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a b s t r a c t 

Understanding cortical topographic organization and how it supports complex perceptual and cognitive pro- 

cesses is a fundamental question in neuroscience. Previous work has characterized functional gradients that 

demonstrate large-scale principles of cortical organization. How these gradients are modulated by rich ecological 

stimuli remains unknown. Here, we utilize naturalistic stimuli via movie-fMRI to assess macroscale functional 

organization. We identify principal movie gradients that delineate separate hierarchies anchored in sensorimo- 

tor, visual, and auditory/language areas. At the opposite/heteromodal end of these perception-to-cognition axes, 

we find a more central role for the frontoparietal network along with the default network. Even across different 

movie stimuli, movie gradients demonstrated good reliability, suggesting that these hierarchies reflect a brain 

state common across different naturalistic conditions. The relative position of brain areas within movie gradients 

showed stronger and more numerous correlations with cognitive behavioral scores compared to resting state gra- 

dients. Together, these findings provide an ecologically valid representation of the principles underlying cortical 

organization while the brain is active and engaged in multimodal, dynamic perceptual and cognitive processing. 
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. Introduction 

Decades of neuroscience research have studied how local cortical
ystems integrate simple sensory elements into complex cognitive expe-
iences. Perhaps the most famous example involves the visual system,
rom the tuning of primary visual cortex neurons to the perception of
omplex objects (e.g., faces) along a vision-to-perception occipitotem-
oral visual pathway ( Felleman and Van Essen, 1991 ; Goodale and Mil-
er, 1992 ; Hubel and Wiesel, 1962 ; Mishkin and Ungerleider, 1982 ;
atterson et al., 2007 ; Visser et al., 2012 ). Findings like these, and from
euroanatomical and neuroimaging studies, have informed the concep-
ualization of a macroscale sensory-to-cognition hierarchy of brain or-
anization. For example, Mesulam hypothesized that cognition arises
rom the integration of information from modality-specific cortical ar-
as ( Mesulam, 1998 ), and a wave of recent studies have investigated
hese concepts using functional neuroimaging data ( Buckner and DiNi-
ola, 2019 ; Buckner and Krienen, 2013 ; Deco and Kringelbach, 2017 ;
argulies et al., 2016 ). 
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.1. Functional connectivity gradients 

Functional connectivity (FC) refers to the pairwise correlation be-
ween brain areas based on fluctuations in BOLD-signal time-courses
ver time ( Biswal et al., 1995 ). FC is often represented in matrix form
n which each column/row represents a connectivity pattern between
ne region of interest and all other regions. Theoretically, there could
e as many unique connectivity patterns (i.e., dimensions) in this matrix
s there are regions. Dimensionality reduction techniques assume that
he connectivity of different brain regions sits on a lower-dimensional
anifold that does not visit the entire higher-dimensional space. Such

echniques have long been applied to FC, for example, to identify net-
orks in a data-driven way ( Beckmann et al., 2005 ; Dobromyslin et al.,
012 ). 

Recent studies have introduced diffusion map embedding, a non-
inear dimensionality reduction algorithm, to resting state fMRI data
 Langs et al., 2015 , 2010 , 2011 ; Margulies et al., 2016 ). Rather than
onsidering brain networks or regions with distinct boundaries be-
ween them, diffusion embedding captures change across the cortical
urface based on a certain feature (e.g., similarity in functional con-
ia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada. 
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ectivity). This method yields a principal gradient that is anchored at
ne end by unimodal cortical regions and on the other end by trans-
odal association regions (primarily the default mode network), em-

odying the sensory-to-cognition conceptualization suggested by Mesu-
am and others ( Buckner and Krienen, 2013 ; Margulies et al., 2016 ;
esulam, 1998 ). Subsequent work has demonstrated that these FC gra-

ients are conserved across species, similar across analytical methods,
nd reproducible across datasets ( Dong et al., 2021 ; Hong et al., 2020 ;
argulies et al., 2016 ; Shafiei et al., 2020 ; Xu et al., 2020 ). They are

argely unchanged by sleep deprivation ( Cross et al., 2021 ), but are sen-
itive to acute pharmacological manipulation ( Girn et al., 2022 ) and at
east when focusing on subcortical regions, macroscale cortical gradi-
nts show some task versus rest differences ( Tian et al., 2020 ). Overall,
espite the fact that this line of research is largely driven by questions
bout the organizational relationship between sensory and higher-order
rain regions, almost all gradient analyses to date have been applied to
esting state data, and the effect of active, multimodal neural processing
n gradient structure has not been explored. 

.2. Gradients and naturalistic imaging 

Starting with the assumption that intrinsic FC gradients capture
eaningful principles of large-scale brain organization (unimodal-to-

ransmodal integration across distinct modalities) we wanted to study
radients during active processing that would maximally drive exoge-
ous or evoked functional connectivity patterns. An ideal acquisition
tate would (i) engage the brain as a whole rather than targeting a spe-
ific brain area or set of areas, (ii) employ a stimulus or set of stim-
li that probe processes along the cognitive hierarchy, ranging from
simple ” perception all the way to abstract thinking, social processing,
emory and abstract reasoning, (iii) involve multiple distinct sensory
odalities to differentially engage unimodal brain areas, and (iv) rep-

esent real-world content with ecological validity and dynamic context
ather than strictly controlled events with sparse temporal order. A nat-
ralistic imaging paradigm such as movie-watching emerges as a useful
tate that meets these criteria ( Hasson et al., 2004 ; Lahnakoski et al.,
012 ; Leopold and Park, 2020 ; Nastase et al., 2020 ; Redcay and
oraczewski, 2020 ; Sonkusare et al., 2019 ; Vanderwal et al., 2019 ).
e hypothesized that functional connectivity gradients derived from
ovie-fMRI data would reveal new information about cortical brain or-

anization during whole-brain, naturalistic processing and could pro-
ide unique tools with enhanced ecological validity. 

To test this hypothesis, we first computed cortical FC gradients us-
ng movie-watching fMRI data from the Human Connectome Project 7T
elease ( Van Essen et al., 2013 ). Next, we compared movie-watching
radients to those from resting state data based on topography and test-
etest reliability. Finally, we examined brain-behavior correlations and
redictive modeling of cognitive, emotional and motor scores in the two
onditions. As such, this is the first study to characterize gradient-based
rinciples of functional cortical organization under naturalistic condi-
ions. 

. Methods 

.1. Data 

.1.1. Participants 

All analyses used the HCP 7T release dataset which includes resting
tate and movie-watching fMRI data from 184 healthy adult participants
122 females, mean age 29.4 ± 3.3). We included subjects who: (i) had
omplete functional and behavioral measures of interest), (ii) passed a
wo-step motion mitigation, and (iii) had ≥ 480 volumes ( ≥ 8 min) re-
aining per functional run. This yielded 95 participants (58 females,
ean age 29.5 ± 3.3). The HCP data contain sets of siblings and twins,

nd these 95 participants represent 64 unique families. All imaging and
2 
ehavioral data used here were anonymized and made publicly avail-
ble by the HCP. Participant informed consent forms were approved by
he Washington University Institutional Review Board. 

.1.2. Imaging data 

Imaging was performed on a 7 Tesla Siemens Magnetom scanner
ith a Nova32 head coil at the Center for Magnetic Resonance Re-

earch at the University of Minnesota. All functional runs were col-
ected using a gradient-echo planar imaging sequence with the follow-
ng parameters: TR = 1000 ms, TE = 22.2 ms, flip angle = 45 deg,
eld of view = 208 × 208 mm, matrix = 130 × 130, slice thick-
ess = 1.6 mm; 85 slices; 1.6 mm isotropic voxels. Full details
re available at https://www.humanconnectome.org/study/hcp-young-
dult/document/1200-subjects-data-release . 

.1.3. Scanning conditions 

Four scanning sessions were completed over 2 days and each session
tarted with a resting state acquisition. Sessions 1 (day 1) and 4 (day 2)
lso included 2 movie-watching acquisitions each (see Supplementary
ig. 1 for schematic). The direction of phase encoding alternated (PA;
est 1, Rest 3, Movie 2, Movie 3 and AP; Rest 2, Rest 4, Movie 1, Movie
). Rest runs were each 15:00 (min:sec; 900 TRs). Movie runs varied
rom 15:01 (901 TRs) to 15:21 (921 TRs). 

Movies. Participants viewed 4 or 5 different movie clips per movie
un. Two types of movies were used: short independent films under Cre-
tive Commons licensing (Movie 1 and Movie 3) and clips from Holly-
ood feature films (Movie 2 had films from 2001–2010, and Movie 4

rom 1980–2000). Clip duration varied from 1:04 (64 TRs) to 4:19 (259
Rs) and 20s of rest occurred between clips. All 4 movie runs ended
ith the same 1:24 (84 TRs) Vimeo clip, and they all started and ended
ith 20 s of rest. Movies were viewed on a 1024 × 768, 4:3 aspect ratio

creen rear-projected via a mirror mounted on the top of the head coil,
nd audio was delivered using Sensimetric earbuds. 

Rest. Rest fMRI data were acquired with eyes open. A bright cross-
air for fixation was shown on a dark background. 

.2. Preprocessing 

.2.1. HCP preprocessing 

We used fMRI data that already underwent HCP’s minimal prepro-
essing pipeline ( Glasser et al., 2013 ). No slice timing correction was
erformed, spatial preprocessing was applied, and structured artifacts
ere removed using ICA + FIX (independent component analysis fol-

owed by FMRIB’s ICA-based X-noiseifier). Data were represented as a
imeseries of grayordinates in CIFTI format (i.e., cortical surface ver-
ices and subcortical standard-space voxels). The first 10 volumes were
iscarded to allow the magnetization to stabilize to a steady state. 

.2.2. Head motion 

To improve cross-condition comparisons, we implemented extra
teps to further mitigate the effects of head motion on functional con-
ectivity. Subjects with an overall mean framewise displacement (FD)
f > 0.2 mm in any of the 8 functional runs were excluded from all anal-
ses. We then implemented volume censoring (i.e., motion scrubbing)
n all Rest and Movie runs, removing volumes with FD > 0.3 mm, along
ith 1 volume before and 2 volumes after ( Power et al., 2014 , 2015 ;
an et al., 2013 ). 

.2.3. Cross-condition optimization 

All inter-clip rest epochs + 10 subsequent volumes were removed
rom all movie runs (Supplementary Fig. 1). Full runs were z-scored
as part of the preprocessing), but individual movie segments were not
-scored separately prior to splicing. A potential consequence of this to-
ether with motion scrubbing was that some subjects could end up with
oo few data points to yield reliable FC measures. We thus excluded any
ubject with < 480 volumes (60%) in any of the 8 main runs following

https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
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o  
hese interventions. The number of volumes for corresponding pairs of
uns was then matched within every subject, meaning that Rest runs
or some subjects were sometimes truncated. In the few run-pairs where
est contained fewer volumes than Movie, we retained more rest vol-
mes in the other 3 rest runs instead of cropping the movie runs. This
as done to preserve the temporal dynamics in the movie data. 

.3. Analyses 

.3.1. Functional connectivity matrices 

Concatenated vertex-wise functional timeseries were averaged based
n their assignment to the Schaefer-1000 functional parcellation for
ach subject ( Schaefer et al., 2018 ). For consistency with previous gra-
ient work in resting-state data, we limited our analyses to cortical
egions. After applying the parcellation, and as noted previously by
ong et al. (2020) , two parcels returned values of not-a-number be-
ause no vertices were assigned to those parcels as they were very small
specifically, parcels 533 and 903) ( Hong et al., 2020 ). They were sub-
equently excluded, leaving 998 parcels that was used in all subsequent
nalyses. We then correlated all possible pairs of parcel timeseries to
uild a 998 × 998 FC matrix per condition per subject. Additionally,
e computed group-level FC matrices for Rest and Movie by Fisher’s z-

ransforming and averaging the subject-level FC matrices and transform-
ng the resulting matrices back to correlation coefficients. The group-
evel FC matrices (based on an average of 2639 volumes, 44 min of
ata per subject) were the basis for the main analysis. To examine the
ffect of spatial resolution on gradient topography in Movie, we imple-
ented the same gradient pipeline using both the Schaefer-300 and 600
arcellations. For the reliability analyses, we also computed individual
ubject-level FC matrices based on the test (concatenated Rest 1 and 2,
nd concatenated Movie 1 and 2) and retest (concatenated Rest 3 and
, and concatenated Movie 3 and 4) datasets. 

.3.2. Gradient analysis 

Group-level gradients. Methods closely followed and used code from
argulies et al. (2016) and Vos de Wael et al. (2020) . The group-

veraged Rest and Movie FC matrices were thresholded row-wise at
0% (i.e., the actual correlation values for the above-threshold cells
ere retained). This process results in sparsity and asymmetry in the

hresholded matrices. We next computed a new affinity matrix that cap-
ures the inter-area similarity in FC for each condition, using the cosine
imilarity function. The affinity matrices were then decomposed using
iffusion embedding (DE), a non-linear dimensionality reduction algo-
ithm, yielding a separate set of manifolds (i.e., gradients) for Rest and
ovie ( Coifman et al., 2005 ). DE was implemented using the Matlab

ersion of BrainSpace toolbox ( Vos de Wael et al., 2020 ). Compared
o other non-linear dimensionality reduction algorithms, the DE algo-
ithm is robust to noise and computationally inexpensive. Notably, the
lgorithm is controlled by a single parameter 𝛼, which controls the in-
uence of density of sampling points on the manifold ( 𝛼 = 0, maximal

nfluence; 𝛼 = 1, no influence). In this study, we used the default setting
f 𝛼 = 0.5, a choice that retains the global relations between data points
n the embedded space ( Margulies et al., 2016 ). The FC gradients are
rdered based on the amount of variance explained, and each cortical
arcel is assigned a score on each gradient. Since the direction of each
radient is randomly determined, we used a sign flip function to align
orresponding Rest and Movie gradient pairs based only on direction. 

Group-level PCA components. To compare diffusion embedding to a
ifferent dimensionality reduction method, we also applied a basic prin-
ipal component analysis (PCA) to the same FC matrices thresholded at
0%. The goal of this analysis was simply to explore whether the overall
opography of movie gradients would be similar when using a different
and in this case, linear) dimensionality reduction approach. We limited
ross-method statistical comparison to computing the Pearson’s correla-
ion coefficient between DE and PCA gradients at each gradient for the
3 
rst 10 gradients. This was the only analysis in which PCA components
ere used. 

Individual subject-level gradients. To provide a level of quality con-
rol after the BrainSpace toolbox pipeline, we plotted subject by parcel
cores of the top gradients, creating a 95 × 998 matrix for each gradient
or visual inspection. A small number of rows (subjects) had markedly
ow variability in gradient scores across parcels in some gradients. Gra-
ient scores of top gradients for those subjects were projected on the
ortical surface and showed unusual gradients that were anchored by
ne or a few parcels that had unusually high scores. Additionally, other
ndividual-level gradients demonstrated similar organization to group-
evel gradients but were hard to visualize due to one or a few parcels
ith outlier scores that artificially inflated the range of these gradients.
o handle these outlier gradients and scores on analyses conducted at
he individual-subject level, a data-driven two-step outlier removal pro-
ess was implemented for each subject. This process was limited to the
rst 10 gradients. First, whole gradients were considered outlier gradi-
nts and removed if their maximum absolute gradient score divided by
he median score for that gradient was > 3 standard deviations above
he median score of the corresponding group-level gradient. This step
esulted in the removal of 64 out of 950 gradients (95 subjects × 10 gra-
ients) from 39 different subjects. Second, (absolute) gradient scores >
 standard deviations above the median score for that subject’s gradient
ere identified as outlier scores and set to 0. Individual-level gradients
ere then aligned to group-level gradient templates from the same con-
ition using Procrustes alignment without scaling. 

.3.3. Decoding the organization of top Movie gradients 

We used the NeuroSynth database to examine neuroscientific terms
ssociated with regions of interest created from 10-percentile bins at the
nimodal end of the first 3 group-level gradients in Movie. Considering
he arbitrary polarity of gradients, we manually selected the pole oppo-
ite from the hetermodal frontoparietal/default pole for each gradient to
reate these bins. Word clouds were used to represent the term weights
or each gradient. 

.3.4. Test-retest reliability 

To maximize the amount of data for reliability estimates across scan
ays, we computed gradients at the individual subject-level for a subset
f subjects who had ≥ 600 volumes (10 min) per run for all 8 runs (fol-
owing motion mitigation and cross-condition optimization steps, n = 67,
0 females, mean age = 29.6 ± 3.3, 49 families). For each condition
or each subject, data were divided into test and retest datasets, each
onsisting of 2 concatenated runs acquired on the same day: Rest test
Rest 1 + 2], Rest retest [Rest 3 + 4], Movie test [Movie 1 + 2], and
ovie retest [Movie 3 + 4]. We computed individual subject-level gra-

ients based on each of the four datasets. Since the manifold spaces in
est and Movie were different, each set of individual-level gradients was
ligned to the group-averaged gradients of the same condition using Pro-
rustes alignment. Intraclass correlation coefficient (ICC), defined as the
etween-subject variability divided by the sum of within- and between-
ubject variability was computed using ICC model 2, denoted as ICC(2,1)
 Noble et al., 2021 ; Shrout and Fleiss, 1979 ). Gradient reliability as a
unction of data amount was evaluated by varying the amount of data
sed to compute the individual-level gradients (1–20 min, 1 min incre-
ents). ICC at each time point was computed, and two-tailed t-tests were
erformed comparing cross-condition ICC reliability at 10 and 20 min
arks. 

To test the hypothesis that movie and rest gradients are distinct, we
lso computed ICC values for scans across conditions (Rest to Movie,
nd vice versa). One-way ANOVA test was performed on within- and
ross-condition ICC values. 

.3.5. Correlation between gradient scores and behavioral measures 

A parcel’s score along a given gradient indicates the relative position
f that parcel along that gradient based on its connectivity pattern, or
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ut differently, is akin to that parcel’s weighting within that organiza-
ional component. At the individual subject level, the gradient score of
 parcel might contain idiosyncratic information that could be linked
o phenotypic traits ( Cross et al., 2021 ; Hong et al., 2020 ). To test for
ross-condition differences in gradient-behavior relationships, we per-
ormed cortex-wide univariate correlations between gradient scores in
est and Movie and behavioral scores. 

Behavioral data. Twelve cognition, 19 emotion and 4 motor scores
ere used (see supplementary Table 1 for full list) from the HCP data. To
eal with potential intercorrelations of scores within each domain, we
erformed PCA on z-scores of variables within each domain to yield one
atent variable per domain ( Finn and Bandettini, 2021 ; Vanderwal et al.,
021 ). PC1s explained 26%, 30%, and 39% of the variance in the cog-
ition, emotion, and motor data, respectively, and each participant’s
omponent score for each PC was used as the behavioral measure of
nterest. 

Gradient score-behavior correlations. For each of the top 4 gradients,
e computed the Pearson correlation coefficient between 2994 (998
arcels × 3 behavioral variables) pairs of individual subject-level gradi-
nt scores and behavioral scores across the n = 95 subjects in Rest and
ovie separately. Differences in brain-behavior correlations for the first
 gradients between Rest and Movie were assessed using t-tests of ab-
olute r-values across the various pairs of conditions. Absolute r-values
ere account for both positive and negative correlations between gra-
ient and behavioral scores. Additionally, the number and topography
f parcels with |r| > 0.2 (p < 0.05) with each behavioral measure were
xamined and compared across conditions. This threshold was imple-
ented for visualization, and we did not correct for multiple compar-

sons in this instance. 
Brain-behavior predictions. To investigate whether the gradient orga-

ization during movie-watching relates to behavior at the individual
ubject level, we compared the ability of movie gradients and rest gradi-
nts to predict behavior. Both single and combined gradient maps were
sed as predictors. We directly fitted a ridge regression model (R glm-
et package, https://glmnet.stanford.edu/ ) with training subjects using
ull gradient maps for each input-output pairing and applied the model
o testing subjects in a 10-fold cross-validation framework. Default pa-
ameters were used (i.e., lambda = NULL and alignment = “lambda ”).
amilial relatedness was accounted for by confining siblings to either
he training or the testing folds. One hundred values of the 𝜆 parameter
degree of penalization) in the ridge regression were automatically cho-
en by the glmnet algorithm and tested at each fold. The 𝜆 value that
inimizes the mean squared error of cross validation was chosen for

hat model for that fold. The fits are then aligned using lambda values
erived using the full data set, but applied across all the fold-level mod-
ls, and a single best-performing “harmonized ” lambda value is selected.
e performed 100 iterations of this process for each model to assess if

ts accuracy was sensitive to different folds. Prediction accuracy was
valuated by calculating the Pearson’s correlation coefficient between
he predicted and true scores, as well as mean absolute error (MAE) for
ach model iteration. To assess the statistical significance of prediction
ccuracies, we first generated a null distribution of expected accura-
ies due to chance by shuffling behavior scores with respect to gradient
aps and reperforming the predictive modeling pipeline 10,000 times

or each input-output pairing. We then calculated a p-value according
o permutation testing for each model. 

The primary focus in the predictive modeling analyses was on movie
radients vs. rest gradients as above. A previous study had shown
hat movie FC data outperforms rest FC data for predictive model-
ng ( Finn and Bandettini, 2021 ), while a separate study showed that
est gradient scores outperform rest FC scores ( Hong et al., 2020 ).
t thus seemed likely that movie gradients would outperform movie
C, but we at least wanted to assess that here. Consequently, we
lso included full Rest and Movie FC matrices as inputs in our pre-
ictive modelling, noting the significant difference in size between
hese inputs, as FC matrices are 996,004 (998 × 998) and gradi-
4 
nt maps are only 998 or 3992 (998 × 4) in the case of combined
radients. 

Paired t-tests were used to compare the r and MAE values
rom the 100 iterations between Rest and Movie for each gradient
ap/connectome input that yielded predictions that differed signifi-

antly from the null distribution. False discovery rate was used to correct
or multiple t-tests used to compare predictions within each behavioral
omain. 

.4. Data and code availability 

MRI and behavioral data are publicly available via the HCP. All code
sed to perform the analyses in this study is available at https://github.
om/tvanderwal/naturalistic _ gradients _ 2022 . 

. Results 

Group-averaged FC matrices contained an average of 2639 volumes
44 min) of data per subject, and Rest and Movie data amounts were
atched within subjects. Using these “optimized ” FC matrices, diffu-

ion embedding was applied to extract group-level FC gradients (n = 95,
ig. 1 ). The first 10 gradients explained similar variance in Rest and
ovie (t-test: t = 0.9677, p = 0.3334; Fig. 1A ). The first 3 group-level

radients explained 11.53%, 9.84% and 8.14% variance in Rest, and
0.45%, 9.76% and 8.03% variance in Movie. Next, we examined the
imilarity between the first 10 gradients across conditions using Pearson
orrelation coefficient ( Fig. 1B ). Gradients 1 and 2 showed the highest
imilarity between Rest and Movie (r = 0.87 and 0.86, respectively),
est-G3 was strongly correlated with movie-G4 (r = 73), and all other
orrelations were fairly low (r < 0.67). The strongest correlation be-
ween movie-G3 and any of the rest gradients was r = 0.46. 

.1. Gradient topography 

When projected onto the cortex, gradient scores reveal both topo-
raphical differences and similarities between Rest and Movie ( Fig.1C ;
radients shown using the same scale are shown in Supplementary Fig.
). Rest gradients replicate those previously described ( Hong et al.,
020 ; Huntenburg et al., 2018 ; Margulies et al., 2016 ): rest-G1 forms
 unimodal-to-transmodal hierarchical axis with visual, sensorimotor
nd auditory regions together, anchoring this axis’s unimodal pole.
est-G2 separates regions based on modality, from visual to senso-
imotor/auditory regions. In Movie, G1 also captures a unimodal-to-
ransmodal axis. However, only sensorimotor regions anchor the uni-
odal pole of this gradient, and visual regions are shifted to the middle

f movie-G1. Also, in movie-G1, auditory regions are part of the het-
romodal end of the gradient together with default network regions.
ovie-G2 captures a second unimodal-to-transmodal axis in which vi-

ual regions are uniquely isolated, creating a visual-nonvisual gradient.
uditory regions form the basis of a unique axis captured by movie-
3. This unique movie gradient is anchored by auditory and language
reas in the superior temporal gyrus and sulcus (including Wernicke’s
rea), Broca’s area, posterior middle frontal gyrus, and area 55b. The
rst 3 movie gradients are each anchored at the transmodal pole by ar-
as that participate in the default mode, limbic and frontoparietal func-
ion networks. Rest-G3 and movie-G4 have similar topography running
rom unimodal and task-negative areas to task-positive attention areas.
ogether, the top 3 movie gradients are modality-specific, hierarchi-
al gradients. The organization of top movie gradients remains largely
nchanged when using coarser parcellation resolutions (Supplementary
ig. 3). 

PCA vs Diffusion Embedding (DE). Movie gradients are highly similar
hen using PCA (Supplementary Fig. 4). The first 3 PCA components
xplained, in order, 16.35%, 12.31% and 9.40% variance in Rest, and
5.02%, 10.51% and 7.79% variance in Movie. Correlations of gradients
–4 between DE and PCA are significantly higher in Movie relative to

https://glmnet.stanford.edu/
https://github.com/tvanderwal/naturalistic_gradients_2022
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Fig. 1. Topography of the top four Rest and Movie FC gradients (N = 95). (A) Scree plot showing variance explained by the first 10 gradients, which was similar 

between Rest and Movie (t-test: t = 0.9677, p = 0.3334). Error bars indicate 1 standard deviation. (B) Pearson correlations between the first 10 gradients in Rest and 

Movie. Only the first 2 gradients show strong correlations across conditions, movie-G4 is correlated with rest-G3, and notably, movie-G3 does not look similar to 

any rest gradient. (C) Gradient scores projected on the cortical surface show similarities and differences in topography between Rest and Movie. Rest-G1-4 replicate 

previous work. In movie-G1, visual regions are situated midway between unimodal and heteromodal regions, and auditory regions coalesce with default mode and 

frontoparietal networks. For movie-G2, most transmodal and nonvisual primary regions have similar scores, creating a visual-nonvisual axis. Movie-G3 is anchored 

by auditory and language areas in the superior temporal gyrus and sulcus (including Wernicke’s area), Broca’s area, posterior middle frontal gyrus, and area 55b. 

Similar to rest-G3, movie-G4 is anchored by task-positive areas of the dorsal and ventral attention networks. Gradients are shown here each in its own scale to better 

highlight topography, but Supplementary Fig. 2 shows gradients in the same scale to better represent the relative variance. 
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est, and the difference remains significant when the first 10 gradients
re tested (Supplementary Fig. 4). 

.2. Organization of sensory regions within Rest and Movie gradients 

Gradient scores within networks are plotted for the top 4 gradients
n Rest and Movie ( Fig. 2 ). The hierarchical nature of movie G1-3 is ev-
dent when comparing mean scores across networks ( Fig. 2A ). Gradient
cores for G1-3 were also plotted to create 3-dimensional gradient space
or Rest and Movie ( Fig. 2B ). Parcels were color-coded based on their
ssignment to functional networks. In Rest, only G1 is hierarchically
rganized, and sensorimotor and auditory parcels from the somatomo-
or network are grouped together along all gradients. In Movie, the
uditory parcels separate out from the somatomotor network, and G1-3
onverge towards the DMN and frontoparietal. The parcels that move
he greatest distance in gradient space from Rest to Movie are located
5 
long the superior temporal sulcus (STS) ( Fig. 2D ). See Github reposi-
ory for animation visualizing the amount of modulation between states
 https://raw.githubusercontent.com/tvanderwal/naturalistic_gradients 
2022/main/resources/naturalistic_gradients.gif ). To examine the func-
ional hierarchy along movie gradients in reference to the hierarchical
rganization of rest-G1, we examined the rank order of parcels within
ovie G1-4 against their rank along rest-G1 ( Fig. 2C ). Movie G1-3 but
ot G4 resemble rest-G1 based on parcel rank (most parcels follow the
 = x line trajectory). All but one modality move up the hierarchy (i.e.,
alls below the y = x line) in G1-3, demonstrating modality-specific or-
anization. Functional segregation along sensory modalities is evident
uch that Movie G1 is associated with “pure ” sensorimotor functions,
ovie-G2 with visual functions, and movie-G3 with a complex set of

anguage and auditory functions. Term-based decoding of these regions
sing Neurosynth reflects clear functional and regional specification of
ach movie gradient ( Fig. 3 ). 

https://raw.githubusercontent.com/tvanderwal/naturalistic_gradients_2022/main/resources/naturalistic_gradients.gif
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Fig. 2. Movie gradients are modality specific . Parcel-based gradient data were summarized based on the 7 canonical networks ( Yeo et al., 2011 ). An auditory net- 

work (neon green) was defined based on movie-G3 scores, and is shown in B. (A) Boxplots of gradient scores within the 7 networks show where each network 

falls along the gradients. (B) Scatterplots of the top 3 gradients (i.e., gradient space) in Rest and Movie color-coded by parcel assignments to FC networks from 

A. In Rest, somatomotor and auditory networks behaved as one unit, whereas in Movie, the two networks decoupled along gradients 1 and 3. Rest-G1 runs 

from auditory, sensorimotor, and visual regions to heteromodal regions, replicating the “principal gradient ” of unimodal-to-heteromodal functional hierarchy. 

In Movie, all 3 gradients represent hierarchical axes. The heteromodal end of movie-G1, G2 and G3 is composed of both default and frontoparietal networks, 

and each gradient is anchored in one modality at the unimodal end: sensorimotor in movie-G1, visual in movie-G2, and auditory in movie-G3. (C) Scatterplots 

showing the rank of each parcel along movie-G1-4 relative to their rank along rest-G1 (i.e., rest functional hierarchy). The triangles below and above the dot- 

ted line (y = x line) represent moving up and down the hierarchy in Movie, respectively. The distribution of parcels along the y = x line in movie-G1-3 (but 

not movie-G4) recapitulates the hierarchical nature of these gradients. (D) Distance between Rest and Movie parcel positions in 3D gradient space is projected 

onto the cortical surface. Colorbar represents Euclidean distance units. Regions from the superior temporal sulcus show markedly higher distance than other re- 

gions, followed by visual and default regions. An animation showing the modulation of brain regions in gradient space from Rest to Movie can be viewed at 

https://raw.githubusercontent.com/tvanderwal/naturalistic_gradients_2022/main/resources/naturalistic_gradients.gif . 
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.3. Test-retest reliability of movie and rest gradients 

We compared the test-retest reliability of rest and movie gradients
sing ICC in a subsample of n = 67 with ≥ 600 volumes (10 min) per
un for all runs ( Fig. 4 ). Both rest and movie gradients had strong TRT
eliability. Despite using different movie clips across scans, the relia-
ility of movie gradients 1–4 was not different from Rest at 10 min
f data (mean ICC in Rest = 0.73; mean ICC in Movie = 0.74; t-test:
 = 0.3639, p = 0.7171). Rest gradients reach a higher ICC compared
o Movie gradients at 15 min (Rest ICC = 0.83; Movie ICC = 0.81; t-
est: t = 2.077, p = 0.0417) The difference between Rest and Movie be-
omes nonsignificant again at the 20 min mark (Rest ICC = 0.84; Movie
CC = 0.87; t-test: t = 1.978, p = 0.0521). When mapped onto the cor-
 R  

6 
ex, ICC scores for Movie appeared lowest in occipital, temporal, and
efault network regions ( Fig. 4C ). Rest and movie gradient reliability
ere both significantly higher than cross-condition reliability in either
irection (p-values < 0.0001) (Supplementary Fig. 5). 

.4. Brain-behavior correlations 

We computed the Pearson correlation coefficient between scores
rom the first 4 gradient maps with composite (PCA-based) behav-
oral scores from cognition, emotion and motor domains at each par-
el (n = 95). At the parcel level, gradient-behavior correlations for both
est and Movie were low (maximum r = 0.46 for Movie, r = 0.37 for
est) ( Fig. 5A ). In almost all cases, correlations between absolute r-

https://raw.githubusercontent.com/tvanderwal/naturalistic_gradients_2022/main/resources/naturalistic_gradients.gif
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Fig. 3. Meta-analytic decoding of movie gradients. Outputs from Neurosynth term-based decoding of the lowest 10% of gradient scores per gradient underscore 

functional and regional differentiation by modality for each of the top 3 movie gradients. 
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alues were significantly stronger for Movie relative to Rest (see Sup-
lementary Table 2). Maps of the correlations showed more regions and
tronger correlations for Movie, with regions appearing to cluster by
etwork membership (i.e., not random, especially in Movie) ( Fig. 5B
nd unthresholded maps shown in Supplementary Fig. 6). Additionally,
e counted the number of parcels with correlation strength of |r| > 0.2

P < 0.05 at n = 95). Movie had significantly more parcels above this
hreshold (Supplementary Fig. 6). When examining brain-behavior cor-
elations within networks, correlations were strongest within the fron-
oparietal and default networks in movie-G1&2 and visual and dorsal
ttention networks in movie-G3&4 ( Fig. 5C ). 

.5. Gradient-based prediction of behavior in Rest and Movie 

To compare brain-behavior predictions at the whole brain, individ-
al subject level across Rest and Movie, we used ridge regression to
redict the same composite cognition, emotion and motor scores using
ingle gradient maps, combined gradient maps, and full connectomes
Supplementary Fig. 7). When comparing the Pearson correlation coef-
cient between predicted and observed scores, significant predictions
ere found when using movie-G1 and combined movie-G1-4 for cogni-

ion, movie-G3 for emotion, and rest connectome for motor. When using
ean absolute error to assess model accuracies, only the sensorimotor
ovie gradient and all movie gradients combined for cognition, and
7 
est FC for motor, remained significantly different from the null models.
ithin this framework, significant cross-condition differences existed

uch that Movie outperformed Rest for all gradient-based models that
iffered significantly from null. Models in some cases yielded negative
-values, indicating overfitting. 

. Discussion 

An emerging body of literature is using dimensionality reduction
echniques with intrinsic functional connectivity data to reveal a gra-
ient space that spans from unimodal to heteromodal cortical regions
 Bernhardt et al., 2022 ; Hong et al., 2020 ; Huntenburg et al., 2018 ;
argulies et al., 2016 ). Here, we build on this work by investigating

tate-based differences in FC gradients. Specifically, we compare gradi-
nts from resting state and movie-watching conditions, the latter pro-
iding a brain state during which both sensory and higher-order cogni-
ive processes are dynamically engaged. Movie gradients underscored
he hierarchical organization of the cortex observed during Rest but
lso captured modality-specific granularity (movie G1 = sensorimotor,
ovie G2 = visual, movie G3 = language/auditory). Even though dif-

erent movies were used across scans, the test-retest reliability of movie
nd rest gradients showed no significant difference. Gradient scores–
hich signify the relative position of brain areas along each gradient–

howed stronger correlations with phenotypic traits across subjects in
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Fig. 4. Test-retest reliability of movie and rest FC gradients . (A) ICCs for G1-4 (averaged across subjects and gradients) increase as a function of data amount with a 

similar slope in both Rest and Movie. ICC reaches > 0.6 in Rest and Movie when using 4 and 5 min of data (240 and 300 TRs), respectively. ICC of > 0.8 is achieved 

with 13 and 14 min of Rest and Movie data, respectively (780 and 840 TRs). Inset shows cross-condition statistical comparisons of ICCs at two arbitrary time-points 

(10 and 20 min. of data). No significant differences between Rest and Movie are observed. (B) Boxplots show ICCs within the canonical networks across the top 4 

gradients in each condition. (C) ICCs mapped onto the cortical surface show that ICC of gradient scores vary across the brain. For G1 and G2, regions with stronger 

correlations appear similar across Rest and Movie, and in general, the strongest ICCs appear to include the frontoparietal network and other patchy regions. Ns = P 
≥ 0.05. 
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ovie compared to Rest. Here, we attempt to summarize and synthe-
ize notable observations about the movie gradients, what these find-
ngs might tell us about brain organization, and how movie gradients
ould be used in future research. 

.1. Default and frontoparietal networks form the heteromodal peak of top 

hree movie gradients 

The principal gradient of resting state FC is anchored by unimodal
egions on one end and mainly default network regions on the other.
ndeed, one of the initial findings of interest was that principal gradi-
nt scores were related to the geodesic distance from default network
ubs to primary sensory regions ( Margulies et al., 2016 ). In movies,
he heteromodal pole of the top three gradients are different insofar
s they converge on regions of both the frontoparietal and default net-
orks. That the default network is “isolated ” in the resting state princi-
al gradient is not surprising given what we know about unique default
8 
etwork functions in the absence of a directed task (e.g., mind wan-
ering, self-referential processing, future/past thinking, internal repre-
entations, etc.) ( Andrews-Hanna, 2012 ; Buckner and DiNicola, 2019 ;
mallwood et al., 2021 ). But what does it mean that both frontopari-
tal and default networks have similar gradient scores across the top
radients during movie-watching? 

Recent work using movie fMRI has shown that frontoparietal net-
ork function is different during movie-watching than during task, and

pecifically, that it does not uniquely function as a “switching hub ” dur-
ng movies ( Caldinelli and Cusack, 2022 ; Cole et al., 2013 ). This is de-
pite the fact that brain states are more numerous and that switching
etween states occurs more frequently than during rest, likely as a func-
ion of the movies themselves ( van der Meer et al., 2020 ). The high
est-retest reliability of movie gradients in the frontoparietal network
cross different movie types ( Fig. 4B ) suggests that, on average across a
ompilation of clips, the functional profile of the frontoparietal network
s readily generalizable to different movie stimuli. 
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Fig. 5. Relating gradient scores to behavioral scores in Rest and Movie, n = 95 . (A) Cognitive, emotion and motor composite (PCA-based) behavioral scores were used. 

Absolute values of Pearson’s correlation coefficients are shown for each parcel. Hard line shows mean for each gradient, and r = 0.2 is shown with a dotted line to 

indicate p < 0.05. (B) Correlations (absolute) > 0.2 were projected on the cortical surface. (C) Boxplots of Pearson’s correlation coefficients within the 7 canonical 

networks (Yeo 7-network parcellation) show overall stronger correlations in Movie, especially within default and frontoparietal networks in movie-G1&2 and visual 

and dorsal attention network in movie-G3&4. ns = P ≥ 0.05; ∗ = P < 0.05; ∗∗ = P < 0.01; ∗∗∗∗ = P < 0.0001. 
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The role and dynamics of the default network during movie-
atching are also still being elucidated, but it has long been im-
licated in social cognition and narrative processing ( Nguyen et al.,
019 ; Simony et al., 2016 ; Yeshurun et al., 2021 ) and overall, it ex-
ibits high levels of FC ( Vanderwal et al., 2015 ). In work emphasiz-
ng the pervasive role of memory at all levels of cognitive processing,
asson et al. (2015) showed that both default and frontoparietal net-
orks contain regions that are near the top of a processing hierarchy
ased on timescales of information accumulation, and that these re-
ions share relatively long temporal receptive windows ( Hasson et al.,
015 ). In sum, previous work on task-evoked FC changes generally
hows that both frontoparietal and default networks are highly engaged
uring movie watching, indicating that “default ” functions such as self-
eferential processing and social reasoning may occur in concert with
xecutive control functions, and that this interplay or coalescence might
merge specifically in naturalistic contexts that include evolving narra-
ives. The finding that they have similar gradient scores and that they
ointly form the heteromodal pole of movie gradients essentially rede-
nes the nature of the hierarchical gradient during naturalistic process-
9 
ng, and raises questions about the extent to which the two networks
ork together or remain segregated ( Fair et al., 2007 ; Wang et al.,
021 ). One interesting conceptual question that is sparked by this find-
ng is whether frontoparietal and default networks would share the het-
romodal hub in a movie-watching macaque study, or if this intercalated
rrangement is an evolutionary product specific to humans. 

Taking a network perspective to guide movie gradient interpretation
as its limitations, especially considering that the canonical functional
etworks have been defined in rest ( Yeo et al., 2011 ). The range of gra-
ient scores within each network is wider in Movie compared to Rest
uggesting that areas within the same network diverge in their FC pat-
erns during movie-watching. This is most evident in the somatomotor
etwork where movie-watching appears to evoke distinct FC patterns
ithin the sensorimotor and auditory regions to the point of forming

eparate gradients driven by the two subsystems (gradients 1 and 3, re-
pectively), and similar divergence could well be happening in other net-
orks. Future work using movie-derived networks mapped onto movie
radient space might help make further sense of the cortical gradients,
nd though here we have tracked network positions from the well-
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efined resting state to movie, it might be useful to understand how
ovie-derived networks redistribute in the opposite direction (i.e., from
ovie gradient space to rest gradient space). 

.2. Sensorimotor movie gradient 

The overall topography of the first gradient is highly similar between
est and Movie with some important differences ( Fig. 1B and C). While

he sensorimotor cortex remains anchored at the unimodal end in Movie,
isual and auditory cortices move up the hierarchy ( Fig. 2C ) render-
ng movie-G1 a pure sensorimotor-to-heteromodal axis. This trend of
rimary regions moving up or becoming more “heteromodal ” during
ovies is observed across the gradients overall. The amount that each

ensory modality has moved within the sensorimotor movie gradient
and the order of movie-G1-G3) recapitulates the evolutionary and de-
elopmental hierarchy of the brain ( Dong et al., 2021 ; Fair et al., 2008 ;
ilmore et al., 2018 ; Sydnor et al., 2021 ; Xu et al., 2020 ). This adds
 “movie gradient ” contribution to previous work that has considered
he way that gradients relate to both anatomical and evolutionary hi-
rarchies ( Sydnor et al., 2021 ). The sensorimotor focus of movie-G1 is
lso evident in its term-based meta-analysis ( Fig. 3 ). The differences in
radient 1 organization between Rest and Movie become more signifi-
ant when examining the correlations between gradient scores and be-
avioral scores. This sensorimotor movie gradient shows the strongest,
ost numerous correlations with cognition, with the highest correla-

ions in heteromodal default and frontoparietal networks ( Fig. 5B and
). Moreover, this movie gradient outperformed the rest principal gra-
ient for predicting cognitive and emotion scores in a ridge regression
ross-validation framework. Given these results, and in light of the grow-
ng interest in FC gradients as a framework for biomarker discovery in
sychiatry, the sensorimotor movie gradient could provide a useful al-
ernative to the principal gradient in rest for interrogating the biolog-
cal underpinnings of psychiatric disorders ( Hong et al., 2019 , 2020 ;
untenburg et al., 2018 ; Xia et al., 2022 ). Further testing of this idea
ould require larger datasets that use movie-watching as an acquisition

tate. 

.3. Visual movie gradient 

In contrast to rest-G2, which differentiates between cortical ar-
as based on perceptual modality (visual-to-sensorimotor), the second
ovie gradient is anchored by the visual cortex with almost all other

ortical areas forming a non-visual pole. To date, the visual cortex has
ot been the focus of human gradient work, possibly because it does not
tand out in rest gradients, whereas in animal gradient studies, it does.
or example, in mice, the visual cortex drives a number of gradients,
ne of them (murine gradient 3) is a nonhierarchical somatomotor-to-
udiovisual gradient that has been shown to have strong correspondence
ith gene expression ( Huntenburg et al., 2021 ). Joint embedding studies
n monkey and human data found that cross-species FC homology reca-
itulates previously established visual processing order with increasing
ccentricity ( Xu et al., 2020 ). The same ordering can be seen here along
he lower gradient scores of the visual movie gradient: a local visual hi-
rarchy is reflected in gradient scores as one progresses out from primary
isual regions to associative visual regions, providing another example
f a hierarchical gradient that follows the topology of the geodesic sur-
ace. As such, this visual movie gradient might provide a way to query
ortical organization in relation to the visual cortex in humans in a new
ay. 

.4. Auditory and language movie gradient 

Movie gradient 3 shows a unique topographic organization not seen
n resting state gradients. This gradient is anchored by the full cat-
log of auditory and language areas, including the superior tempo-
al gyrus and sulcus, posterior middle frontal gyrus, inferior frontal
10 
yrus, area 55b, and Brodmann’s Areas 44 and 45. This complex set
f regions is highly similar to an “audiovisual social perception net-
ork ” shown previously in task-based approaches to movie-watching
ata ( Lahnakoski et al., 2012 ), during story listening ( Huth et al., 2016 )
nd they closely resemble one of the meta-analytic groupings (MAG 2)
rom a naturalistic meta-analysis ( Bottenhorn et al., 2019 ). It is par-
icularly interesting that the brain regions evoked by multiple social
nd language-related tasks —and which are connected via different dor-
al and ventral language-related white matter tracts ( Blazquez Freches
t al., 2020 ; Skeide et al., 2016 ) —all have similar gradient scores (i.e.,
ovie-G3 goes beyond a “simple ” sensory modality). The pole also in-

ludes regions in the anterior temporal lobe (ATL). Tract tracing stud-
es have shown convergence of multiple sensory modalities in the ATL
 Ralph et al., 2017 ), and it has been hypothesized to serve as an in-
egration hub for semantic information ( Jefferies, 2013 ). This movie
radient thus uniquely includes both primary and association cortical
egions at its sensory end, making its pole more complex than the other
ovie gradient poles. This auditory/language movie gradient was also

he only gradient that showed potential for predicting emotional scores
Fig S5). The heteromodal pole of this gradient is also unique among the
ovie gradients insofar as it is anchored more by frontoparietal than
efault network, suggesting that the integration between auditory and
rontoparietal regions during movie-watching is distinct from rest. This
radient could provide a unique, comprehensive tool with which to as-
ess functional brain organization as it relates to language and social
rocessing regions. As noted above, the language regions are known to
evelop later than sensorimotor and visual regions, and it would be in-
eresting to track developmental trajectories of this auditory/language
radient in a longitudinal sample. 

We also note that gradient scores in temporal regions seem impor-
ant across all movie gradients. In the first movie gradient, temporal
egions are not grouped with the other sensory regions as they are dur-
ng rest. Rather, they are grouped together with heteromodal regions,
uggesting that during active processing, the connectivity patterns in
uditory regions are more similar to heteromodal connectivity patterns.
elatedly, a discrete cluster of regions along the STS are also observed

o move the maximal distance within gradient space from Movie to Rest
Fig. S3). This distance or cross-state change occurs mainly in the audi-
ory/language movie gradient. Temporal regions are also where we ob-
erved the strongest brain-behavior correlations from within the visual
ovie gradient where they have intermediate gradient scores. These

bservations suggest that the position of auditory and language regions
elative to the rest of the cortex during complex, dynamic neural pro-
essing is pivotal, and examining gradient scores in these regions in de-
elopmental and psychiatric disorders such as autism, schizophrenia and
yslexia (among others) would be of interest. 

.5. Attention gradient 

Movie-G4 appears topographically similar to and correlated with
est-G3: both gradients highlight task positive attention networks. The
istribution of gradient scores within networks in Fig. 2A shows that in
ovie, the task positive/task negative demarcation is even more pro-

ounced. Additionally, movie-G4 correlations with cognition appear to
e in the same regions as rest-G3 to cognition. Essentially, we suggest
hat movie-G4 provides a better representation of the same principle
aptured in rest-G3 and that given the nature of movie-watching as a
obust, dynamic task-state, it is intuitive that a gradient that splits task-
ositive and task-negative regions would be more fully captured during
ovie-watching. Katsumi et al. (2021) have proposed FC gradients as a

ommon neural architecture for predictive processing in the brain, with
n emphasis on rest-G3 as a “model-precision gradient ” ( Katsumi et al.,
021 ). Considering that rest-G3 and movie-G4 appear to be based on
he same underlying principle, the latter might provide a more refined
r pronounced model for understanding these types of task-positive or
redictive processes. 
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.6. FC gradients across different movie stimuli are as reliable as across 

est runs 

Here, we demonstrate that the lower-dimensional gradient space is
qually reliable for rest and movie despite the use of different movies
uring test and retest datasets ( Fig. 4 ). This finding suggests that the
ariance captured by movie gradients reflects FC patterns characteris-
ic of the naturalistic movie-watching experience on the whole rather
han patterns evoked by a certain type of audiovisual stimulus. This
ay in part be due to the fact that each movie run was itself a compila-

ion of different clips and FC values for each region capture the corre-
ation of BOLD-signal time-courses across the full duration of the clips
i.e., they are collapsed, and not dynamic). Overall, this gradient finding
ollows suit with other work, including a meta-analysis across more di-
erse naturalistic paradigms, where a core set of common functional pat-
erns are observed across even very different stimuli ( Bottenhorn et al.,
019 ). This is not to say that there are no cross-movie differences in
unctional brain organization but rather that there are significant cross-
ovie similarities. The strong reliability of movie gradients across dif-

erent movie stimuli could alternatively be interpreted as a low sen-
itivity of movie gradients to differences in the content/structure of
ifferent movies (e.g., intrinsic fluctuations could be obscuring movie-
pecific responses). Our findings do not address whether using the same
ovie across scans would result in higher test-retest reliability of gradi-

nt features. Additionally, it remains unclear whether different movies
ight reveal different gradients based on unique content, style, or id-

osyncratic reactions to certain elements in a given movie, or whether
egressing or filtering out non-stimulus driven activity might alter the
radients, their reliability, and/or the impact of different movies. 

.7. Naturalistic movie gradients provide more granularity for mapping 

ortical functional organization 

Different types of data have been used to delineate organizational
radients in neuroscience, including structural, functional and evolu-
ionary hierarchies ( Sydnor et al., 2021 ). Direct neuroimaging measures
uch as inter-regional variation in the T1-weighted to T2-weighted ratios
eveal a structural/anatomical hierarchy ( Burt et al., 2018 ). Character-
zing an evolutionary hierarchy in a neuroimaging-driven approach has
uantified the ratio of cortical expansion between nonhuman primates
nd humans at each vertex ( Krubitzer, 2007 ; Xu et al., 2020 ). Addition-
lly, spatial gene expression measures have been shown to recapitulate
C during rest and to align with rest FC gradients ( Huntenburg et al.,
018 ; Richiardi et al., 2015 ). 

While gradient analysis of resting state or intrinsic FC measures has
rovided important insights into the functional organization of the cor-
ex, resting state alone may not evoke a sufficient range of connectiv-
ty patterns to identify a functional hierarchy that accounts for diverse
unctional processes. As outlined in the Introduction, a long history of
ork suggests that brain organization follows a hierarchy from basic
erceptual functions up to abstract cognitive processes. Studies that in-
estigate dynamic and temporally embedded processes suggest that us-
ng ecologically valid data may be essential for delineating a hierar-
hy that takes into account complex, dynamic functions. For example,
an der Meer et al. (2020) demonstrated that temporal brain state dy-
amics shift from predominantly bistable transitions between two rel-
tively indistinct states at rest, toward a sequence of well-defined and
ighly reliable functional states during movie-watching that correspond
ith specific movie features ( van der Meer et al., 2020 ). Another line
f research also using naturalistic imaging paradigms has revealed a
emporal integration hierarchy based on the time window during which
resented information can influence the processing of incoming percept
 Baldassano et al., 2017 ; Hasson et al., 2008 ). Notably, the topography
f high inter-subject consistency necessary to describe temporal integra-
ion hierarchy aligns with the topography of high between-condition
hift within gradient space ( Baldassano et al., 2017 ) ( Fig. 2B and D
11 
nd Supplementary Video). Altogether, these observations suggest that
ovie-watching as a brain state may contain additional and unique in-

ormation about the temporal dynamics and processing that are the re-
ult of evolutionary processes and demands. When used for gradient
nalyses, these data lead to more granular representation of the tempo-
al and “in-action ” functional hierarchy of the cerebral cortex. 

In this Discussion, we have used descriptive nomenclature for the
op movie gradients that is based simply on the cortical regions an-
horing these gradients (i.e., sensorimotor, visual, auditory/language).
hese names summarize only the pole of the gradient, and there is some
oncern that the importance or utility of the “in-between ” or liminal
egions will be overlooked. In most cases, our findings suggest that the
oles or extreme scores of a gradient will not be the most interesting or
mportant. For example, the anchoring regions in the top movie gradi-
nts did not yield the strongest behavioral correlations (see Fig. 5 and
upplementary Fig. 6). Auditory regions did demonstrate some of the
tronger correlations, but this was from within the middle range of the
isual movie gradient. Similarly, visual regions demonstrated stronger
rain-behavior correlations from within the middle range of the au-
itory/language movie gradient. Going forward, mid-gradient regions
ay be of particular interest when it comes to individual differences.
e also recommend that descriptive names rather than gradient num-

ers be used for gradients when possible, as gradient order is likely to
hange across developmental and/or clinical groups. 

The current study revealed important insights into the cortical orga-
ization under naturalistic conditions. However, our findings may have
een limited by the exclusion of subcortical structures, especially given
heir integral role in coherent perception of the narrative of continuous
timuli such as movie clips ( Baldassano et al., 2018 ; Cohen et al., 2022 ;
ee and Chen, 2022 ; Milivojevic et al., 2016 ). We also note that all of the
ovie clips in the HCP stimuli are relatively short in duration (less than
 min each). This precludes capturing any temporal dynamics that may
merge over durations on par with a television episode (20–60 min) or
eature film (1.5 + h) which have been shown to be present and impact-
ul on neural patterns that relate to memory and narrative constructions,
tc. ( Baldassano et al., 2017 ; Hasson et al., 2008 ; Zadbood et al., 2022 ).
t would be interesting for future work to extend movie gradient inves-
igations to longer movie scans with intact temporal and narrative con-
inuity, or to directly test the effects of narrative continuity on gradient
tructure. 

. Conclusions 

In the present study, we described cortical gradients of functional
onnectivity during movie-watching. The results show that during com-
lex, dynamic processing, functional brain organization layers out into
ierarchical gradients that are anchored by both default and frontopari-
tal regions, and that are unimodal. These naturalistic gradients thus
ollow different principles of cortical organization than are observed
n resting state. In particular, because movie gradients are modality
pecific, they provide a more granular way to interrogate and under-
tand principles of functional cortical organization. The progression of
he sensory modalities captured by the top three movie gradients (by
ay of variance explained) follows known developmental and evolu-

ionary hierarchies, from sensorimotor, to visual, to auditory/language
egions. Future research could investigate developmental trajectories of
hese naturalistic gradients. We also show that movie gradient scores
emonstrate stronger correlations with cognitive behavioral measures
ompared to resting state gradient scores. Movie gradients may offer
nique advantages for future efforts to better understand cortical orga-
ization in neuropsychiatric disorders. 
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