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A B S T R A C T   

Human interaction often requires the precise yet flexible interpersonal coordination of rhythmic behavior, as in 
group music making. The present fMRI study investigates the functional brain networks that may facilitate such 
behavior by enabling temporal adaptation (error correction), prediction, and the monitoring and integration of 
information about ‘self’ and the external environment. Participants were required to synchronize finger taps with 
computer-controlled auditory sequences that were presented either at a globally steady tempo with local ad
aptations to the participants’ tap timing (Virtual Partner task) or with gradual tempo accelerations and de
celerations but without adaptation (Tempo Change task). Connectome-based predictive modelling was used to 
examine patterns of brain functional connectivity related to individual differences in behavioral performance and 
parameter estimates from the adaptation and anticipation model (ADAM) of sensorimotor synchronization for 
these two tasks under conditions of varying cognitive load. Results revealed distinct but overlapping brain 
networks associated with ADAM-derived estimates of temporal adaptation, anticipation, and the integration of 
self-controlled and externally controlled processes across task conditions. The partial overlap between ADAM 
networks suggests common hub regions that modulate functional connectivity within and between the brain’s 
resting-state networks and additional sensory-motor regions and subcortical structures in a manner reflecting 
coordination skill. Such network reconfiguration might facilitate sensorimotor synchronization by enabling shifts 
in focus on internal and external information, and, in social contexts requiring interpersonal coordination, 
variations in the degree of simultaneous integration and segregation of these information sources in internal 
models that support self, other, and joint action planning and prediction.   

1. Introduction 

Diverse human activities rely on precise, yet flexible coordination of 
behavior across two or more individuals in real time. Such interpersonal 
temporal alignment—evident in rhythmic activities ranging from 
marching and rowing to collective music-making and dance—serves 
cultural functions in promoting social bonding and cooperative behavior 
(D’Ausilio et al., 2015; Shamay-Tsoory et al., 2019). The capacity for 
rhythmic interpersonal coordination is based on psychological mecha
nisms that enable individuals to anticipate and adapt to each other’s 
action timing, and to monitor their own performance whilst simulta
neously monitoring and integrating information about their co-actors’ 

behavior (Gallotti et al., 2016; Keller et al., 2014; Konvalinka et al., 
2010). Previous neuroimaging research has identified associations be
tween these mechanisms and multiple brain regions engaged in basic 
sensory and motor processing, as well as higher-level cognitive and 
social-emotional processes (e.g., Chauvigne et al., 2014; Fairhurst et al., 
2013, 2014; Konvalinka et al., 2014; Pecenka et al., 2013; Repp and Su, 
2013). The present study investigates how these brain regions form 
networks that interact to support temporal adaptation, anticipation, and 
the processing of information about one’s own actions and relevant 
external events during real-time coordination. 
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1.1. Temporal adaptation & anticipation 

Fundamental mechanisms of temporal adaptation detect discrep
ancies in timing (i.e., asynchronies) between an individual’s actions and 
external events, and implement reactive error correction to compensate 
for these asynchronies via adjustments to the timing of the individual’s 
upcoming actions (Mates, 1994b; Praamstra et al., 2003; Repp and 
Keller, 2008). Behavioral studies of this process suggest that adjustments 
to the phase alignment (i.e., amount of lead or lag) of internal time
keeping mechanisms that underlie rhythmic actions operate automati
cally, while adjustments to timekeeper period (which determines 
tempo) require attention and effort (Repp, 2005; Repp and Keller, 
2004). 

Anticipatory mechanisms that support rhythmic coordination exploit 
temporal relations between sequential events (e.g., patterns of tempo 
change found in expressively performed music) to generate predictions 
about the timing of future events (Keller, 2008; Konvalinka et al., 2010; 
Pecenka and Keller, 2011). Such temporal prediction is characterized by 
individual differences related to working memory and the strength of 
covert motor simulation processes that drive mental imagery for up
coming actions (Colley et al., 2018; Keller, 2012a; Pecenka and Keller, 
2011). 

A growing body of research suggests that temporal adaptation and 
anticipation work together to facilitate rhythmic coordination by 
allowing one’s own actions to be planned relative to predictions about 
the timing of external event sequences, and to be adjusted in response to 
asynchronies that arise due to inaccurate predictions and inherent 
variability in movement control (Mills, van der Steen et al., 2015; van 
der Steen and Keller, 2013). Furthermore, the balance between adap
tation and anticipation is regulated via attentional processes that 
respond to momentary task demands associated with simultaneously 
monitoring and integrating information about one’s own actions and 
external events (Mills et al., 2019; van der Steen et al., 2015a). Indi
vidual differences in these processes determine rhythmic coordination 
skills and can thereby influence social interaction in everyday contexts 
(D’Ausilio et al., 2015; Keller et al., 2014). 

Functional magnetic resonance imaging (fMRI) research has exam
ined brain activity associated with temporal adaptation and anticipation 
in conjunction with behavioral sensorimotor synchronization tasks that 
require participants to produce simple movements (e.g., finger taps) in 
time with auditory pacing sequences. Studies of adaptation have 
employed computer-controlled ‘virtual partners’ that are programmed 
to react to the human participants’ tap timing by implementing varying 
degrees of error correction, while studies of anticipation have used 
pacing sequences containing systematic patterns of gradual tempo 
change (Dumas et al., 2014; Dumas et al., 2019; Fairhurst et al., 2013, 
2014; Miyata et al., 2022; Pecenka et al., 2013). This work suggests that 
adaptation and anticipation are associated with activity in partially 
overlapping networks of widely distributed brain areas that feature 
prominently in the large body of neuroimaging research on sensori
motor synchronization and rhythm perception and production more 
generally. 

1.2. Brain networks for rhythmic behavior 

Key players in the literature on rhythmic behavior include motor- 
related cortical regions (e.g., premotor cortex and supplementary 
motor area) and subcortical structures (basal ganglia and cerebellum) 
that become functionally coupled with sensory areas and other cortical 
regions, including auditory cortex and primary motor cortex, depending 
on specific task demands (for reviews, see Cannon and Patel, 2021; 
Chauvigne et al., 2014; Comstock et al., 2018; Coull et al., 2011; Levitin 
et al., 2018; Patel and Iversen, 2014; Repp and Su, 2013; Todd and Lee, 
2015a; Vuust et al., 2022; Witt et al., 2008). Levels of activation and 
functional connectivity within and between these regions are modulated 
by structural features of the task, concurrent demands, and the musical 

experience of participants (e.g., Chen et al., 2008; Grahn and Brett, 
2007; Matthews et al., 2020; Pecenka et al., 2013; Penhune et al., 1998; 
Pollok et al., 2005; Todd and Lee, 2015b; Toiviainen et al., 2020; Vuust 
et al., 2006). Such dependencies suggest that studying the brain net
works for sensorimotor synchronization is best done using tasks that 
capture a range of timing demands, and by focusing on individual dif
ferences under conditions of varying cognitive load. 

Numerous related studies have addressed distinctions between the 
processing of rhythms with a regular periodic beat structure versus 
irregularly timed rhythms, or rhythmic movements that are internally 
(self) paced versus externally paced by auditory sequences. Although 
less work has addressed temporal adaptation and anticipation directly, 
the findings of studies on rhythmic regularity and external versus in
ternal pacing are potentially informative for identifying networks for 
temporal adaptation and anticipation (which are not relevant in the case 
of internally paced action) and assessing effects of cognitive load (which 
is higher for irregular than regular patterns). 

Related research suggests that the reactive error correction processes 
underpinning adaptive timing are supported by extensive subcortical 
and cortical networks (Bijsterbosch et al., 2011; Fairhurst et al., 2013, 
2014; Jäncke et al., 2000; Oullier et al., 2005; Praamstra et al., 2003; 
Rao et al., 1997; Stephan et al., 2002). There is considerable overlap in 
regions implicated in phase correction and period correction, including 
the cerebellum, premotor cortex, inferior frontal gyrus, dorsolateral and 
ventrolateral prefrontal cortices, temporoparietal junction, anterior 
cingulate, and anterior insula (Table S1 in Supplementary Materials). 
However, there is evidence for partial neurophysiological distinction 
between the two types of error correction to the extent that phase 
correction additionally recruits the basal ganglia (particularly the 
caudate), inferior parietal lobule, pre-supplementary motor area, supe
rior temporal gyrus, primary motor cortex, posterior cingulate cortex, 
and precuneus (Fairhurst et al., 2013, 2014; Stephan et al., 2002), while 
period cortex involves the supplementary motor area and posterior pa
rietal cortex (Praamstra et al., 2003; Repp and Su, 2013). Furthermore, 
temporal prediction recruits a number of areas in common with those 
involved in temporal adaptation, but also calls on the putamen in the 
basal ganglia, the inferior and middle temporal gyri, superior parietal 
lobule, supramarginal gyrus, frontal pole, precentral gyrus, and middle 
and superior frontal gyri (Coull et al., 2011; Grahn and Rowe, 2013; 
Miyata et al., 2022; Pecenka et al., 2013; Schubotz, 2007). There is thus 
likely to be both noteworthy overlap and distinction in networks for 
temporal adaptation and anticipation. 

Areas of overlap are well-situated to serve as hub regions that 
mediate the relationship between temporal adaptation and anticipation. 
Some of these regions play a role in sensory-motor integration, notably 
the temporoparietal junction, middle cingulate gyrus, inferior parietal 
lobule, posterior parietal cortex, precuneus, premotor cortex, and the 
supplementary motor area (see Todd and Lee, 2015a; Witt et al., 2008) 
(Table S1). These possible hub regions are also sensitive to modulations 
in rhythmic regularity (related to beat salience and the complexity of 
inter-stimulus interval duration ratios) and cognitive load (Alluri et al., 
2012; Thaut et al., 2008; Toiviainen et al., 2020) (Table S1). Such de
pendencies highlight the potential relevance of the interplay between 
elementary sensory-motor processes and higher-level cognitive opera
tions, including attention and working memory (Coull, 2004; Hill and 
Miller, 2010; Janata et al., 2002; Satoh et al., 2001), during sensori
motor synchronization. We assume that this interplay takes place via the 
reconfiguration of the brain’s canonical resting-state networks, which 
comprise cortical and cerebellar sensory and motor-related regions, 
cingulo-opercular regions involved in conflict monitoring and error 
detection, fronto-parietal cognitive control regions, dorsal and ventral 
attention regions, and midline and lateral default mode regions linked to 
self-referential and social-cognitive processing (Cohen & D’Esposito, 
2016; Deco et al., 2015; Dixon et al., 2017; Seitzman et al., 2019; Sporns, 
2013; Wang et al., 2021). 

Temporal adaptation and anticipation during sensorimotor 
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synchronization might therefore be supported by a core network of hub 
regions that modulates functional connectivity within and between the 
brain’s resting-state networks and additional sensory-motor regions and 
sub-cortical structures depending on concurrent cognitive demands and 
the individual differences in coordination skill. 

Studies of sensorimotor synchronization with virtual partners have 
yielded results that are consistent with such reconfiguration. One study 
found that small shifts in the degree of adaptive timing employed by the 
virtual partner led to large-scale switches from activation of regions 
predominantly within the default mode and somatomotor networks 
(including posterior cingulate cortex, precuneus, supplementary motor 
area, and primary motor and somatosensory cortices) to increased 
activation of regions in frontoparietal control and salience networks (e. 
g., dorsomedial prefrontal cortex and anterior insula) (Fairhurst et al., 
2013). In a related study, brain activation patterns differed depending 
on the coordination strategies that individuals used when interacting 
with uncooperative virtual partners (Fairhurst et al., 2014). Specifically, 
the prioritization of stabilizing one’s own performance, presumably via 
internal focus, was associated with activation in the pre-supplementary 
motor area and precuneus. Such findings have been taken to indicate 
that network configuration plays a role in regulating the monitoring and 
integration of information about ‘self’ and ‘other’ (i.e., another human 
or virtual partner) depending on one’s own adaptation and anticipation 
capacities, as well as the cooperativity of one’s partner (Keller et al., 
2014; Keller et al., 2016; Liebermann-Jordanidis et al., 2021). 

Simultaneous self-other integration and segregation can be viewed as 
a specific form of balancing internal (self) versus external (other) 
sources of information (Novembre et al., 2016). Expertise in domains 
where rhythm is a key element may be characterized by the strategic 
modulation of this balance. For instance, a study with shamanic prac
titioners found that trance states induced by rhythmic drum sounds were 
associated with increased functional connectivity between a posterior 
cingulate seed region in the default mode network and control-related 
network regions. This pattern of between-network coupling was, 
furthermore, accompanied by perceptual decoupling from the acoustic 
input, indicated by decreased connectivity in the auditory pathway 
(presumably facilitating an internally oriented mode of processing that 
promotes insight) (Hove et al., 2016). Moreover, with respect to indi
vidual differences, an EEG study of dyadic finger tapping found distinct 
types of brain network coupling depending on whether individuals 
engaged in high or low levels of mutual adaptation (Heggli et al., 2020). 
High adaptation was associated with relatively strong coherence in a 
right-lateralized network spanning auditory cortex, somatosensory 
cortex, temporoparietal junction, middle temporal gyrus, inferior pari
etal cortex, supramarginal gyrus, and precuneus. The direction of in
formation flow within this network also varied as a function of 
adaptation strategy. The foregoing suggests that sensorimotor synchro
nization skill may be reflected in flexibility in the functional coupling of 
brain networks to optimize focus on external versus internal sources of 
information depending on the task at hand. 

1.3. Present aim 

Previous fMRI research examined adaptation and anticipation in 
separate studies and identified brain networks only qualitatively based 
on regional activation. The current study addresses the open question of 
how adaptation and anticipation interact, and how the related brain 
regions form functional networks that communicate within and between 
one another in order to produce precise yet flexible synchronization 
behavior. To this end, we combine advances in brain network identifi
cation (Finn et al., 2015; Rosenberg et al., 2017; Rosenberg et al., 2016) 
with computational modelling of behavior using the adaptation and 
anticipation model (ADAM) of sensorimotor synchronization (Harry and 
Keller, 2019; van der Steen et al., 2015a; van der Steen and Keller, 
2013). 

ADAM comprises an adaptation module that provides input to an 

internal model of the ‘self’, which plays a role in action planning 
(Wolpert and Kawato, 1998), an anticipation module that informs an 
internal model of the ‘other’, for prediction of external sequential events 
(Wolpert et al., 2003), and a joint module that integrates the output of 
the ‘self’ and ‘other’ internal models via attentional regulation (Keller 
et al., 2016; cf. Müller et al., 2021; Pesquita et al., 2018) (see Fig. 1A). 
This joint internal model computes the discrepancy between outputs of 
the ‘self’ and ‘other’ internal models, and implements anticipatory error 
correction to reduce this discrepancy by adjusting one’s own action plan 
in the ‘self’ internal model prior to action execution. In this conceptu
alization, the output the joint module represents the relative integration 
and segregation of information about self and other (Keller et al., 2016). 
ADAM differs from approaches that model phase and period relations (e. 
g., Heggli et al., 2019; Loehr et al., 2011; Mates, 1994a, 1994b; Schulze 
et al., 2005; Tognoli and Kelso, 2014) primarily through the inclusion of 
the anticipation module, which uses an extrapolation function for 
tempo-change prediction, and the joint module that combines these 
predictions with the output of the adaptation module (see section 2.4). 

Applying ADAM to behavioral data allows the estimation of pa
rameters that reflect individual participants’ use of reactive (phase and 
period) error correction, temporal (stimulus) prediction, and anticipa
tory error correction, thus providing a window into self-other moni
toring and integration capacities for real-time interpersonal 
coordination (Mills et al., 2019; van der Steen et al., 2015a; van der 
Steen et al., 2015b). To identify the brain networks associated with 
ADAM’s adaptation, anticipation, and joint modules, we adopt a 
connectome-based predictive modelling approach (Finn et al., 2015; 
Rosenberg et al., 2016, 2017) that examines patterns of functional 
connectivity related to individual differences in behavioral measures 
and ADAM parameter estimates. These connectivity patterns were 
investigated across conditions of varying cognitive load to test their 
reliability and the degree to which they are modulated by attention. 

2. Methods 

2.1. Study overview & design 

fMRI data were collected while participants completed two audio- 
motor sensorimotor synchronization tasks (Virtual Partner task and 
Tempo Change task) designed to assess temporal adaptation and antic
ipation under two cognitive load conditions (single task and dual task). 
The Virtual Partner task was used to examine parameters from the 
adaptation module of ADAM under steady tempo conditions that were 
not expected to show large effects of cognitive load (Repp and Keller, 
2004). The Tempo Change task interrogated the ADAM’s adaptation, 
anticipation, and joint modules under more demanding conditions that 
were expected to be susceptible to effects of cognitive load (Pecenka 
et al., 2013). This selection of tasks and modelling approach was based 
on previous behavioral work investigating individual differences in 
sensorimotor synchronization (see Harry and Keller, 2019). 

The Virtual Partner task (Fig. 1B) was originally developed to evoke 
naturalistic corrective behavior where the participant and computer- 
controlled virtual partner mutually adapt to each other’s timing (Repp 
and Keller, 2008). The task requires participants to synchronize finger 
taps with adaptive auditory pacing sequences generated by the virtual 
partner. In the current study, the virtual partner produced target sounds 
with a base inter-stimulus interval that was adjusted at each cycle by a 
fixed proportion of the asynchrony produced by the participant relative 
to the virtual partner’s previous sound (Fairhurst et al., 2013; Mills 
et al., 2015; Repp and Keller, 2008). This proportion—effectively 
instantiating phase correction in the virtual partner—was set to different 
adaptivity values to create under-correcting, optimal-correcting, and 
over-correcting partners across conditions (Fairhurst et al., 2013). Es
timates of human adaptation derived from participants should therefore 
generalize across a range of partners who vary in cooperativity. ADAM 
parameter estimates of phase correction and period correction were 
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computed for individual participants by fitting ADAM to behavioral data 
from each trial of the Virtual Partner task. The phase correction 
parameter (designated ‘α’ in the model nomenclature) represents the 
proportion of each asynchrony that is reactively compensated for by the 
participant on average (via a local adjustment that leaves the base 
period of the internal timekeeper unchanged), reflecting the strength of 
sensory-motor coupling (Repp et al., 2012). The period correction 
parameter (β) represents the proportion of each asynchrony that is 
compensated for by globally increasing or decreasing the timekeeper 
period (Harry and Keller, 2019). Period correction is unnecessary and 
was not expected to come into play in the Virtual Partner task due to the 
regular tempo. 

In the Tempo Change task (Fig. 1C), participants synchronized finger 
taps with auditory pacing sequences comprising inter-stimulus intervals 
that varied gradually (without adapting to participants’ tap timing, in 
contrast to the Virtual Partner task) (Mills et al., 2015; Pecenka et al., 
2013). The Tempo Change task was used to estimate participants’ use of 
period correction (as above), as well as stimulus prediction and 

anticipatory error correction. ADAM’s stimulus prediction parameter (δ) 
represents the degree to which participants exploit recent changes in the 
pacing sequence inter-stimulus intervals to predict the timing of up
coming sounds. This parameter weights the relationship between a 
linear extrapolation process based on preceding intervals versus a 
tracking process that copies the most recent interval (van der Steen and 
Keller, 2013). The anticipatory error correction parameter (γ) represents 
the degree to which discrepancies between the output of the adaptation 
and anticipation modules are corrected before the next movement is 
executed. The parameter estimate reflects the proportion of the 
discrepancy that is compensated for by adjusting one’s own action plan 
before a motor command is issued (van der Steen et al., 2015a). 

Participants completed both sensorimotor synchronization tasks 
under single-task (tapping only) and dual-task (tapping plus a secondary 
visual ‘1-back’ working memory task) conditions. Previous work has 
shown that behavioral processes related to adaptation and anticipation 
show selective effects of a secondary task. Specifically, period correction 
is impaired to a greater degree than phase correction (Repp and Keller, 

Fig. 1. Schematic diagrams of the Adaptation and 
Anticipation Model (ADAM) of sensorimotor syn
chronization and the behavioral tasks. A) Adaptation 
and Anticipation Model (ADAM) architecture. Phase 
correction (α) and period correction (β) mechanisms 
in the ‘adaptation’ module influence action planning 
in a ‘self’ internal model. The ‘anticipation’ module 
controls the weighting (δ) of two processes, one 
entailing linear extrapolation of previous inter-onset 
intervals in the external sequence and the other 
copying the previous interval, which inform temporal 
predictions in an ‘other’ internal model. An antici
patory error correction mechanism (γ) a ‘joint’ in
ternal model reduces discrepancies between (self) 
plans and (other) predictions before motor commands 
are issued. B) Virtual Partner task in which partici
pants synchronize finger taps with computer- 
controlled auditory sequences that adapt to the par
ticipants to varying degrees (controlled by the phase 
correction parameter ‘alpha’, α). C) Tempo Change 
task, in which participants tap in time with auditory 
pacing sequences containing gradual accelerations 
and deceleration spanning 400–600 ms inter-onset 
intervals.   
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2004), and temporal prediction is impaired more than tracking (Pecenka 
et al., 2013). Here we extended the investigation to anticipatory error 
correction, and tested for changes in functional connectivity within and 
between brain networks associated with parameters from all ADAM 
modules. 

2.2. Participants 

Seventy-five right-handed participants (41 females and 34 males, 
aged 18–40 years) were recruited via social media and on-campus flyers 
at Western Sydney University. Individuals with varying amounts of 
musical experience were included to increase the likelihood that the 
participant sample represented a range of sensorimotor synchronization 
abilities. Thirty-five musicians had 5–22 years of experience at playing a 
musical instrument and had either engaged in musical instruction at a 
tertiary level or were professionally active. The remaining 40 in
dividuals had no formal music training beyond mandatory classroom 
music education in primary/secondary school. All participants had 
participated in previous sensorimotor synchronization experiments, and 
were drawn from a dedicated project database maintained at the MARCS 
Institute for Brain, Behaviour and Development. Participants received 
payment for taking part in the experiment. The study was approved by 
the Human Research Ethics Committee at Western Sydney University 
(protocol number H10487), and all participants provided informed 
written consent. 

2.3. Procedure & materials 

After screening, each participant completed a practice session, which 
included tasks identical to those administered in the scanner, one week 
prior to the imaging session. Both practice and scanning sessions 
comprised multiple runs of the two auditorily paced synchronized 
finger-tapping tasks (Virtual Partner task and Tempo Change task) 
presented under the two cognitive load conditions (single task and dual 
task) in a blocked design. Given that the current study was primarily 
focused on individual differences, all participants were presented these 
tasks with the same fixed order of trials. Participants first completed 
both finger-tapping tasks in the single-task condition, starting with the 
Virtual Partner task, and then completed the dual-task condition with 
the same order of trials presented in the single-task condition. Each of 
the four task and condition combinations was presented in a separate 
run. 

Task runs consisted of 9 trials that each started with four cowbell 
lead-in stimuli presented with inter-stimulus intervals of 500 ms, fol
lowed by a sequence of 48 target woodblock stimuli for which the timing 
was determined by the particular task (see below). Participants were 
instructed to begin tapping with their right index finger on the third 
cowbell sound and to continue tapping until the trial was terminated by 
a pure tone ‘beep’ presented 500 ms after the last woodblock sound. 
After each trial, participants rated the difficulty of the trial on a scale of 1 
(very easy) to 4 (very hard). Participants indicated this response with a 
four-button response box held in their left hand. Each trial was separated 
by a 15 s rest block. 

The cowbell and woodblock stimuli were generated by a Roland TD- 
9 Percussion Sound Module that was situated in a control room adjacent 
to the scanning room. The sound module was connected to a Motu 
Microlite MIDI interface, which was in turn connected to an Acer laptop 
running Windows. This laptop presented the auditory stimuli and 
recorded the tapping data using custom-built software written in C++. 
Auditory stimuli were presented via over-ear scanner-compatible 
headphones, and tapping responses were collected via a custom built, 
fiberoptic laser light gate and converted to midi signal via an Arduino 
microcontroller (https://www.arduino.cc). 

In the Virtual Partner task, participants were required to tap their 
finger in time with an adaptive auditory pacing sequence consisting of 
the four cowbell lead-in sounds followed by the 48 woodblock sounds. 

Timing of the woodblock sounds was controlled by an algorithm that 
implemented phase correction, as in ADAM’s adaptation module (see 
section 2.4). Sequence inter-stimulus intervals were thus adjusted in a 
manner that compensated for a proportion of each asynchrony between 
participant taps and virtual partner pacing sounds. Specifically, the 
onset time of the next pacing sound was determined by calculating the 
most recent tap-to-tone asynchrony, multiplying it by the relevant phase 
correction parameter value, and adding the result to the virtual partner 
timekeeper period (which dictated its base tempo) to obtain the current 
sequence inter-stimulus interval (e.g., Fairhurst et al., 2013; Mills et al., 
2015; Repp and Keller, 2008). The timekeeper period was set at 500 ms 
and three phrase correction values were employed to produce different 
of virtual partner adaptivity: 0 (a non-adaptive metronome), 0.4 
(moderate adaptivity), or 0.9 (high adaptivity). The cowbell lead-in 
inter-stimulus intervals were fixed at 500 ms while the ensuing 
inter-stimulus intervals between the 48 woodblock sounds varied ac
cording to the level of adaptivity. Participants were instructed to syn
chronize their finger taps as accurately as possible with the virtual 
partner sounds whilst also maintaining the initial tempo set by the 
cowbell lead-in sequence. 

In the Tempo Change task, participants synchronized finger taps 
with a sequence where the tempo varied gradually, as in expressive 
timed music (Pecenka et al., 2013; van der Steen et al., 2015a). The 
lead-in cowbell sounds at the start of each sequence were presented at a 
constant tempo, with inter-stimulus intervals fixed at 500 ms, and the 
tempo of the ensuing 48 woodblock sounds gradually accelerated and 
decelerated between inter-stimulus intervals of 400 ms and 600 ms 
within a sinusoidal envelope. The first two woodblock inter-stimulus 
intervals continued the lead-in tempo, after which the tempo varia
tions took place across four cycles with acceleration and deceleration 
portions spanning five or seven sounds. Different cycle lengths were 
used to discourage participants from predicting upcoming tempo 
changes with a global timing strategy (i.e., counting the number of tones 
within each cycle), instead encouraging them to predict each upcoming 
interval actively based on the most recent stimulus events (i.e., local 
timing strategy). For this task, participants were instructed to tap in 
synchrony with the target stimulus sequence as accurately as possible. 

On each trial for both tasks, participants were also visually presented 
with novel abstract objects that were projected onto a screen at the end 
of the scanner bore. The objects consisted of 11 images from a set of 36 
blue ‘Fribbles’ with textured surfaces, which were obtained from the 
website of Michael J. Tarr at Carnegie Mellon University (http://www. 
tarrlab.org/). A fixation cross was initially presented on the screen 
concurrently with the lead-in sequence. Target woodblock sounds were 
the accompanied by alternating Fribble and fixation cross stimuli, with 
each visual stimulus presented for 1 s. Each sequence of Fribbles con
tained either one, two, three, or four 1-back repetitions. On single-task 
trials, participants were instructed to focus on the fixation cross 
throughout all trials, but to otherwise ignore the Fribble stimuli. On 
dual-task trials, participants were instructed to count the number of 1- 
back repetitions in the sequence of Fribbles. It was assumed that this 
secondary visual working memory task would increase cognitive load by 
introducing additional attentional demands (see Pecenka et al., 2013). 
On dual-task trials, participants were prompted to indicate the number 
of visual targets (i.e., 1-back repetitions) with a button press after per
forming difficulty rating for that trial. 

2.4. Behavioral data analysis 

Behavioral data were screened to ensure suitability for model-based 
analysis with ADAM, as in earlier relevant studies (e.g., Mills et al., 
2019; van der Steen et al., 2015a). Data analysis focused on the 4th to 
47th event from the woodblock portion of each trial. Responses to 
preceding events were discarded to ensure that performance measures 
and modelling parameter estimates were not affected by unstable re
sponses that can occur the initial segment of each trial. Trials with more 
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than five missing taps (pacing sounds without an accompanying 
response) or consecutive missing taps were rejected. Missing taps from 
the remaining trials were interpolated (Mills et al., 2019; Mills et al., 
2015; van der Steen et al., 2015a). The quality of sensorimotor syn
chronization performance was assessed by computing the temporal 
asynchrony between stimulus events and corresponding tap responses in 
each trial (i.e., pacing event onset times were subtracted from tap times, 
resulting in negative asynchronies if taps preceded pacing sounds). 
Mean asynchrony was calculated as a measure of synchronization ac
curacy and the standard deviation of the asynchronies was used as a 
measure of synchronization variability (i.e., an inverse index of 

synchronization stability). Inter-stimulus (tone onset) intervals and 
inter-response (tap) intervals were also computed for use as input in the 
ADAM parameter estimation procedure. 

Individual differences in sensory-motor mechanisms and cognitive 
processes underlying task performance were assessed via a model-fitting 
parameter estimation procedure using ADAM (van der Steen et al., 
2015a; van der Steen and Keller, 2013; van der Steen et al., 2015b). 
ADAM extends linear auto-regressive models of sensorimotor synchro
nization (Mates, 1994a, 1994b; Repp and Keller, 2004; Schulze et al., 
2005; Vorberg and Schulze, 2002; Vorberg and Wing, 1996) by incor
porating anticipatory processes, resulting in a model architecture with 

Fig. 2. Formal components of the ADAM framework. 
A) Process diagram showing the relationship between 
stimuli (S), responses (R), and asynchronies between 
stimuli and responses (A). Tap response timing (e.g., 
Ri+1) is computed based on previous stimuli, re
sponses, an internal timekeeper, and compensatory 
mechanisms within the adaptation, anticipation, and 
joint modules. Phase correction (α) and period 
correction (β) in the adaptation module generate ac
tion plans for timing the next response (R′

i+1). The 
weighting (δ) of extrapolation and perseveration 
processes in the anticipation module generate tem
poral predictions about the timing of the next 
sequence tone (S′

i+1). Anticipatory error correction 
(γ) in the joint module reduces discrepancies between 
plans and predictions before a motor command is is
sued and the response is executed (Ri+1). B) Equations 
for computing inter-stimulus (tone onset) intervals 
(1), inter-response (tap) intervals (2), and asyn
chronies (3) from behavioral data, which serve as 
input to equations for ADAM’s adaptation module (4 
& 5), anticipation module (6–8), and joint module (9 
& 10) used in parameter estimation. S, stimulus 
(tone) onset; R, response (tap) onset; s, inter-stimulus 
interval, r, inter-response interval, A, asynchrony, T, 
timekeeper interval; R′, planned response onset; S′

predicted stimulus onset; A′, anticipated error; e, 
extrapolated stimulus interval; p, perseverated stim
ulus interval; nT, timekeeper noise; nM, motor noise; 
α, phase correction, β, period correction; δ, predic
tion/tracking weight; γ, anticipatory error correction. 
Figure adapted from Harry and Keller (2019).   
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three computational modules: ‘adaptation’, ‘anticipation’, and ‘joint.’ 
The conceptual architecture of ADAM was shown in Fig. 1A and a pro
cess diagram showing the operation of the model is displayed in Fig. 2A. 
Equations for calculating timing measures are provided in Fig. 2B 
(Equations (1)–(3)), along with equations for each of ADAM’s modules 
(Equations (4)–(10); for further details, see Harry and Keller, 2019). 

The adaptation module is used to estimate the gain of reactive error 
correction processes consisting of phase correction (α) and/or period 
correction (β). The anticipation module is used to estimate the strength 
of temporal predictions that are assumed to be based on the weighted 
sum of two processes, one entailing linear extrapolation of previous 
inter-stimulus intervals in the pacing sequence and the other copying the 
previous interval (controlled by the parameter δ). The joint module es
timates the gain of an anticipatory error correction process (γ) that 
compensates for discrepancies between the outputs of the adaptation 
and anticipation modules. It is assumed that the joint module represents 
a process whereby potential temporal mismatches between action plans 
in ‘self’ internal models and predictions in ‘other’ internal models are 
reduced by adjusting one’s own plan prior to action execution. The 
anticipatory error correction parameter thus represents the balance of 
self-other integration and segregation. ADAM also includes two sources 
of noise, one that represents variability in a ‘timekeeper’ that is assumed 
to be instantiated in the central nervous system and the other repre
senting ‘motor’ noise in the peripheral nervous system. 

Estimates of performance-based ADAM parameter values were 
derived for individual participants by fitting the adaptation module or 
the full model to behavioral data for each trial in each task condition. 
Previous work using computer simulations (Harry and Keller, 2019) 
indicates that stimulus sequences with a roughly steady tempo, such as 
those from the Virtual Partner task, are best fit with ADAM’s adaptation 
module, which provides estimates of phase correction (α) and period 
correction (β), whereas sequences with gradual larger-scale variations in 
tempo, such as in the Tempo Change task, are best fit by including period 
correction (β), stimulus prediction (δ), and anticipatory error correction 
(γ) parameters from the full model. These two versions of ADAM 
(adaptation only or the full model) were fit to the behavioral data using 
a bounded Generalized Least Squares method (Jacoby and Repp, 2012; 
Repp et al., 2012; van der Steen et al., 2015a), which applies matrix 
algebra to inter-stimulus, inter-response, and asynchrony time series 
data (see Jacoby et al., 2015). Timekeeper noise was also estimated for 
each task in order to partial out random variability in the internal 
timekeeping mechanism that is assumed to be acted upon by the other 
processes. Complete details of the parameter estimation procedure can 
be found in Appendix A of the paper by van der Steen et al. (2015a). 

Performance measures and model parameters were averaged over all 
trials from each of the two tasks in the two cognitive load conditions for 
each participant. In the Virtual Partner task, performance measures 
were averaged over virtual partner adaptivity levels (non-adaptive, 
moderate adaptivity, and high adaptivity) to derive a single perfor
mance estimate for each participant and cognitive load condition. Note 
that the non-adaptive condition (in which phase correction was set to 
0 in the virtual partner) is essentially a steady tempo metronome as used 
in conventional sensorimotor synchronization experiments. Including 
the additional (non-zero) adaptivity conditions allowed us to examine 
processes that are likely to generalize to conditions that might be 
encountered in instances of coordination with real human partners. 
Collapsing across the three levels of adaptivity in our analyses was 
motivated by the current research aim focusing on individual differences 
rather than effects of this experimental manipulation. 

2.5. MRI scanning & image processing 

Imaging was conducted on a General Electric 3 T MRI. Echo planar 
T2*-weighted functional images were acquired with repetition time = 3 
s, echo time = 32 ms, flip angle = 90, 47 axial slices covering the whole 
brain and cerebellum, field of view = 220 mm, and raw voxel size =

3.93.94 mm thick. Each functional scanning run comprised 117 volumes 
with an additional 8 volumes acquired to allow for equilibration effects 
(automatically discarded). High-resolution 3D T1-weighted, anatomical 
images (voxel size 0.40.40.9 mm) were obtained for co-registration with 
EPI data. 

Dicom images were converted to nifti format via dcm2niix, and 
organized according to the BIDS format. Image pre-processing was 
carried out with fMRIprep (v1.0.0-rc11). Anatomical pre-processing 
comprised skull stripping with ANTS, tissue segmentation with FSL- 
FAST, and spatial normalization to the MNI152NLin2009cAsym tem
plate using ANTS. Functional image pre-processing comprised FSL- 
MCFLIRT boundary-based motion correction, slice timing correction 
using AFNI-3dTShift, registration to the anatomical image with FSL- 
FLIRT and resampling to the template image. 

Mean timeseries for 355 regions of interest were extracted for each 
task with Nilearn. Regions of interest for the cortex were defined by the 
Schaefer et al. (2018) MNI atlas comprising 300 parcels assigned to 17 
networks, the Diedrichsen et al. (2009) 28 parcel cerebellar atlas, the 7 
parcel Oxford Thalamic connectivity atlas, and the 7 parcel 
Oxford-GSK-Imanova striatal connectivity atlas (Fig. S1). Parcels in 
different hemispheres of the thalamic and striatal atlases were sepa
rated, increasing the parcel number to 14 for each structure. The time 
courses for cortical regions that corresponded to the visual canonical 
resting-state network in the Schaefer atlas were discarded, as visual 
responses were deemed not directly relevant to the audio-motor primary 
task used to probe the ADAM of sensorimotor synchronization. 

2.6. Estimation of functional connectivity matrix 

Functional connectivity matrices were obtained via correlational 
psychophysiological interactions analysis (cPPI), a method for obtaining 
estimates of task-modulated functional connectivity. Unlike traditional 
PPI, cPPI estimates the partial correlation between the task-modulated 
time courses of two regions to yield a single, symmetrical estimate of 
connectivity. A first-level model was estimated in SPM for each task and 
participant to provide regressors for task blocks, initial warning tones, 
post-trial responses, and a regressor to account for task blocks removed 
from the analysis either due to excessive movement (framewise 
displacement exceeding 0.3 mm during the block) or performance er
rors. In addition, confound regressors generated in the pre-processing 
stage comprising 6-rigid body parameters, framewise displacement, 
and 6 white and cerebral-spinal fluid time courses obtained via the 
aCompCor procedure were included in the estimation of functional 
connectivity. BOLD time courses extracted for Task modulated changes 
in functional connectivity were estimated for all pairs of regions via the 
cPPI toolbox. 

2.7. Connectome-based predictive modelling 

Connectome-based predictive modelling (CPM) was used to identify 
the brain networks associated with parameter estimates from the 
adaptation, anticipation, and joint modules of ADAM (Figs. 1A & 2). 
This technique identifies networks associated with sensory-motor and 
cognitive mechanisms by measuring brain-behavior relationships be
tween task-evoked functional connectivity strength and task perfor
mance (Finn et al., 2015; Shen et al., 2017). The approach allows 
changes of functional connectivity among regions within the same brain 
network and between regions in different networks to be quantified. 
Within-network connectivity reflects the modulation of connections 
among nodes within a resting-state network in relation to individual 
differences in the process in question (here phase correction, period 
correction, stimulus prediction, or anticipatory correction), whereas 
between-network connectivity reflects the modulation of connections 
between nodes in different resting-state networks in relation to these 
processes. CPM has been shown to produce highly reproducible net
works for examining individual differences (Taxali et al., 2021). 
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For each participant and task, we extracted BOLD timecourses from 
300 cortical parcels derived from a resting-state cortical parcellation 
(Schaefer et al., 2018) (Fig. S1) and 55 sub-cortical parcels derived from 
the Oxford thalamic connectivity atlas (Behrens et al., 2003; Behrens 
et al., 2003), the Oxford-GSK-Imanova connectivity striatal atlas 
(Tziortzi et al., 2014), and the probabilistic cerebellar structural atlas 
(Diedrichsen et al., 2009). As connectivity with visual cortical regions 
was not expected to reflect individual differences in SMS task perfor
mance, regions corresponding to the visual resting-state network were 
omitted from analysis. Functional connectivity matrices that quantified 
the task-evoked changes in connectivity strength (task vs rest) between 
the remaining 315 cortical and subcortical regions were quantified with 
cPPI (Fornito et al., 2012). The networks associated with each behav
ioral parameter were identified by correlating individual differences in 
the behavioral parameter of interest with differences in connectivity 
strength of each element in the connectivity matrix. All connections 
(edges) showing a statistically significant (P < 0.05) relationship with 
the parameter of interest were included in the connectome-based pre
dictive model, producing a network of edges positively correlated with 
the parameter (‘high network’) and a network of edges negatively 
correlated with the parameter (‘low network’). Brain areas associated 
with the high network for a particular ADAM parameter (e.g., period 
correction) are more strongly connected in those individuals who 
exhibit high values on that parameter (i.e., engage in greater period 
correction), whereas regions in the corresponding low network are more 
strongly connected with low parameter estimates (i.e., stronger func
tional connectivity with less period correction). 

Assessment of the networks identified by CPM proceeded via a two- 
stage procedure involving cross-validation followed by cross-task anal
ysis. The first analysis stage tested the stability of the identified networks 
by applying a cross-validation procedure to examine whether the models 
derived from the single-task condition could be used to predict partici
pants’ behavioral parameter estimates from held-out brain-imaging data 
collected in the dual-task condition (and vice versa) for the Virtual 
Partner task and the Tempo Change task. Here, the strength of the 
network associated with the parameter of interest—phase correction for 
the Virtual Partner task and period correction, stimulus prediction, and 
anticipatory error correction for the Tempo Change task—was calcu
lated for each participant as the sum of all connections identified in the 
edge-wise procedure described above. Separate network strength values 
were calculated for the high and low networks and incorporated in a 
GLM to model the relationship between network strength and the 
parameter of interest. The effects of each ADAM parameter of interest 
were partialled out from all other parameters using the procedure rec
ommended by Shen et al. (2017). Then high and low network strength 
values were calculated from functional connectivity data obtained from 
the held-out condition and entered into the network strength model to 
derive estimates of the behavioral parameters. These brain-derived 
predicted measures of behavior were subsequently compared to 
behavior-derived model estimates with Spearman rank correlations to 
assess reliability of the identified network (Rosenberg et al., 2017; Shen 
et al., 2017). 

Since all networks generalized across cognitive load conditions to 
some degree (see section 3.3), cross-task CPM was used to improve the 
reliability of the estimated network by incorporating both single and 
dual task conditions within a single model. Accordingly, each network 
was identified with the same edge-wise procedure as described above, 
however, here the design matrix used to examine the relationship be
tween connection strength and model parameters also included dummy 
coded regressors for individual participants and the cognitive load 
conditions. The networks associated with the cross-task predictive 
model were characterized by identifying the prominent hubs, defined as 
nodes in the top 80th percentile for connectivity degree (Bertolero, Yeo, 
& D’Esposito, 2017) associated with low and high levels for each ADAM 
parameter. Hubs observed in the cerebral cortex were grouped into the 
seven canonical resting-state networks (control; default mode; dorsal 

attention; salience/ventral attention; somatomotor; limbic frontal & 
temporal; temporal parietal) applied in the Schaefer et al. (2018) 
cortical parcellation (300 region), whereas hubs observed outside the 
cortex were grouped according to the relevant subcortical region (basal 
ganglia, thalamus, or cerebellum). As participants were engaged in an 
audio-motor primary task, it is worth noting that the ventral somato
motor network includes primary auditory cortex. 

Permutation tests were carried out to assist in characterizing the 
composition of the networks identified by CPM. Firstly, permutation 
tests were used to identify cortical resting-state and subcortical networks 
that were observed to have a higher number of hubs than would be 
expected if hubs were randomly assigned to the cortical resting-state and 
subcortical networks. These tests involved randomly assigning regions 
to each of the 10 networks of interest (without replacement) and 
counting the number of hubs observed for 1000 permutations. The 
proportion of permutations where there were more hubs in a network 
than the empirical number of hubs was calculated and submitted to 
Benjamini-Hochberg False Discovery Rate correction (q < 0.05). Sec
ondly, permutation tests were also carried out to identify high concen
trations of connections within and between the 10 networks of interest. 
Permutation testing involved randomly assigning each of the 315 par
cels to one of the 10 networks of interest (without replacement) and 
calculating the number of connections observed within and between the 
cortical resting-state and subcortical networks. The proportion of per
mutations where there were more connections within or between net
works than the empirical number of connections was calculated and 
submitted to Benjamini-Hochberg False Discovery Rate correction (q <
0.05). 

2.8. Assessing attentional modulation of network connectivity 

Effects of attentional demands on ADAM networks were examined 
separately for the Virtual Partner task and the Tempo Change task. The 
complete CPM network was constructed separately for the Virtual 
Partner task (including only the phase correction network) and the 
Tempo Change task (including period correction, stimulus prediction, 
and anticipatory correction networks) and the sign of the connection 
(whether the connection was part of the high or low network) was 
ignored. These connections were grouped by the canonical networks 
(resting-state or subcortical structure) that they implicated. The strength 
of each of these canonical networks was calculated for each participant 
and cognitive load condition (single task or dual task) and entered into 
paired samples t-tests to examine the effect of cognitive load (single task 
> dual task). These cognitive load comparisons were computed for all 
within and between canonical network interactions (168 in total) and 
the Benjamini-Hochberg false correction procedure (q < 0.05) was 
applied to control false positive rate. The proportion of connections that 
corresponded to each of the ADAM networks identified by CPM was 
calculated for each canonical group of connections that was found to be 
modulated by the cognitive load manipulation to assess the extent to 
which attentional demands affected each of the ADAM networks. 

3. Results 

3.1. Behavioral analyses and model parameter estimation 

Behavioral analyses were conducted (1) to confirm the effectiveness 
of cognitive load manipulation, and (2) to check the assumption that 
individual estimates of ADAM parameters account for individual dif
ferences in sensorimotor synchronization performance. 

Descriptive statistics for the behavioral measures of synchronization 
accuracy (mean asynchrony) and variability (standard deviation of 
asynchronies) are shown in Fig. 3. Results are presented for a final 
participant sample of n = 63 in the Virtual Partner task and n = 57 in the 
Tempo Change task, after excluding participants with fewer than three 
valid trials per condition (due to head movement or excessive missing 
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taps; see section 2.4). Preliminary analyses indicated that the accuracy 
and variability of asynchronies did not differ between participants with 
and without musical training (Fig. S2 & Table S2), and therefore we did 
not include musical experience as a factor in the main analyses. A 
possible reason for the lack of an effect of musical experience on these 
behavioral measures is that all participants had participated in previous 
sensorimotor synchronization experiments using similar tasks 
(including a behavioral session of the procedure a week before scan
ning), and hence can be viewed as having task-specific experience. 

In the main analyses, paired samples t-tests comparing performance 
in the single-task and dual-task conditions in the Virtual Partner task 
revealed that synchronization accuracy and stability were impaired 
when participants were required to do the secondary visual working 
memory task. Mean asynchrony (Fig. 3A) was generally neg
ative—indicating that taps preceded pacing sounds, as is typical in 
sensorimotor synchronization tasks (Repp, 2005)—but significantly 
more so in the dual-task than the single-task condition (T62 = 5.67, P <
0.001). The standard deviation of asynchronies (Fig. 3C) was signifi
cantly higher, indicating less stable synchronization, in the dual-task 
than the single-task condition (T62 = − 2.67, P = 0.01). For the Tempo 
Change task, mean asynchrony (Fig. 3B) did not differ significantly 
across single-task and dual-task conditions (T56 = − 0.277, P > 0.7), but 
the standard deviation of asynchronies (Fig. 3D) was significantly higher 
in the dual-task condition (T56 = − 4.72, P < 0.001). These results 
indicate that synchronization stability was more sensitive than syn
chronization accuracy to the manipulation of cognitive load. 

ADAM parameter estimates derived from the Virtual Partner and 
Tempo Change tasks are shown in Fig. 4. Paired samples t-tests 
comparing model estimates in the single-task and dual-task conditions 

confirmed that the visual working memory task affected values for most 
parameters. For the Virtual Partner task (Fig. 4A–C), phase correction 
(T62 = − 2.53, P = 0.014), period correction (T62 = − 2.93, P = 0.005), 
and timekeeper noise (T62 = − 4.79, P < 0.001) were significantly higher 
in the dual-task condition compared to the single-task condition. These 
results suggest that increases in the variability of an internal time
keeping processes induced by the secondary task were compensated for 
(albeit only partially, given the results for synchronization accuracy and 
stability) by slight increases in the gain of phase correction and period 
correction (see Repp et al., 2012). Although period correction was 
assumed not to be necessary due to the regular tempo in Virtual Partner 
task, previous work has found that it can nevertheless be recruited when 
task difficulty increases (Repp and Keller, 2008). 

For the Tempo Change task (Fig. 4D–G), as expected, period 
correction (T56 = 4.88, P < 0.001) and anticipatory error correction (T56 
= 9.65, P < 0.001) were significantly lower in the dual-task condition 
compared to the single-task condition. Neither timekeeper noise (T56 =

− 0.98) nor stimulus prediction (T56 = − 0.29) showed a significant 
difference between the single-task and dual-task conditions. The lack of 
a reliable difference for timekeeper noise may be attributable to a ceiling 
effect due to the generally high levels of variability created by the 
constant need to adjust the timekeeper period, as well as the overshoot 
at reversal points between accelerating and decelerating sections of the 
sequences (Mills et al., 2019; van der Steen et al., 2015a). The lack of an 
effect for stimulus prediction is likely related to participants displaying a 
wide range of values for this parameter, with a slight overall tendency to 
track the tempo changes (indicated by average parameter estimate 
values being less than 0.5), which is an automatic process that is rela
tively resistant to dual-task interference (Pecenka et al., 2013). 

Fig. 3. Behavioral measures of sensorimotor synchronization accuracy (mean asynchrony) and stability (SD of asynchronies, an inverse measure) for the Virtual 
Partner (A–C) and Tempo Change (D–G) sensorimotor synchronization tasks under single-task and dual-task cognitive load conditions. Markers between density plots 
and individual data points represent sample averages for each measure and error bars indicate within-participants 95% confidence intervals. 
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To assess the contribution of each ADAM parameter to behavioral 
performance, we examined how the variability in parameter estimates 
across participants was related to individual differences in synchroni
zation accuracy and stability using mixed effects linear regression 
implemented by the lme4 package (version 1.1–30) in R (version 4.2.1). 
ADAM parameter estimates and cognitive load condition were included 
as fixed effects and participant was included as a random effect (See 
Tables S3–S6 in the Supplementary Materials for details of the analyses, 
and Tables S7–S8 for tests of collinearity among fixed effects.). While 
there was little evidence for reliable relationships with synchronization 
accuracy (mean asynchrony) (Fig. S3 & Tables S3–S4), model parame
ters accounted well for synchronization variability (standard deviation 
of asynchronies), as described below (Fig. 5 & Tables S5–S6). The less 
robust results for synchronization accuracy are consistent with previous 
computer simulations (Harry and Keller, 2019) and proposals that the 
negative mean asynchrony is a combined consequence of sensory-motor 
processing delays, biases in time interval perception, and timekeeper 
detuning or miscalibration (Repp, 2005). 

For the Virtual Partner task (Fig. 5A–C), the variability of asyn
chronies was significantly related to phase correction (negative 

relationship, Effect Estimate = − 9.94, SE = 3.19, T = − 3.12, 95% CI 
[− 16.26, − 3.61]), period correction (negative relationship, Estimate =
− 17.84, SE = 7.49, T = − 2.38, CI [− 32.72, − 2.99]), and timekeeper 
noise (positive relationship, Estimate = 1.30, SE = 0.09, T = 14.82, CI 
[1.13, 1.48]). In other words, unstable synchronization was associated 
with low phase correction, low period correction, and high timekeeper 
noise. A reduced linear model that included only the random effect was 
also tested to evaluate the explanatory power of the full model via model 
comparison. A likelihood-ratio test indicated that the full model 
including ADAM parameter estimates and cognitive load condition 
provided a better fit to the data than the reduced model (χ2 (7) =
221.63, P < 0.001; Log Likelihood = − 283.61 (full) vs − 394.43 
(reduced), AIC = 587.23 vs 794.86, BIC = 615.59 vs 803.36). 

For the Tempo Change task (Fig. 5D–G), variability of asynchronies 
was significantly related to period correction (positive relationship, 
Estimate = 20.57, SE = 8.98, T = 2.29, CI [2.79, 38.37]), stimulus 
prediction (negative relationship, Estimate = − 28.41, SE = 1.98, T =
− 14.34, CI [− 32.57, − 24.18]), anticipatory error correction (negative 
relationship, Estimate = − 83.94, SE = 8.08, T = − 10.83, CI [− 99.94, 
− 67.87]), and timekeeper noise (positive relationship, Estimate = 0.62, 

Fig. 4. ADAM parameter estimates for the two sensorimotor synchronization tasks under single-task and dual-task cognitive load conditions. Different versions of the 
model were used for Virtual Partner (A–C) and Tempo Change (D–G) tasks. Phase correction and period correction relate to ADAM’s adaptation module, stimulus 
prediction relates to the anticipation module, and anticipatory error correction relates to the joint module. Markers between density plots and individual data points 
represent sample averages for each measure and error bars indicate within-participants 95% confidence intervals. 
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SE = 0.04, T = 13.81, CI [0.52, 0.71]). Unstable synchronization was 
thus associated with high period correction, low stimulus prediction, 
low anticipatory error correction, and high timekeeper noise. A 
likelihood-ratio test indicated that the full model provided a better fit to 
the data than the reduced model including only the random effect (χ2 
(9) = 248.95, P < 0.001; Log Likelihood = − 307.07 (full) vs − 431.53 
(reduced), AIC = 638.10 vs 869.05, BIC = 670.94 vs 877.26). 

3.2. Brain network identification 

CPM was used to identify brain networks associated with ADAM’s 
three modules by measuring relationships between task-evoked func
tional connectivity strength and ADAM parameter estimates. ADAM’s 
adaptation module was identified based on phase correction estimates 
from the Virtual Partner task and period correction estimates from the 
Tempo Change task. The anticipation module was examined based on 
stimulus prediction estimates, while the joint module was addressed 
based on anticipatory error correction estimates from the Tempo Change 
task. 

When applied to phase correction parameter estimates from the 
Virtual Partner task, the cross-validated CPM procedure identified net
works in the single-task and dual-task conditions that could account for 
phase correction in the held-out dataset (single task to dual task cross 

validation; r61 = 0.37, P = 0.003, dual task to single task cross valida
tion; r61 = 0.26, P = 0.043). Cross-task CPM identified a phase correc
tion network comprising 1736 connections positively correlated with 
phase correction parameter estimates (Table S9 & Fig. S5) and 529 
connections negatively correlated with parameter estimates (Table S10 
& Fig. S6). Fig. 6A shows the hubs associated with the high and low 
phase correction networks. The high phase correction network (colored 
red) consists of positive connections, indicating that stronger functional 
connectivity is associated with greater phase correction, while the low 
phase correction network (colored blue) consists of negative connec
tions, reflecting stronger connectivity with less phase correction. Per
mutation tests revealed a larger number of hubs than would be expected 
by chance in several divisions of the high phase correction network 
(red), including the majority of the cerebellum, as well as regions that 
reside in the dorsal and ventral bilateral somatomotor, salience/ventral 
attention, and basal ganglia resting-state networks (Fig. 6B, red). The 
cortical hubs, which had prolific cross-network connections (Fig. 6C, 
red), included the insular, posterior medial frontal, pre-motor, and 
supramarginal gyrus. Hubs in the low phase correction network (blue) 
consisted of regions in the default mode, temporo-parietal, and limbic 
resting-state networks (Fig. 6B, blue), and were less richly inter
connected (Fig. 6C, blue). 

Networks associated with period correction parameter estimates in 

Fig. 5. Predictor effect plots showing relations between each ADAM parameter estimate and the stability of sensorimotor synchronization (SD of asynchronies, an 
inverse measure) revealed by mixed effects linear regression analyses for the Virtual Partner (A–C) and Tempo Change (D–G) tasks. Data points are values for in
dividual participants averaged separately in the single-task and dual-task cognitive load conditions. Plots of partial residuals can be found in Fig. S4. 
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the Tempo Change task showed asymmetric cross-validation perfor
mance, with network strength from the dual task accounting for period 
correction estimates from the single task, but not vice versa (single task 
to dual task cross validation; r55 = − 0.007, P = 0.95, dual task to single 
task cross validation; r55 = 0.38, P = 0.004). The cross-task predictive 
model comprised 3269 positive connections (Table S11 & Fig. S7) and 
253 negative connections (Table S12 & Fig. S8). Positive connections 
form the high period correction network, in which stronger functional 
connectivity is associated with greater period correction, while negative 
connections form the low period correction network, where connectivity 
is stronger with less period correction. 

Permutation tests revealed a large concentration of hubs (Fig. 7A, 
red) in the temporo-parietal, default mode, and somatomotor resting- 
state networks, as well as cerebellar, basal ganglia, and thalamic net
works for the high period correction network (Fig. 7B, red). The majority 
of connections observed in the high period correction network were 
located within and between somatomotor and default mode networks 
(Fig. 7C, red), though the default mode network was also richly con
nected with the salience/ventral attention, control, and basal ganglia 
networks. Permutation tests did not reveal a particularly large concen
tration of hubs in any of the 10 networks of interest for the low period 
correction network. Nevertheless, the number of hubs in the salience/ 
ventral attention, limbic (frontal), control, and default mode resting- 
state networks (Fig. 7A, blue) was greater than expected by chance 
(Fig. 7B, blue), with the majority of connections observed within the 
default mode network and between control and ventral attention net
works (Fig. 7C, blue). 

Networks associated with the parameter estimates for stimulus pre
diction revealed that each network accounted for stimulus prediction in 
the held-out dataset (single task to dual task cross validation; r55 = 0.39, 
P = 0.003, dual task to single task cross validation; r55 = 0.35, P =
0.008). Cross-task analysis identified a stimulus prediction network 
comprising 300 positive connections (Table S13 & Fig. S9) and 2740 
negative connections (Table S14 & Fig. S10). Permutation tests revealed 
a high concentration of hubs (Fig. 8A, red) in the cerebellum, thalamus, 
and the control and limbic resting-state networks (Fig. 8B, red) in the 
high stimulus prediction network (extrapolation-based prediction), with 
the majority of connections observed between cerebellar, control, and 
somatomotor network regions (Fig. 8C, red). Hubs in the low stimulus 
prediction network (tracking-based prediction) predominantly reside in 
cerebellar and basal ganglia subcortical networks and the somatomotor 
and temporo-parietal resting-state networks (Fig. 8A & B, blue), with 
connections mainly between somatomotor and temporo-parietal net
works and within somatomotor, cerebellar, basal ganglia, and thalamic 
networks (Fig. 8C, blue). 

Cross-validation analysis of the anticipatory error correction net
works revealed that the network strength models derived from the single 
and dual tasks generalize to anticipatory error correction parameter 
estimates from the corresponding held out task (single task to dual task 
cross validation; r55 = 0.29, P = 0.029, dual task to single task cross 
validation; r55 = 0.26, P = 0.044). Cross-task analysis identified an 
anticipatory error correction network comprising 2867 positive con
nections (Table S15 & Fig. S11) and 463 negative connections 
(Table S16 & Fig. S12). Permutation tests revealed a high concentration 

Fig. 6. High (red) and low (blue) networks associated with PHASE CORRECTION estimates related to the ADAM adaptation module. Functional connectivity within 
the high network increases with increasing phase correction while connectivity in the low network increases with decreasing phase correction. A) Hub nodes depicted 
on inflated cortical and cerebellar surfaces and volume images of the basal ganglia and thalamus with regions participating in both high and low networks shown in 
purple. B) Proportion of hub regions that reside in each cortical resting-state network (visual networks omitted) and subcortical structure with permutation derived 
chance proportion of hubs shown in pale colors. C) Number of connections formed within and between resting-state networks and subcortical structures for the high 
and low networks identified by CPM. Connections that are more numerous than is expected from permutation testing are shown in solid colors and connections that 
are not more numerous than is expected from permutation testing are transparent. 
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of hubs (Fig. 9A red) in the default mode, temporo-parietal, and 
thalamic resting-state networks for the high anticipatory correction 
network (Fig. 9B, red), with the majority of connections observed within 
the default mode network and between regions in the default mode, 
control, salience/ventral attention, and somatomotor resting-state net
works (Fig. 9C, red). Hubs in the low anticipatory error correction 
network predominantly reside in the salience/ventral attention and 
dorsal attention resting-state networks, as well as the basal ganglia 
(Fig. 9A & B, blue). For this network, the majority of connections were 
observed within ventral attention and dorsal attention networks and 
between control, basal ganglia, ventral attention, somatomotor, and 
cerebellar regions (Fig. 9C, blue). 

The common brain regions identified across all networks were 
examined to reveal brain hubs forming a cluster that, analogously to a 
‘rich club’ (van den Heuvel and Sporns, 2013), potentially combines and 
regulates information across the broader collective networks. 
Cross-network hubs were identified under two conditions; 1) for hubs 
identified across all four networks associated with the Virtual Partner 
task and the Tempo Change task, and 2) for hubs identified across the 
three networks associated with the Tempo Change task. Cross-network 
hubs that were identified in all four networks comprised ventral pre-/
post-central gyrus, superior frontal gyrus, supplementary motor area, 
middle frontal gyrus, frontal pole, middle temporal gyrus, temporal 
pole, supramarginal gyrus, central opercular cortex, insular cortex, 
posterior cingulate, left precuneus, putamen, cerebellum left crus II, and 
thalamus. In addition to these regions, the cross-network hubs identified 
for the three networks observed in the Tempo Change task included 

inferior frontal gyrus and superior temporal gyrus. These cross-network 
hubs are listed with associated resting-state networks in Table 1 and 
shown in Fig. 10. 

3.3. Attentional modulation of network connectivity 

To assess the influence of attentional demands on functional con
nectivity in the ADAM networks identified by CPM, we calculated the 
average connectivity within and between all the canonical resting-state 
networks and subcortical connections identified in all the predictive 
models (i.e., all connections identified across all ADAM parameters) for 
each participant and cognitive load condition, and compared these 
mean connectivity values across cognitive load conditions. For the Vir
tual Partner task, connectivity strength comparisons were derived only 
for phase correction, whereas in the Tempo Change task, all connections 
identified for period correction, stimulus prediction, and anticipatory 
error correction were examined together. Paired-samples t-tests were 
used to compare mean connectivity strength across the single and dual 
task conditions (single task > dual task) for all within- and between- 
resting-state connections, with the Benjamini-Hochberg false correc
tion procedure (q < 0.05) applied to control the false discovery rate. 

For the Virtual Partner task, there were no significant effects of the 
cognitive load manipulation on the connections related to phase 
correction. In contrast, for the Tempo Change task, a number of signif
icant effects of cognitive load were observed for connections between 
control, default mode, and dorsal attention networks. Overall, the dual- 
task condition was associated with increased connectivity in 

Fig. 7. High (red) and low (blue) networks associated with PERIOD CORRECTION estimates related to the ADAM adaptation module. A) Hub nodes depicted on 
inflated cortical and cerebellar surfaces and volume images of the basal ganglia and thalamus with regions participating in both high and low networks shown in 
purple. B) Proportion of hub regions that reside in each cortical resting-state network (visual networks omitted) and subcortical structure with permutation derived 
chance proportion of hubs shown in pale colors. C) Number of connections formed within and between resting-state networks and subcortical structures for the high 
and low networks. Connections that are more numerous than is expected from permutation testing are shown in solid colors and connections that are not more 
numerous than is expected from permutation testing are transparent. 
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components of the ADAM network linked to control, default mode, and 
dorsal attention resting-state networks, and decreased connectivity 
within components of the ADAM network linked to the control resting- 
state network. To understand how the modulated connections relate to 
different components of the ADAM network, the modulated networks 
are shown overlaid on the networks for period correction, stimulus 
prediction, and anticipatory error correction in Fig. 11. Connections 
between control, default mode, and dorsal attention networks that were 
modulated by attention largely overlapped with connections observed in 
period correction and anticipatory error correction networks, a finding 
that is consistent with the behavioral results indicating that period 
correction and anticipatory error correction decreased under increased 
cognitive load in the Tempo Change task. In contrast, decreased con
nectivity was observed among regions within the control network under 
dual-task conditions compared to single-task conditions. These con
nections exclusively overlapped with the stimulus prediction network. 
The functional specificity of this result is uncertain given that behavioral 
stimulus prediction estimates were not affected by cognitive load. 

Drawing together the results from the Virtual Partner and Tempo 
Change tasks, attentional modulation induced by the visual working 
memory task increased connectivity in networks associated with period 
correction, anticipatory error correction, and to a lesser extent stimulus 
prediction. There was no reliable evidence of attentional modulation of 
networks associated with phase correction. These results are consistent 
with previous findings showing that phase correction is an automatic 
process, whereas period correction and the other mechanisms associated 
with synchronization with tempo changes are modulated by attention 

(Pecenka et al., 2013; Repp, 2005; Repp and Keller, 2004). A similar 
analysis comparing connectivity between single and dual task condi
tions in the Virtual Partner task for all connections identified across all 
CPM networks and related ADAM parameters (i.e., not just restricted to 
connections in the phase correction, period correction, and timekeeper 
noise) revealed widespread attentional modulation across control, 
default, dorsal attention, and ventral attention networks (Table 2). 
Notably, this analysis did not reveal modulation of connections between 
the somatomotor, ventral attention, and cerebellar networks, which 
were prominent connections identified in the CPM for phase correction 
(Fig. 6). 

4. Discussion 

The present study combined connectome-based predictive modelling 
(CPM) of fMRI data and computational modelling of sensorimotor syn
chronization behavior to identify brain networks that support temporal 
adaptation, anticipation, and the monitoring and integration of infor
mation about one’s own actions and externally controlled auditory 
pacing sequences. Our analyses revealed variations in functional con
nectivity within and between distinct but overlapping brain networks 
that were associated with individual differences in parameter estimates 
reflecting processes instantiated in the adaptation and anticipation 
model (ADAM) of sensorimotor synchronization with regular and 
tempo-changing sequences (Harry and Keller, 2019; van der Steen and 
Keller, 2013). Cross-validation and comparison across conditions of low 
and high cognitive load demonstrated the reliability of, and stability in 

Fig. 8. High (red) and low (blue) networks associated with STIMULUS PREDICTION estimates related to the ADAM anticipation module. A) Hub nodes depicted on 
inflated cortical and cerebellar surfaces and volume images of the basal ganglia and thalamus with regions participating in both high and low networks shown in 
purple. B) Proportion of hub regions that reside in each cortical resting-state network (visual networks omitted) and subcortical structure with permutation derived 
chance proportion of hubs shown in pale colors. C) Number of connections formed within and between resting-state networks and subcortical structures for the high 
and low networks. Connections that are more numerous than is expected from permutation testing are shown in solid colors and connections that are not more 
numerous than is expected from permutation testing are transparent. 
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global brain network structure accompanied by attention-related mod
ulations of connectivity strength and hub configuration across networks 
linked to ADAM’s adaptation, anticipation, and joint modules. 

Overall results indicate that a core network of hub regions—a po
tential ADAM ‘rich club’ (Table 1 & Fig. 10)—modulates functional 
connectivity within and between the brain’s resting-state networks and 
additional sensory-motor regions and subcortical structures in a manner 
that supports sensorimotor synchronization under conditions that differ 
in terms of tempo profile and concurrent cognitive demands (Fig. 12). 
This study thus contributes to efforts to understand how the functional 
organization of resting-state networks supports flexible cognition and 
behavior (Cohen & D’Esposito, 2016; Deco et al., 2015; Dixon et al., 
2017; Sporns, 2013; Wang et al., 2021) by extension to the domain of 
real-time rhythmic coordination. In particular, our findings are infor
mative about how brain network reconfiguration fulfills functions 
associated with different ADAM modules by (1) shifting focus on in
ternal and external information, and (2) varying the degree of simulta
neous integration and segregation of these different information 
sources. 

4.1. Internal vs external focus in the adaptation & anticipation networks 

A large body of research has shown that the reconfiguration of 
resting-state networks facilitates flexibility in shifting focus between 
internal and external information in order to fulfil diverse task demands 
(see Bassett and Sporns, 2017; Cole et al., 2014; Crossley et al., 2013). 
During sensorimotor synchronization, external focus on the pacing 
sequence and internal self-focus are associated with distinct neural 

pathways that mediate beat finding (external) and beat keeping (inter
nal) (Todd and Lee, 2015a). Our results reveal links between individual 
differences in the task-based functional connectivity of these pathways 
and the operation of fundamental mechanisms that support rhythmic 
coordination. 

Individuals with relatively high phase correction had stronger con
nectivity between cingulo-opercular, cerebellar, and somatomotor re
gions (including auditory cortex) from the ventral attention and salience 
networks, whereas individuals with lower phase correction had stronger 
connectivity between midline default mode regions and right-lateralized 
frontal regions from the central executive control network. The regions 
within these networks are consistent with key regions identified in 
previous studies of auditory-motor coupling during sensorimotor syn
chronization (e.g., Bijsterbosch et al., 2011; Praamstra et al., 2003; Rao 
et al., 1997; Repp and Su, 2013; Stephan et al., 2002), as summarized in 
Table S1. Our findings extend this previous work by elucidating how 
individual differences in phase correction are related to the interplay of 
these regions within the brain’s resting-state networks. 

The distinction between high and low phase correction networks can 
be characterized a difference in the degree of external versus internal 
focus. Phase correction involves exogenously driven perceptual-motor 
coupling (Repp, 2005; Repp and Keller, 2004). Increased focus on in
ternal performance monitoring can weaken such coupling by reducing 
the gain of phase correction (Fairhurst et al., 2014). Our results suggest 
that external focus is associated with strong functional connectivity 
within the ventral attention/salience regions in the high phase correc
tion network (where connectivity increases with increasing phase 
correction), whereas internal focus is reflected in connectivity between 

Fig. 9. High (red) and low (blue) networks associated with ANTICIPATORY ERROR CORRECTION estimates related to the ADAM joint module. A) Hub nodes 
depicted on inflated cortical and cerebellar surfaces and volume images of the basal ganglia and thalamus with regions participating in both high and low networks 
shown in purple. B) Proportion of hub regions that reside in each cortical resting-state network (visual networks omitted) and subcortical structure with permutation 
derived chance proportion of hubs shown in pale colors. C) Number of connections formed within and between resting-state networks and subcortical structures for 
the high and low networks. Connections that are more numerous than is expected from permutation testing are shown in solid colors and connections that are not 
more numerous than is expected from permutation testing are transparent. 
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default mode and control regions in the low phase correction network 
(where connectivity increases with decreasing phase correction). Pre
vious experimental manipulations of the strength of auditory-motor 
coupling in various rhythmic contexts implicate similar networks 
(Fairhurst et al., 2013, 2014; Hove et al., 2016; Jasmin et al., 2016). The 
present study goes further by pinning variations in the interplay of these 
networks specifically to individual differences in phase correction and 
the quality of sensorimotor synchronization performance. While our 
study was not designed to compare the effects of different levels of 
Virtual Partner adaptivity (cf. Fairhurst et al., 2013, 2014), doing so in 
future research could determine how these individual differences affect 
coordination with partners who vary in ‘cooperativity.’ 

In contrast to phase correction, period correction entails cognitively 
mediated adjustments to the base interval (or oscillatory frequency) of 
an endogenous timekeeper that drives movement (Repp and Keller, 
2004) and hence can be assumed to benefit from internal focus. Previous 
work has emphasized the role of subcortical sensorimotor regions in 
instantiating endogenous timekeepers that interact with cortical regions 
involved in monitoring the alignment of one’s own action timing and the 
external pacing events, and in evaluating the temporal mismatch be
tween them (Bijsterbosch et al., 2011; Grahn and Rowe, 2013; Levitin 
et al., 2018; Repp and Su, 2013; Stephan et al., 2002). The results of 
current study identify these cortical regions as parts of the default mode 
and somatomotor resting-state networks that, within the high period 
correction network, display strong connectivity with subcortical net
works comprising the cerebellum, basal ganglia, and thalamus. Low 
period correction, on the other hand, leads to weak adaptation to tempo 
changes presumably due to insufficient internal focus on the process of 
deliberately adjusting the endogenous timekeeper. Our results indicate 
that the network profile associated with low period correction is char
acterized by increased connectivity among default mode regions that 
overlap with the high period correction network, as well as heightened 
connectivity between control and salience/ventral attention regions. 

The distinction between automatic phase correction and effortful 
period correction in terms of attentional demands was reflected in the 
susceptibility of related brain networks to effects of cognitive load. 
Specifically, the lack of effects of the concurrent visual working memory 
task on functional connectivity in the high and low phase correction 
networks suggests that their configuration is robust and proceeds 
automatically in response to external and internal sources of informa
tion. Thus, even though behavioral estimates of phase correction gain 
increased with attentional demands (perhaps to counter increased 
timekeeper noise), this increase in gain was not manifest in altered 
functional connectivity. 

By contrast, functional connectivity in period correction networks 
was modulated by cognitive load. Connectivity increased within and 
between default and control networks, as well as between control and 
dorsal attention networks when attentional demands were heightened. 
Furthermore, while period correction is in theory only required with 
tempo changes, the brain networks for period correction might still be 
recruited when coordination challenges arise in the absence of tempo 
changes, for example, when encountering uncooperative or unreliable 
synchronization partners (Fairhurst et al., 2014; Repp and Keller, 2008). 
Accordingly, our finding that the unrestricted analysis of networks in the 
Virtual Partner task revealed widespread attentional modulation across 
control, default, dorsal, and ventral attention networks in the absence of 
modulation of sub-cortical networks suggests that the observed behav
ioral increase in phase correction gain was underpinned by 
cortico-subcortical connections associated with period correction. 

Taking together results for the high phase correction and high period 
correction networks, optimal performance may be associated with the 
ability to alter the balance of focus on external and internal information 
depending on task goals and momentary demands (Novembre et al., 
2016). From a broader perspective, this is consistent with the concepts 
of metastability (i.e., ability to switch states) and criticality (existing at 
the boundary between order and disorder) (Deco and Jirsa, 2012; 

Table 1 
Common brain regions associated with ADAM’s adaptation, anticipation, and 
joint networks, along with the resting-state network(s) to which they belong. 
Each of the main resting-state networks is represented by at least one common 
node, providing an exhaustive set of potential links for mediating information 
flow and network reconfiguration. * Appears only across the three networks 
associated with the Tempo Change task.  

ADAM common regions  Resting-State Network(s) 

Cerebellum - crus-II (LH)  Cerebellar 
Basal Ganglia - Occipital (LH) 

(Putamen)  
Striatal (Basal Ganglia) 

Thalamus - Temporal (LH/RH)  Thalamic 
Posterior Cingulate Cortex (LH/RH)  Default; Control; Salience/VAN 
Precuneus Cortex (LH)  Default; Control; Salience/VAN 
Insular Cortex (RH)  Salience/VAN; SomatoMotor 
Superior Temporal Gyrus – anterior 

(LH)*  
Temporal-Parietal 

Middle Temporal Gyrus – 
temporooccipital (LH)  

Temporal-Parietal; Control 

Middle Temporal Gyrus – posterior 
(RH)  

Temporal-Parietal; Default; Control 

Temporal Pole (LH/RH)  Default; Limbic; Temporal-Parietal 
Postcentral Gyrus (LH/RH) – 

(Somatosensory cortex)  
SomatoMotor; Salience/VAN; Dorsal 
Attention 

Precentral Gyrus (LH/RH) – 
(Primary motor cortex)  

SomatoMotor; Control; Salience/VAN; 
Dorsal Attention 

Supplementary Motor Area (LH/RH)  SomatoMotor; Salience/VAN 
Supramarginal Gyrus – anterior (LH)  Salience/VAN; Dorsal Attention 
Supramarginal Gyrus - posterior (RH)  Salience/VAN; Control; Temporal- 

Parietal 
Central Opercular Cortex (LH)  SomatoMotor; Salience/VAN 
Inferior Frontal Gyrus - pars 

triangularis (LH)*  
Default 

Middle Frontal Gyrus (LH)  Control; Default; Control; Salience/ 
VAN 

Superior Frontal Gyrus (LH/RH)  Default; Salience/VAN; Control 
Frontal Pole (LH/RH)  Control; Salience/VAN; Default; 

Limbic  

Fig. 10. Common ‘rich club’ brain regions associated with ADAM’s adaptation, 
anticipation, and joint networks depicted on inflated cortical and cerebellar 
surfaces and a volume image of the basal ganglia and thalamus. 

B.B. Harry et al.                                                                                                                                                                                                                                



Neuropsychologia 183 (2023) 108524

17

Tognoli and Kelso, 2014), where the brain is in a state of readiness to 
respond to changes in the internal and external environment by shifting 
between endogenous and endogenous focus (Corbetta et al., 2008; Fox 
et al., 2006; Sridharan et al., 2008). 

With regard to temporal prediction, ADAM’s anticipation module is 
primarily externally oriented insofar as it weights the extrapolation 
versus perseveration of earlier inter-stimulus intervals in environmental 
event sequences (Harry and Keller, 2019; van der Steen and Keller, 
2013). Endogenous processes nevertheless play a role in temporal pre
diction to the extent that auditory beat prediction involves internally 
driven action simulation (Cannon and Patel, 2021; Keller, 2012b; Keller 
et al., 2014; Patel and Iversen, 2014), especially when the simulation 
process supports beat maintenance based on the perseverative 
mimicking of the most recent inter-stimulus interval (Repp et al., 2012). 
Participants whose temporal predictions were relatively high on 
extrapolation (high stimulus prediction) showed a large proportion of 
hubs in the control resting-state network and strong connectivity be
tween the control network and somatomotor, cerebellar, and other 
networks. Participants who demonstrated greater perseverative tracking 
of tempo changes (low stimulus prediction) had strong connectivity 
between somatomotor, default mode, ventral attention, and cerebellar 
networks, in addition to strong connectivity within somatomotor, 
cerebellar, basal ganglia, and thalamic subcortical networks. Our results 
thus identify distinct network profiles for the extrapolation and 
perseveration processes that underpin temporal prediction. 

The operation of these dual prediction profiles was apparently im
mune to effects of cognitive load. Although synchronization with tempo 
changes is an effortful process that requires working memory (Colley 
et al., 2018; Pecenka et al., 2013), estimates of stimulus prediction were 
not affected by the dual task manipulation in the current study. This 
immunity implies that participants were mainly tracking even in the low 
cognitive load condition (cf. Mills et al., 2019) or that temporal pre
dictions are not themselves effortful (Marmelat and Delignières, 2012; 
Roman et al., 2019; Stepp and Turvey, 2010). However, given previous 
evidence that predictive behavior is reduced and tracking increases 
under cognitive load (Pecenka et al., 2013), it might be the case that the 
process of using these predictions to guide action is effortful. 

4.2. Simultaneous integration and segregation in the joint network 

While brain network reconfiguration related to ADAM’s adaptation 
and anticipation modules is assumed to influence the relative focus on 
internal and external information, network characteristics associated 
with the joint module influence the degree of simultaneous integration 
and segregation of these different information sources. Studies of large- 
scale brain connectivity have shown that balancing local segregation 
and global integration in the functional organization of resting-state 
networks regulates information flow in a manner conducive to flexible 
task-related behavior (Cohen & D’Esposito, 2016; Deco et al., 2015; Di 
Plinio, Perrucci, Aleman and Ebisch, 2020; Sporns, 2013; Wang et al., 
2021). During sensorimotor synchronization, integration of information 
about the relationship between one’s own action timing and the external 
sequence is necessary to monitor and evaluate overall performance, 
whereas segregation is required to maintain autonomous movement 
control and a distinction between action planning and predictions about 
external event timing (Heggli et al., 2021; Keller et al., 2016; Lie
bermann-Jordanidis et al., 2021). 

Participants displaying high anticipatory error correction estimates, 
indicating that a greater proportion of the expected discrepancy be
tween own planned movement timing and predicted event timing was 
taken into account, had increased connectivity within default mode 
regions, and between default mode, control, salience/ventral attention, 
and somatomotor regions. By contrast, participants demonstrating less 
anticipatory error correction (i.e., only weakly accounting for the 
anticipated discrepancy between plans and predictions) showed con
nections primarily between ventral attention, control, somatomotor, 

Fig. 11. Attentional modulation of connections (single task > dual task = red, 
single task < dual task = blue) shown overlaid on the CPM network (grey) 
identified for A) period correction, B) stimulus prediction, and C) anticipatory 
error correction for the Tempo Change task. 
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and cerebellar regions, and fewer connections with default mode 
regions. 

The overall connectivity pattern observed across high and low 
anticipatory error correction networks is thus opposite to what was for 
phase correction and stimulus prediction networks but resembles the 
pattern observed for period correction (especially in the high period 
correction network) (Fig. 12). These results suggest a distinction be
tween ADAM brain networks that instantiate effortful processes (period 
correction and anticipatory error correction) versus more automatic 
processes (phase correction and stimulus prediction). Consistent with 
this interpretation, ADAM parameter estimates of anticipatory error 
correction and period correction were positively correlated (Fig. S13, 
though note that CPM partialled out effects of different parameters in 
the model), and functional connectivity within and between networks 
associated with both processes was modulated similarly by cognitive 
load. Specifically, as was the case with period correction, the dual task 
manipulation modulated connectivity in control, dorsal attention, and 
default mode resting-state networks in the case of anticipatory error 
correction. 

We assume that regions within the ADAM ‘rich club’ (Table 1 & 
Fig. 10) enable the joint network to tune the relative integration versus 
segregation of internal self-related information and external other- 
related information through interactions with ADAM’s adaptation and 
anticipation modules. This assumption is based on the fact that each of 
the main resting-state networks is represented by at least one common 
node in this ‘rich club’, which provides an exhaustive set of potential 
links for controlling information flow and network reconfiguration. 

Among these node regions, the posterior cingulate cortex/precuneus, 
the inferior frontal gyrus, the insula, and the temporoparietal junction 
(spanning parts of the supramarginal gyrus, the lateral occipital cortex, 
and the angular gyrus) have been previously linked to regulating the 
integration and segregation of internal and external information in 
rhythmic contexts (Fairhurst et al., 2013, 2014; Heggli et al., 2021; Hove 
et al., 2016). A growing body of research on the roles of these regions in 
large-scale brain network interaction is consistent with this proposed 
regulatory function. These include the general role of the inferior frontal 
gyrus in the functional integration of perception and action (Rampinini 
et al., 2017; Rauschecker and Scott, 2009; Tops and Boksem, 2011) and 
its interactions with other node regions that tune the brain’s level of 
metastability and trigger switches between task-dependent configura
tions of resting-state networks. Notably, the posterior cingulate cortex, 
which sits at the nexus of multiple intrinsic functional connectivity 
networks (Hagmann et al., 2008; Leech et al., 2011; Margulies et al., 
2009), plays a key regulatory role by enabling rapid transitions to neural 
states that differ in terms of the breadth of attention and the degree to 
which it is targeted internally or externally (Buckner et al., 2008; Gus
nard and Raichle, 2001; Leech and Sharp, 2014). 

To facilitate goal-directed processing, the adjoining precuneus in
teracts with the posterior cingulate to trigger switches between default 
mode subnetworks that deal with introspective action planning via 
simulation and extrospective readiness to respond to potential changes 
in the internal and external environment (Fransson, 2005). In a more 
stimulus-driven manner, the temporoparietal junction initiates switches 
in perspective taking when new task-relevant information is detected 
(Blanke et al., 2005; Corbetta and Shulman, 2002; Tso et al., 2018). The 

Table 2 
Attentional modulation of connections (single task > dual task) identified across 
all networks (phase correction, period correction, and timekeeper noise com
bined) identified by CPM in the Virtual Partner task by resting-state interactions.  

Networks T-value 

Control Dorsal Attention − 3.823 
Control SomatoMotor − 4.053 
Control Control − 3.146 
Control Ventral Attention − 3.285 
Default Dorsal Attention − 3.411 
Default Ventral Attention − 4.565 
Default Default 3.075 
Default SomatoMotor − 2.850 
Dorsal Attention Dorsal Attention − 2.725 
Dorsal Attention SomatoMotor − 3.359 
Dorsal Attention Temporo-Parietal − 3.579 
Limbic Ventral Attention − 2.965 
Ventral Attention Temporo-Parietal − 3.358  

Fig. 12. General brain networks of interest. A coarse- 
grained summary representation of how each main 
resting-state network is recruited in the service of 
different ADAM modules. The relative number of 
total connections (edges), expressed as both the 
actual count (# Edges) and a percentage (% Total 
Edges), formed by hubs within each ADAM network 
and each resting-state network is indicated by the 
level of shading. For # Edges, shaded in greyscale, 
light shading indicates a low number and dark 
shading indicates a high number, with values nor
malized—i.e., scaled separately—for each ADAM 
network and its high and low subnetworks. For % 
Total Edges, shaded in color, light shading indicates a 
low % and dark shading indicates a high %, with 
values scaled as a proportion of total connections, 
using the same value across all networks. Note that 
each ADAM network, and its high and low sub
networks, is associated with a unique pattern of 
connectivity across resting-state networks. Connec
tivity increased with increasing values for the rele
vant ADAM parameter estimates in high networks 
and connectivity increased with decreasing param
eter estimates in low networks. DMN, default mode 
network; CON, control network, DAN; dorsal atten
tion network; SAL/VAN, salience & ventral attention 
networks.   
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insula moderates such interactions through its role in maintaining 
bodily homeostasis in the face of varying relations between external 
sensory input and internal physiological signals (Craig, 2009; Singer 
et al., 2009; Uddin et al., 2017). It does so by influencing how the 
salience network controls the switching between default mode and 
control networks (Seeley, 2019; Uddin, 2015), as well by transmitting 
signals to the posterior cingulate to reduce whole-brain metastability 
when the need for external attentional focus arises (Uddin et al., 2017). 
Previous work has charted these interactions in diverse domains ranging 
from visual perception to social cognition (e.g., Cohen & D’Esposito, 
2016; Li et al., 2014; Mori and Haruno, 2022; Sporns, 2013; Van 
Overwalle, 2009). Current findings highlight how such interactions play 
out to support real-time rhythmic coordination. 

The contributions of subcortical structures to whole-brain network 
interactions have been less extensively studied. Subcortical members of 
the ADAM ‘rich club’ include the crus II subregion of cerebellum, the 
putamen in the basal ganglia, and the medial pulvinar division of the 
thalamus. The cerebellum is generally well-equipped for the proposed 
regulatory role due to its heterogeneous input-output connectivity, 
which enables segregation via multiple processing streams, together 
with its homogenous neural circuitry, which enables integration 
through processing by a common computational substrate (Ito, 1984; 
Molinari et al., 2007; Tanaka et al., 2020; Van Overwalle et al., 2020). 
Crus II contributes to such processing particularly in the context of 
self-other discrimination, mentalizing, and the fine-tuning sequences of 
social actions and interactions (Peterburs and Desmond, 2016; Van 
Overwalle et al., 2020). The putamen, which displays high functional 
connectivity both with regions within the ADAM ‘rich club’ and ADAM 
modules (see Cacciola et al., 2017), plays a specific role in facilitating 
action selection and patterning by optimizing movement sequencing 
and timing based on information received from the cerebellum directly 
and indirectly via the thalamus (Bostan and Strick, 2018; Milardi et al., 
2019; Rauschecker, 2011). In the context of sensorimotor synchroniza
tion, the role of the putamen in beat maintenance (Cannon and Patel, 
2021; Grahn and Rowe, 2013) may be functionally relevant to timing 
interactions and information flow across ADAM brain networks. 

Finally, the thalamus regulates functional connectivity within and 
between cortical resting-state networks in a manner that allows infor
mation processed throughout the cortex to be integrated while the 
modular structure of functional networks is maintained (Guimerà and 
Nunes Amaral, 2005; Guimerà et al., 2007; Hwang, Bertolero, Liu, & 
D’Esposito, 2017; Nakajima and Halassa, 2017). It is well-suited to 
support collaboration between ADAM modules via a gating process that 
allows coordinated interactions between elementary sensorimotor pro
cesses and higher-level cognitive operations (e.g., attention and working 
memory), albeit with marked individual differences (de Manzano et al., 
2010; Hwang et al., 2017; Nakajima and Halassa, 2017; Sherman, 
2016). 

4.3. Internal models of self, other, and self-other integration 

Using ADAM to link behavioral patterns to functional connectivity 
profiles of resting-state networks has shed light on the brain bases of 
individual differences in sensorimotor synchronization skills. These 
skills are crucial for human activities involving rhythmic interpersonal 
coordination, including musical ensemble performance and group 
dance. Going beyond present findings, we propose a neurophysiological 
model that provides a tool for understanding task-based configurations 
of resting-state networks associated with ADAM’s adaptation, anticipa
tion, and joint modules, as well as for scaling up from basic sensory- 
motor mechanisms to processes that support multi-person interaction 
in such social contexts (Keller et al., 2014; Müller et al., 2021; Pesquita 
et al., 2018; Sänger et al., 2011). A caveat related to our hypothetical 
scheme is that the present study involved synchronization with 
computer-controlled auditory sequences rather than real human part
ners. Our investigation is therefore limited in terms of naturalness of the 

interaction (D’Ausilio et al., 2015) and richness of sensory experiences, 
which are often multisensory and involve visual and haptic contact in 
addition to shared auditory information (Clayton et al., 2020). 

In our scheme, the regulatory functions performed by ADAM ‘rich 
club’ hub regions are fulfilled by internal models instantiated in cerebro- 
cerebellar networks that facilitate planning and prediction in skilled 
action and social interaction by simulating transformations between 
motor processes and sensory experiences in partial independence of 
ongoing perception and action (Gambi and Pickering, 2011; Ito, 2008; 
Keller, 2008; Peterburs and Desmond, 2016; Popa and Ebner, 2019; 
Tanaka et al., 2020; Wolpert et al., 2003). Specifically, cortical loops 
that simulate contingencies between body movements and sounds in 
accordance with ADAM’s processing routines are linked to cerebellar 
internal models that continuously monitor and copy the dynamics of 
cerebral cortical activity, generating predictions about future sensori
motor and social-cognitive states that are returned to the cortex in 
compressed form (Ito, 2008; Pollok et al., 2005; Tanaka et al., 2020). 
These compressed predictions are compared with goal states and actual 
states, with discrepancies resulting in error signals that return to the 
cerebellum to allow rapid anticipatory adjustments, to modify subse
quent predictions, and to allocate attention as required (Kotz et al., 
2014; Peterburs and Desmond, 2016; Van Overwalle et al., 2020). 

ADAM’s adaptation module informs a ‘self’ internal model (Fig. 1A) 
that plans the timing of one’s own next action by implementing inverse 
models, which transform action timing goals into motor programs, and 
forward models, which represent causal relationships between motor 
commands and their sensory effects, in the cerebellum and a cortical 
circuit that includes the premotor cortex, inferior frontal gyrus, and 
supplementary motor area (Ito, 2008; Todd and Lee, 2015a). In this 
system, timing goals are updated based on the comparison of feedback 
from superior temporal auditory regions and somatosensory cortex with 
desired states in the inferior frontal gyrus, whereas motor programs are 
updated based on the comparison of predictions generated by ‘self’ 
forward models with desired states. These comparisons take place sub
cortically in the basal ganglia (Milardi et al., 2019) and cortically in 
superior temporal and inferior parietal regions (Rauschecker and Scott, 
2009). Our results suggest that phase correction might thus rely to a 
greater degree on cerebellar internal models to enable rapid, automatic 
processing, while period correction recruits cortical circuits that are 
flexible but relatively effortful to implement. 

In our account, ADAM’s anticipation module informs internal 
models of others’ actions (Table 1A) within cerebro-cerebellar loops that 
allow an individual to predict the actions of interaction partners via 
feedforward processes (Ito, 2008; Van Overwalle et al., 2020). Within 
the cortical circuits, predictions about the timing of others’ upcoming 
actions can evolve via two routes. A goal-directed, top-down form of 
action simulation calls on the action observation network and the pu
tative mirror neuron system, in tandem with prefrontal working mem
ory regions and intention- or attention-related modulations of activity in 
the temporoparietal junction and the posterior superior temporal sulcus 
(Cross et al., 2009; Grèzes et al., 2003; Ito, 2008; Sakai et al., 2002; 
Schubotz, 2007). In parallel, an automatic bottom-up process of motor 
resonance (Cannon and Patel, 2021; Patel and Iversen, 2014; Phil
lips-Silver and Keller, 2012; Todd and Lee, 2015a) instead bases pre
dictions on incoming perceptual information that is used to estimate 
others’ current states in posterior superior temporal regions (Price, 
2012; Van Overwalle et al., 2020). 

During sensorimotor synchronization, the top-down route thus en
ables temporal extrapolation to accommodate tempo-changing in
tervals, while the bottom-up route supports perseveration based on the 
preceding interval (van der Steen and Keller, 2013). In addition to these 
cortical contributions, the immunity of ADAM’s anticipation module to 
effects of cognitive load might reflect reliance on rapid temporal pre
dictions enabled by subcortical processes including cerebellar internal 
models (Ito, 2008; Schubotz, 2007) and a thalamostriatal beat pro
cessing loop (Cannon and Patel, 2021; Patel and Iversen, 2014). 
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Joint internal models implemented by ADAM’s joint module 
(Table 1A) allow potential asynchronies to be simulated and corrected 
before they occur (Keller et al., 2016; van der Steen and Keller, 2013). 
This process entails first integrating the outputs of ‘self’ and ‘other’ in
ternal models, and then modifying ‘own’ inverse models to compensate 
for any discrepancies between these outputs. In terms of neurophysio
logical implementation, the posterior cingulate cortex, precuneus, and 
superior frontal gyrus might work together to evaluate own and other 
predicted states against a representation of a joint desired state (e.g., low 
asynchrony), with the superior frontal gyrus signalling the magnitude of 
the anticipated error (Fairhurst et al., 2013; Van Overwalle, 2009) while 
the posterior cingulate cortex and precuneus regulate the balance be
tween internal models of self and other (Fairhurst et al., 2013; Heggli 
et al., 2021). In fulfilling its functions in signalling the need for network 
switches and changes in brain metastability, the insula might evaluate 
self, other, and joint state estimates based on actual sensory feedback via 
a closed-loop process that requires externally focused attention (Menon 
and Uddin, 2010). Together, these feedforward and feedback loops 
optimize performance by adjusting the gain of own plans and other 
predictions by altering the connectivity within and between relevant 
cortical and cerebro-cerebellar circuits based on confidence, or proba
bility estimates, that vary with task context (e.g., the systematicity of 
tempo changes) and cognitive load (Tanaka et al., 2020; Van Overwalle 
et al., 2020). 

4.4. Conclusions 

The current fMRI study used connectome-based predictive modelling 
to examine patterns of brain functional connectivity related to individ
ual differences in behavioral performance and parameter estimates 
derived from the adaptation and anticipation model (ADAM) of senso
rimotor synchronization. This approach allowed us to identify distinct 
but overlapping brain networks that support temporal error correction, 
prediction, and the monitoring and integration of information about 
one’s own action and external events during rhythmic coordination with 
auditory sequences. Our results suggest that ADAM’s adaptation, 
anticipation, and joint modules house common hub regions that 
modulate functional connectivity within and between resting-state 
networks and additional sensory-motor regions and subcortical struc
tures in a manner that reflects coordination skill. At a general level, 
these connectivity modulations facilitate the temporal alignment of self 
(own actions) and other (external events) by enabling shifts in the de
gree of focus on internal and external information, and variations in the 
degree of simultaneous integration and segregation of these different 
information sources. Our study was limited to interaction with 
computer-controlled stimuli, and it therefore remains an open question 
whether the observed patterns of network reconfiguration generalize to 
social interaction with real human partners. To the extent that they do, 
such reconfiguration might support precise yet flexible real-time inter
personal coordination by optimizing the operation of internal models for 
planning one’s own actions, predicting others’ action timing, and 
minimizing the discrepancy between these plans and predictions under 
conditions that vary in temporal regularity and concurrent cognitive 
demands. 
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