might be
employed, which correspond to lateral and longitudinal
planning (path and velocity profile planning), dividing
the model into high-level and low-level actions provides
us with better interpretation and tuning, inspired by how
humans are able to think (high-level decisions) unrelated
to what they physically do (low-level actions) See Fig.
3. (Duhautbout et al. [2021]) present a fully algorith-
mic technique, based on a geometrical description of the
environment, for computing predictive speed profiles on
different pathways. The results reveal that the vehicle
reacts well, comfortably, and safely to its static and dy-
namic environments, with processing speeds that are suit-
able with real-time control. The same authors went on
to improve the algorithmic speed planning approach for
an autonomous vehicle coping with moving impediments,
proposing to pass before or after while maintaining safety
distances (Duhautbout et al. [2022]). The simulation find-
ings suggest that the speed profiles developed are more
efficient than the prior technique and less conservative
in limited scenarios. The system in (Ziegler et al. [2014])
has two layers. High level: a) Behaviour Generation uses
a (Harel) state chart notation to concisely describe con-
straints that are dependent on the current driving corridor,
static barriers, dynamic objects, yield and merging laws,
and more. b) Low level: The trajectory planner computes
an ideal trajectory that minimizes the integral under the
typical type of non-linear inequality constraints. An actual
autonomous car by Mercedes named Bertha tested this
technique and traveled 104 kilometers.

Fig. 3. Design framework of decision-making system (Liu
et al. [2021])

4.2 Learning Based Approaches: Hierarchical Reinforce-
ment Learning

Since designing safe routes in constantly changing and
unexpected situations is required for autonomous driv-
ing, the problem is incredibly difficult. Current sampling-
based methods, including Rapidly Exploring Random
Trees (RRTs), are not the optimum answer for this prob-
lem because of their high processing cost. The universality
and safety guarantees of imitation learning and other su-
pervised learning approaches are lacking. To address these
challenges and provide a trustworthy framework (Naveed



et al. [2021]) propose a Hierarchical Reinforcement Learn-
ing (HRL) structure paired with a Proportional-Integral-
Derivative (PID) controller for trajectory planning. They
use the PID for tracking waypoints selected by the low-
level planner instead of using throttle, steer, and brake as
outputs. With the use of HRL, the autonomous driving job
may be divided into smaller tasks, and it also encourages
the network to learn rules for both high-level and low-level
trajectory planner options. The high-fidelity CARLA sim-
ulator’s findings show that the suggested strategy speeds
up convergence, produces smoother trajectories, and can
handle noisy observations and dynamic environments.

Fig. 4. Hierarchical RL for self-driving decision-making
(Emuna et al. [2020])

Fig. 5. Driving Trajectory Performance Comparison of RL
and HRL (Emuna et al. [2020])

Furthermore, (Emuna et al. [2020]) describes a HRL strat-
egy Fig. 4 that self-driving cars can utilize in place of a
vast amount of labeled driving data to make judgments. It
considers high-level maneuver selection as well as low-level
motion control in both lateral and longitudinal orienta-
tions. Each move generates a new state space and reward
function. Each maneuver in this study includes a steer
policy network (SP-Net and SV-Net) and an accelerate
policy network (AP-Net and AV-Net), which govern the
lateral and longitudinal motions, respectively. This sug-
gests that self-driving cars can make safe and efficient
judgments. Compared to the non-hierarchical technique,
each simulation’s driving time is reduced by around 25
percent. As seen in Fig. 5, the HRL’s performance is also
less cautious.

5 Risk-Uncertainty Assessment

Trajectory planning can be lacking proper risk and un-
certainty representation which highly influences the tra-
jectory of the vehicle. Therefore addressing this aspect,
the main points will be predicting other participants’ tra-
jectories, quantifying the level of risk facing the AV, and

handling occlusions safely and efficiently, while also trying
to consider different driving styles or behaviours.

Primarily concerned with detecting other participants’ tra-
jectories accurately, incorporating probabilistic methods,
Gaussian models are used to take safety and efficiency
into account when cars intersect (Wang et al. [2021]). In
order to precisely measure the probability of a vehicle
accident from all angles, they use EPET (Estimating Post-
Encroachment Time), which indicates the time difference
between automobiles passing through the conflict zone’s
center. A multiobjective optimization problem (MOP) is
used as a model in order to resolve conflicts between cars
interacting at crossings based on conflict resolution theory.
Two intersection multi-objective optimization problem so-
lutions are shown, Deep Deterministic Policy Gradient
(DDPG) and Non-dominated Sorting Genetic Algorithm
(NSGA-II). Results showed DDPG is more dependable
and efficient than NSGA-II at solving the MOP model,
which offers a theoretical framework for a thorough inves-
tigation of decision-making in a challenging intersecting
context. Considering driving styles, (Li et al. [2021]) use
Conditional Random Field (CRF) in conjunction with
Gaussian models to study three common situations encom-
passing intersectional straight-crossing route crashes as
well as rear-end, sideswipe, and angle collisions Fig. 6. The
safety metrics used are: Time-to-Collision (TTC), Time-
to-Region (TTR), Time-to-Escape (TTE), and Time-to-
Stop (TTS). They also address weather circumstances by
modifying a factor in TTS.

Fig. 6. Risk Assessment and Collision Avoidance (Li et al.
[2021])

5.1 Markov Decision Process (MDP)

Interacting with the environment, taking in observations,
and formulating judgemental probability distributions for
actions to be taken to change the state of the vehicle is
what the concept of a Markov Decision Process (van Ot-
terlo and Wiering [2012]) is based on. By establishing the
observation set to equal the set of states and specifying the
observation conditional probabilities to deterministically



select the observation that fits the real state, an MDP may
instead be converted into a Partially Observable Markov
Decision Process (POMDP) (Spaan [2012]). Taking the
classical approach (Hubmann et al. [2017]), the authors
develop a derivation of the most likely future scenario
using an interactive, probabilistic motion model for the
other cars, which allows for the prediction of uncertainty
resulting from poor sensor data and the fact that human
drivers’ intents cannot be directly detected. For different
road configurations and numbers of other vehicles, the
POMDP problem can be addressed online with a compact
formulation that enables a low-dimensional state-space
and uses a Naive-Bayes classifier to simulate trajectory
uncertainties of other vehicles. Solutions with interactive
behaviour are possible thanks to a basic concept of in-
teraction between the autonomous vehicle and the other
users of the road. Their method performs far better than
reactive alternatives (Cross Intersection) and almost as
well as with complete prior knowledge of the intentions
of the other cars.

Incorporating Deep Learning, in (Qiao et al. [2018]), tack-
les the problem of being computationally inefficient when
dealing with the issues of POMDP with RL, for continuous
action spaces and the necessity of storing a high number
of observations. They use Hierarchical Options for MDP
(HOMDP) as a solution rather than modeling the issue
as a POMDP. The agent’s performance for a four-way
junction job with two-way stop signs can be enhanced
using the HOMDP technique. With only the observations
of the present phase, the HOMDP approach may produce
both lower-level continuous actions and higher-level dis-
crete possibilities.

5.2 Bayes Theory

Because the Bayesian interpretation of probability repre-
sents a degree of belief or information (knowledge) about
an occurrence, its use case in estimating uncertainties
or quantifying risks is quite common. (Bernhard et al.
[2019]) provide a two-step strategy for accurately taking
into account the inherent uncertainties of the traffic en-
vironment, such as those resulting from the variability of
human driving styles, by risk-sensitive behavior generating
algorithms Fig. 7. A method is presented for creating
risk-aware behavior that combines online risk assessment
with Offline Deep Distributional Reinforcement Learning
of different driving styles by modeling the problem as a
Stochastic Bayesian Game (SBG). The concept of offline
distribution learning implies that actions corresponding to
a defined behavior type space/distribution have already
been created, and the risk criteria then analyze the actions.
In addition to keeping an aggressive driving style, the
approach improves safety in unsignalized cross intersec-
tion situations when there is a natural ambiguity about
how other participants will behave while avoiding overly
cautious driving.

(Li et al. [2022]) train a strategic DRL network with the
least level of risk to ensure driving safety on one-way
highway lane changing scenario. However, it was based on
a risk assessment function (not a reward function) that
gives realistic likelihood at varying risk levels (Dangerous,
Attentive, Safe) See Fig. 8 similar to (Li et al. [2021]).

Fig. 7. Driver Type Distribution and Risk Assessment
(Bernhard et al. [2019])

To estimate the described driving risk, a quantized, prob-
abilistic model-based technique based on position uncer-
tainty utilizing Bayes theory was presented. The suggested
approaches develop robust safe driving strategies and out-
perform prior methods discussed in the paper. The authors
of (Hoel et al. [2020]) describe the agent’s level of trust in
the suggested activities and how they should be classified
as safe or unsafe. An ensemble of neural networks with
added randomized prior functions (RPF) was the foun-
dation of the Bayesian RL approach, which was used to
calculate the degree of decision uncertainty in autonomous
vehicles, and adding a metric (Uncertainty Threshold) to
gauge a trained agent’s level of confidence in a given course
of action. When confronted with circumstances that are
outside the training distribution, the trained agent may
evaluate the uncertainty of its options and flag one that
is undesirable. The identification of scenarios that should
be included in the training process may also be done
using this knowledge. They show that Bayesian RL is
superior to conventional RL for tactical decision-making
in autonomous driving in a one-way highway lane chang-
ing scenario. In comparison, collisions take place under
unknowable circumstances as a result of the regular DQN
agent’s lack of access to uncertainty information.

Fig. 8. Risk Assessment and Motion Path Representation
(Li et al. [2022])

5.3 Addressing Occlusions

In settings where the probability of fatalities is raised ow-
ing to increased traffic frequency and restricted visibility,



path planning algorithms for autonomous cars must take
safety and comfort into account. The usage of an extended
virtual obstacle within the perception system to account
for any beginning location and velocity of a potentially
concealed vehicle (Karanam et al. [2022]) results in a safe
and pleasant trajectory at the low vision zones, addressing
the expectation of the existence of a genuine occlusion. A
smoother velocity profile is also observed, which improves
comfort by remaining within the prescribed limits. Ad-
dressing occlusions here is an extension to the framework
presented in (Duhautbout et al. [2021]).

Fig. 9. Distance Coefficient Field Graph (Wang et al.
[2022])

In (Wang et al. [2022]) they not only examine how au-
tonomous cars may effectively navigate through hazardous
interaction zones but also when scenes are obscured or the
view is limited. With the use of a Dynamic Bayesian Net-
work (DBN) based probability model, the possible threats
from visually obscured places are put into numerical per-
spective. A risk distance coefficient model based on dis-
tance and velocity is suggested to capture the perceptual
interaction function of traffic participants (TPs) See Fig. 9.
In real-time, adjusting the speed and heading angle allows
the AV to approach the road cautiously and comfortably
while gradually expanding the visible area. The model
is applicable to junction scenarios without a signal light
and scenes with occasional blockage of the visual field.
However, working in poor weather conditions like fog or
at night when visibility is poor may add difficulties. Ad-
ditionally, due to limitations on data availability and the
influence of indicators on assessment outcomes, it is hard
to create an assessment model that incorporates all indica-
tions in actual risk assessment. The following summarizes
their approach: 1) Posteriori risk assessment probability P.
Determines the potential risk value (occupancy probability
of road cell) of the AV travelling through the interaction
area. 2) The risk distance coefficient. Abbreviated Kd, is
a risk function that incorporates the attention, speed, and
perceptual interaction capabilities of TPs and is based on
the ”conditional risk” concept. 3) Evaluation of potential
risks. The product of the past 2 metrics represents the
possible danger on road cell.

6 Mimicking Human Behaviour

Focusing on achieving human performance by using this
human performance as the input, the design of the AV
is aimed at mimicking human behaviour but without the
downsides of human behaviour. Considering the available
routes and maneuver possibilities for other cars while
allowing for socially acceptable conduct in crossroads set-
tings, the Intelligent Driver Model (IDM) used as a virtual

Fig. 10. Human-like decision making framework for AVs
(Hang et al. [2021])

leading vehicle (VL) and a local continuous optimization
technique are combined in the framework to enable rapid
behavior prediction, maneuver creation, and decision mak-
ing across extended horizons (Speidel et al. [2020]). This
enables the ego vehicle to seamlessly merge behind a real
leading vehicle (RL) that may arrive from another lane
while taking into account its most likely trajectory through
the (VL).

Similar to the path-speed split in (Duhautbout et al.
[2021]), the framework Fig. 10 suggested in (Hang et al.
[2021]) focuses on minimizing the impact of AVs and their
mismatch with human drivers while integrating AVs into
the traffic ecology of human drivers. The MPC is used for
motion prediction and planning, in conjunction with the
potential field model. Finally the output is split into high-
level decisions and low-level control. Models are created for
decision-making using noncooperative game approaches,
Nash equilibrium and Stackelberg, that include several
driving styles (similar to in (Li et al. [2021]) and (Bernhard
et al. [2019])) with associated social interaction features
that are collected from real-world driving data. Both game
theoretic techniques can provide AVs a decision-making
process that is logical and human-like in merging and
one-way lane change scenarios. The cost value of decision-
making utilizing the Stackelberg game theoretic technique
is decreased by about 20 percent when compared to the
Nash equilibrium strategy when driving normally.

In the following we will see the use of End-to-End Imita-
tion Learning (IL) and Reinforcement Learning to achieve
human-like driving through trajectory/waypoints genera-
tion, and directly controlling the speed and steering angle
of the vehicle.

6.1 End-to-End Reinforcement Learning: Speed and Steer-
ing Angle

To facilitate efficient traffic flow, where AVs use human-
like driving policies and negotiation techniques, (Emuna
et al. [2020]) incorporates a vehicle management algorithm
that receives a stochastic feedback signal from two dif-
ferent sources: a model-driven portion that encodes basic
driving laws like lane-keeping and speed control, and a
stochastic, data-driven section that adds human expert
knowledge from driving data. The machine-driven agent
can mimic human driving behaviour, in a one-way lane
change scenario, using a reinforcement learning algorithm
Proximal Policy Optimization (PPO) in conjunction with



a Mixture Density Network (MDN) and describes both
human and automated driving using Gaussian distribu-
tions. Thus, creating a framework that is natural for
combining data-driven approaches to include expert hu-
man driving with rule-based ways to encode fundamental
driving norms, driving regulations that are humane and
can accurately mimic expert human behavior in a setting
with a high dimensional state space, controlling speed and
steering angle.

In (Chen et al. [2021]), they greatly facilitate modern
reinforcement learning by assuming independence between
the agent and the environment, or what they refer to as a
(world on rails) by factoring the dynamics into a nonreac-
tive world model and a low-dimensional and compact for-
ward model of the ego-vehicle. They create a world model
based on human behaviour that is realistic and expressive
enough to allow the agent to investigate its surroundings
and the effects of its actions. The policy picks up tips on
how to avoid expensive errors or how to correct them.
The ultimate driving rule, controlling speed and steering
angle, functions effectively in an environment that is both
dynamic and reactive. The approach comes in first place on
the CARLA scoreboard and uses 40 percent less data while
achieving a driving score that is 25 percent higher. On
navigational tasks in the benchmark, the approach is also
orders of magnitude more sample-efficient than cutting-
edge model-free reinforcement learning approaches.

6.2 Perception-based

The perception system is the main input to the decision-
making system. Altering its input and output has a high
influence on the architecture and performance of decision-
making systems. In (Mitchell et al. [2020]), a high-level
controller manages velocity modulation and lane-change
decisions, while the low-level controller uses this informa-
tion to monitor the intended lanes at the necessary speeds.
Consequently, they develop a sequential choice problem for
one way lane change and solve it with actor-critic (A2C)
reinforcement learning (1 actor and 2 critics). This study’s
primary contribution is its use of mixed reality learning to
create intelligent driving strategies that can handle unex-
pected vehicle encounters and limited navigation. Their
findings demonstrate that mixed reality learning may sig-
nificantly boost performance, which reduces collisions in
the learnt policies.

6.2.1 End-to-End Imitation Learning: Waypoints Gener-
ation Imitation learning has gained popularity due to ad-
vances in computing and sensing. Without the requirement
for explicit programming or task-specific reward function
design, generic imitation learning techniques may be able
to reduce the difficulty of teaching a task to that of deliv-
ering demonstrations. In (Bansal et al. [2018]) they train
an autonomous driving system that is reliable enough to
operate a real car. To maximize the value of the training
data, they use mid-level input and output representations
that benefit from perception and control elements. Instead
of just replicating all data, they enhance the imitation
loss with extra losses that discourage poor outcomes and
promote advancement. The model predicts the bounding
box of the vehicle as a spatial heatmap at each subsequent
timestep for each point at time t in the trajectory, where

each point at time t is described by its location, direction,
and speed. In simulation, the ChauffeurNet model can
manage challenging circumstances, and is then displayed
operating a vehicle in the real world.

The study in (Hecker et al. [2020]) investigates ways to
make end-to-end driving models more accurate and real-
istic. It presents the first large-scale dataset with high-
precision semantic mappings that is suitable for training
end-to-end driving models by adding Here Technologies’
high precision semantic maps to the Drive360 dataset.
With the help of an attention mechanism that can sup-
port various confidence masks of a semantic segmentation
network, they suggest a novel method for incorporating
these semantic maps into the end-to-end driving model,
allowing for the combination of map information with se-
mantic information from the image. The decision-making
problem is handled as an independent and identically
distributed (i.i.d) target supervised regression problem
(expert actions). Instead of single actions, they suggest
matching action chains (which they refer to as drivelets).
The drivelet for the following N time steps is represented
by at = [aTt , ..., a

T
t+N ], where at is calculated using one of

the previously suggested driving models, they represent a
drivelet for the following N time steps. Extensive testing
demonstrates that the driving models outperform tradi-
tional techniques in terms of accuracy and behavior in lane
change and merging scenarios.

Addressing the drawbacks of the integration of comple-
mentary sensor representations for autonomous driving,
geometry-based sensor fusion by itself might not be ad-
equate to successfully fuse representations in end-to-end
driving models (Prakash et al. [2021]). In order to include
the whole context of the 3D scene into the feature extrac-
tion layers of various modalities, they present TransFuser,
a unique Multi-Modal Fusion Transformer, as a means of
fusing attention with image and LiDAR representations.
The two primary parts of the architecture they suggest
for end-to-end driving are an auto-regressive waypoint
prediction network and a MultiModal Fusion Transformer.
The method offers cutting-edge driving performance with
76 percent less collisions as compared to geometry-based
fusion.

(a)

(b)

Fig. 11. (a) Decomposition of Imitation Learning (Chen
et al. [2019]) (b) Overview of the training pipeline
(Chen and Krähenbühl [2022])

The authors of (Chen et al. [2019]) divided the learning
process into two steps, in the first step they train an



agent who has access to privileged information such as
the environment’s layout and the positions of other traffic
participants. This special agent has been taught to mimic
the expert motions. In the second step, a sensorimotor
agent without any access to any privileged information is
trained to mimic the privileged agent (waypoints genera-
tion) See Fig. 11. On the CARLA test and the NoCrash
benchmark, this imitation learning process for vision based
urban driving (cross intersections, roundabouts, merging
lane change,...) significantly outperforms the state of the
art.

A sensing module, a motion planner, and a low-level con-
troller comprise an end-to-end differentiable three-stage
modular pipeline that handles the partial observability
of both perception and motion (Chen and Krähenbühl
[2022]). They describe a system for training driving poli-
cies (waypoints generation) using data gathered from all
the other vehicles the ego-vehicle sees, not just the its own
data See Fig. 11. The approach significantly exceeds all
previous techniques on the open CARLA Leaderboard,
raising driving score by 25 points and route completion
rate by 24 points. Limitations and possibly detrimental
societal effects: Continue to commit driving violations. It
would probably result in traffic accidents if used in the real
world (negative social impacts). Technically speaking, the
conditional motion planner’s current behavior predictor
does not take multimodality into account beyond the high-
level directives.

6.2.2 End-to-End Reinforcement Learning: Latent Space
Representation All the crucial information required to
represent the original input observation is included in the
latent space representation of data. This is the fundamen-
tal idea behind the term ”representation learning” which
refers to a collection of methods that let a machine extract
the representations required for feature identification or
classification from unstructured input. In this use case,
more complicated forms of raw data (such as photos and
videos) are converted into simpler representations that are
easier to handle and evaluate using latent space representa-
tions See Fig. 12. One main advantage is shown in (Iroegbu
and Madhavi [2021]) where the use of latent space repre-
sentation significantly shortens training time and improves
the quality of deep reinforcement learning. In (Sharma and
Sharma [2021]), they take into account numerous dynamic
aspects, including multi-agent interactions, various scene
perceptions, complicated road geometry, and other infre-
quently occurring real-world occurrences, by the decision-
making system. They tackle the issue where complexity of
urban driving situations does not generalize well with cur-
rent DRL approaches through step-by-step learning of var-
ious driving tasks, harsh episode termination policy, and
dense reward system. A unique strategy for object segmen-
tation by pre-detecting and labeling crucial objects/states
in the environment is presented. Their agents achieve a
success rate of 100 percent on all driving tasks in the orig-
inal CARLA benchmark and set a new record of 82 percent
on further complex NoCrash benchmark, outperforming
the state-of-the-art model by more than 30 percent on
NoCrash benchmark. Making long-range predictions about
how various interacting agents would behave in dynamic
situations is presented in (Lee et al. [2017]). In order to im-
plement DESIRE, a broad framework that may be used for

Fig. 12. Latent Space Representation Iroegbu and Mad-
havi [2021]

any future prediction challenge, they suggest the follow-
ing innovative mechanisms: Scene Context Fusion, Inverse
Optimal Control (IOC)-based Ranking and Refinement,
and Diverse Sample Generation. The suggested approach,
when compared to existing standard techniques, greatly
enhances prediction accuracy, according to experiments.

The authors of (Chen et al. [2022]) offer an interpretable,
complex-urban-scenario-capable deep reinforcement learn-
ing approach for end-to-end autonomous driving. By
adding an entropy regularization to the reward, they get
Maximum Entropy Reinforcement Learning (MaxEnt RL)
which conducts better exploration, typically outperforms
traditional RL algorithms, and is more reliable. It can
also be modeled as Probabilistic Graphical Model (PGM),
which enables joint learning of the environment model and
policy, and Latent Space Representation, which enables
a comprehensible explanation of how the policy reasons
about the environment. This in turn is used to address is-
sues with autonomous driving, such as the learned model’s
lack of interpretability and its inability to accept multiple
sources of sensor inputs, which are crucial for autonomous
driving systems. The performance of their system in most
urban settings with congested surrounding cars outper-
forms numerous baselines, using a simulated autonomous
automobile in CARLA. The learnt policy is also able to
give a better description of how the automobile thinks
about the driving environment by using masked outputs.
Although their framework can offer understandable justi-
fications for how the model perceives its surroundings, it
cannot offer any insight into how it decides because the
driving policy is acquired in a model-free manner.

Instead of using a learning-based approach to extract
the important features of a latent space, the authors of
(Xu et al. [2020]) try to introduce explanations to the
perception of the environment around the car and how
they relate to the decision-making capabilities. The new
paradigm, which draws its inspiration from how people
solve problems, sits between end-to-end and pipelined
techniques. It also depends on scene knowledge, the latter
solely takes into account potential hazard-causing things.
Additionally, they specify a collection of justifications
for these actions, which have to be created in tandem
with the latter. These are referred to as action inducing
since modifications to their condition ought to cause the
vehicle to act. The necessity of explanations enhances the
detection of items that prompt actions, which in turn
results in improved action predictions. With a greater
understanding of the object-scene linkages, the system is
better able to identify the objects that cause actions and,
as a result, make action predictions simpler. For example,
the system can determine what to localize in the global
feature map and relate local to global features.



7 Conclusion

An overview of the research community direction has been
provided where learning based techniques have dominated
the current stage of development. The main outcome of
this work is the classification of the coverage literature
surveys, action space and scenarios, and a breakdown of
both the modular and end-to-end approaches which will
hopefully aid in the researcher’s work in finding a solution
for the decision-making problem in AVs.
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