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a b s t r a c t 

Low-dimensional representations are increasingly used to study meaningful organizational principles within the 

human brain. Most notably, the sensorimotor-association axis consistently explains the most variance in the hu- 

man connectome as its so-called principal gradient, suggesting that it represents a fundamental organizational 

principle. While recent work indicates these low dimensional representations are relatively robust, they are lim- 

ited by modeling only certain aspects of the functional connectivity structure. To date, the majority of studies 

have restricted these approaches to the strongest connections in the brain, treating weaker or negative connec- 

tions as noise despite evidence of meaningful structure among them. The present work examines connectivity 

gradients of the human connectome across a full range of connectivity strengths and explores the implications 

for outcomes of individual differences, identifying potential dependencies on thresholds and opportunities to im- 

prove prediction tasks. Interestingly, the sensorimotor-association axis emerged as the principal gradient of the 

human connectome across the entire range of connectivity levels. Moreover, the principal gradient of connections 

at intermediate strengths encoded individual differences, better followed individual-specific anatomical features, 

and was also more predictive of intelligence. Taken together, our results add to evidence of the sensorimotor- 

association axis as a fundamental principle of the brain’s functional organization, since it is evident even in the 

connectivity structure of more lenient connectivity thresholds. These more loosely coupled connections further 

appear to contain valuable and potentially important information that could be used to improve our understand- 

ing of individual differences, diagnosis, and the prediction of treatment outcomes. 
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. Introduction 

Dimensionality reduction techniques are increasingly utilized to un-

over meaningful organizational principles of the brain. Their central

ssumption is that the latent connectivity structure of high-dimensional

euroimaging data can be captured in a low-dimensional space. The di-

ensions of such a space, referred to as connectivity gradients, have

een shown to be meaningful ( Glomb et al., 2021 ; Huntenburg et al.,

018 ; Margulies et al., 2016 ; Waymel et al., 2020 ), and were success-

ully used to study variations across individuals and species, in health

nd disease ( Brown et al., 2022 ; Caciagli et al., 2022 ; Dong et al.,

021 a; Guell et al., 2018 ; Hong et al., 2019 ; Larivière et al., 2020a ;
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017 ; Paquola et al., 2019 ; Park et al., 2022 ; Pasquini et al., 2022 ;

amara et al., 2023 ; Xu et al., 2020 ). Most notably, the sensorimotor-

ssociation axis (SA-axis), a defining feature of cortical hierarchy

 Hutchinson and Barrett, 2019 ; Sydnor et al., 2021 ), has been consis-

ently identified to explain most of the variance in the human con-

ectome, thus referred to as the principal gradient ( Margulies et al.,

016 ). While different mathematical approaches have been introduced

o establish such a low-dimensional representation ( Atasoy et al., 2016 ;

aak et al., 2018 ; Hong et al., 2020 ; Langs et al., 2015 ; Nenning et al.,

020 ; Vos de Wael et al., 2020 ), conceptual commonalities in model-

ng the connectome exist. To date, the majority of studies have lim-
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ted connectivity gradient analysis to the strongest positive connec-

ions. They have a better signal-to-noise ratio and are usually con-

idered as less noisy at the individual level; thresholding emphasizes

he connectivity structure of interest and presumably removes spuri-

us connections. Also, a growing number of studies have demonstrated

hat the connectivity gradients of the strongest connections character-

ze meaningful organizational principles ( Haak et al., 2018 ; Hong et al.,

019 ; Huntenburg et al., 2018 ; Margulies et al., 2016 ; Xu et al., 2020 ).

owever, restricting analyses to the strongest edges might neglect po-

entially meaningful information in more loosely coupled connections,

nd overlook variability across individuals that characterizes individ-

al differences. While considering only the strongest connections has

ts justification, it raises at least two questions: (i) How persistent are

hese macroscale gradients when examining a range of connectivity

trengths? and (ii) What are we missing by ignoring the remaining

onnections? 

The strongest functional connections in the brain characterize a ba-

ic scaffolding of the functional organization. They are typically found

etween core regions of networks ( Honey et al., 2007 ), within the same

unctional networks ( Gordon et al., 2017 ; Yeo et al., 2011 ), or follow

omotopic connectivities ( Gee et al., 2011 ; Stark et al., 2008 ). The

trongest functional connections also align with actual structural con-

ectivity ( Hermundstad et al., 2013 ; Honey et al., 2009 ). But there is

lso evidence that less tightly coupled connections can provide mean-

ngful information. For example, in sociology, the importance of weak

onnections has been widely acknowledged with the “strength of weak

ies ” concept ( Granovetter, 1973 ). By looking at information spread

hrough social networks, this theory assigns value to weaker connec-

ions as they are more variable and thus more likely to provide new

nformation than stronger connections, which behave in a more consis-

ent manner. Similarly, in brain networks, the non-random placement

f weak connections has been shown to be important for network co-

esion in macaques ( Goulas et al., 2015 ), and crucial for the coexis-

ence of modular specialization and global integration of brain regions

 Gallos et al., 2012 ). Also, individual-level measures such as intelligence

re more highly associated with connections that are weaker, indicating

heir importance to understanding human cognition ( Santarnecchi et al.,

014 ). Previous studies have demonstrated that more loosely coupled

onnections tend to be located at regional borders and are more vari-

ble across individuals - often averaging to zero at the group-level

 Adelstein et al., 2011 ; Di Martino et al., 2009 ; Mueller et al., 2013 ;

eitzman et al., 2019 ), characterizing transition zones between cortical

ystems ( Cohen et al., 2008 ; Mennes et al., 2010 ). They were also ob-

erved to coincide with long-distance connections, preserving cortical

nterconnectedness ( Markov et al., 2013 ), relating to sporadic between-

etwork communication ( Yang et al., 2014 ), and spatial properties of

ortical traveling waves ( Raut et al., 2021 ). 

To address the potential value of typically neglected functional con-

ections within the connectome, we had several key objectives. First, we

ystematically compared principal gradients calculated from distinct,

qually sized, subsets (i.e., bins) of connections defined by their con-

ectivity strengths and directions. Individual principal gradients were

alculated for bin-specific connectivity strengths ranging from the top

anked connections (‘functional affinity’) at one extreme, to the bottom

anked connections (‘functional enmity’) on the other. Then, we used

luster analysis to sort regions based on their patterns of covariation

cross principal gradients calculated at different connectivity strengths.

o establish the implications of connectivity strength-specific gradients

nd their utility in characterizing individual differences, we: (i) mea-

ured inter- and intra-bin agreement (i.e., reliability) of individual dif-

erences (vertex-level, cortex-level), and (ii) assessed the relative pre-

ictive value of the strength-specific gradients for variables such as age,

ex, and full-scale intelligence quotient (FSIQ). To accomplish these ob-

ectives, we leveraged two independent datasets. The analytic workflow

s outlined in Table 1 . 
2 
. Methods 

.1. Datasets 

Resting-state fMRI data from two openly available datasets were

sed: the Human Connectome Project (HCP) ( Van Essen et al., 2013 ),

nd the enhanced Nathan Kline Institute-Rockland Sample (NKI-RS)

 Nooner et al., 2012 ). Both group- and individual-level functional con-

ectomes were examined to probe the functional organization across a

ull range of connectivity thresholds. 

The HCP data was acquired at Washington University at St. Louis

n a customized Connectome Skyra scanner (Siemens 3 Tesla) using a

ultiband sequence ( Smith et al., 2013 ; U ğurbil et al., 2013 ; Van Essen

t al., 2013 ). Resting-state fMRI was acquired with a multiband factor

f 8, 2 mm isotropic resolution, and a repetition time of 0.72 s for a

uration of 14.4 min, which resulted in 1200 vol per run. Participants

ere asked to relax, keep eyes open and fixated on a crosshair, and not

o fall asleep. Four resting-state runs were collected in different sessions

cross two days (REST1 and REST2), where each session comprised two

uns with different phase encoding directions (LR and RL). We used the

inimally preprocessed fMRI data that was already provided by the HCP

 Glasser et al., 2013 ). The resting-state data has been motion corrected,

inimally spatially smoothed (2 mm), high-pass filtered (2000s cutoff),

enoised for motion-related confounds and artifacts using independent

omponent analysis ( Salimi-Khorshidi et al., 2014 ; Smith et al., 2013 ),

nd aligned with MSMAll ( Robinson et al., 2014 ). 

At the group level, we used the dense group-average functional con-

ectome provided by the HCP S1200 data release ( HCP 1200 Subjects

ata Release Reference Manual , 2017 ). In brief, this connectivity matrix

as constructed from minimal preprocessed data across 1003 individ-

als that each had ∼1 h (4 × 14.4 min) of resting-state fMRI acquisi-

ions available. The dense connectivity matrix of size 91,282 ×91,282

rayordinates (59,412 cortical vertices and 31,870 subcortical voxels)

as calculated based on components of an incremental group-pca and

eleased by the HCP via the ConnectomeDB ( HCP 1200 Subjects Data

elease Reference Manual , 2017 ). 

At individual-level, we selected the 100 unrelated subjects sample

rom the HCP (54F/46 M, age = 29 ± 3.7 years) and calculated the func-

ional connectivity of two resting-state fMRI sessions (REST1_LR and

EST2_LR) for each individual. To promote the generalizability of our

ndings to the preprocessing decision of global signal regression (GSR),

e additionally applied GSR to the minimal preprocessing ( Kong et al.,

021 ; Li et al., 2019 ), and both GSR and non-GSR data were used to

uild vertex-wise connectivity matrices calculated with Pearson’s cor-

elation ( Murphy and Fox, 2017 ). The fsaverage4 surface space (2562

ertices per hemisphere) was used to balance the vertex resolution and

omputational cost at individual level. For each participant, we mapped

he measurements of cortical thickness and estimates of myelination

T1w/T2w ratio), as provided by the HCP’s minimally preprocessing

ipeline ( Glasser et al., 2013 ), to the same surface space. Details regard-

ng the HCP dataset and minimal preprocessing pipeline are published

n prior studies ( Glasser et al., 2013 ; Smith et al., 2013 ). We also gen-

rated the group-averaged connectivity matrix, via the arithmetic mean

f the individual connectivity matrices, using this subset to replicate the

roup-level results for both GSR and non-GSR data. 

In addition, we replicated our findings in a cross-sectional lifespan

ample with 313 healthy participants (214 female, age: 6–85 years,

2.2 ± 22.4 years) selected from the NKI-RS dataset, who have no diag-

osis of any mental or neurological disorders and passed quality control

f a head motion criteria (mean framewise displacement < 0.25 mm).

he NKI-RS data was acquired at the Nathan Kline Institute on a Siemens

rioTim 3 Tesla scanner using a multiband sequence. Resting-state fMRI

as acquired with a multiband factor of 4, 3 mm isotropic resolution,

nd a repetition time of 0.645 s for a duration of 9.7 min, which resulted

n 900 vol per run. Preprocessing was performed with the Connectome
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Table 1 

Analytic Workflow; HCP - Human Connectome Project; NKI-RS - Nathan Kline Institute Rockland Sample; GSR - Global Signal Regression; FSIQ - Full Scale 

Intelligence Quotient. 

Objective Analytic Method Datasets Finding 

Sort connections based on strength and 

systematically compare principal gradients 

calculated using equally sized subsets (i.e., bins) 

defined based on their strengths 

PCA gradients HCP dense connectome, HCP 100 

unrelated subjects (GSR, no GSR) 

(Only) the principal gradient is 

omnipresent in the functional connectome 

across different connectivity bins 

Find coherent regions characterized by principal 

gradients across differing connectivity strength bins 

k-means Clustering HCP dense connectome, HCP 100 

unrelated subjects (GSR, no GSR) 

The clustering reflects cortical hierarchy 

and individual anatomy 

Measure inter-bin agreement of individual 

differences in the principal gradients (vertex-level, 

cortex-level) 

Discriminability, Intraclass 

Correlation, Spatial Correlation 

HCP 100 unrelated subjects (GSR, 

no GSR) 

The principal gradients of the connectome 

at intermediate strength bins capture 

individual differences 

Assess relative predictive value of principal 

gradients calculated using differing connectivity 

strength bins (individually and collectively) 

(dependent variables: age, sex, FSIQ) 

Logistic Regression, Ridge 

Regression 

NKI-RS 313 individuals (GSR, no 

GSR) 

Principal gradients of intermediate 

connectivity strength bins can 

individually and collectively improve 

predictive modeling 
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c  
omputational System ( Xu et al., 2015 ), and included discarding the

rst five timepoints, compressing temporal spikes (AFNI 3dDespike),

lice timing correction, motion correction, 4D global mean intensity nor-

alization, nuisance regression (Friston’s 24 model, cerebrospinal fluid

nd white matter), linear and quadratic detrending, as well as band-

ass filtering (0.01–0.1 Hz). Preprocessing steps were repeated to in-

lude GSR and non-GSR respectively. The preprocessed data were then

rojected on the fsaverage surface, and similarly to the HCP dataset

ownsampled to the fsaverage4 surface. Details of the dataset and pre-

rocessing were described in our prior studies ( Nenning et al., 2020 ;

ooner et al., 2012 ). We used Pearson’s correlation to establish the in-

ividual connectivity matrices for both GSR and non-GSR data. 

.2. Connectivity gradients 

The common connectivity gradient approach is based on a func-

ional connectivity matrix that is thresholded vertex-wise (i.e., row-

ise), characterizing only the strongest, positive connectivity structure

 Margulies et al., 2016 ). For each vertex, the threshold ( 𝜀 -neighborhood)

etaining only the 10% strongest positive connections can be denoted as

 connectivity bin [ 𝜀 Lower , 𝜀 Upper ], where 𝜀 Lower is the 90th and 𝜀 Upper the

00th connectivity percentile. Subsequently, cosine distance is used to

stablish a similarity matrix, representing the spatial similarity of the

unctional connectivity patterns between all vertices with weights rang-

ng from 0 (no similarity) to 1 (high similarity). This similarity matrix

s then used in a manifold learning algorithm of choice to characterize

he so-called connectivity gradients. 

Here, we make two adjustments to this approach, primarily in the

raph thresholding step. First, we modify the requirement for the 10%

trongest, positive connections and vary the connectivity threshold

 𝜀 Lower , 𝜀 Upper ] for each vertex. The lower connectivity threshold 𝜀 Lower 

s chosen between the 0th and 90th percentile, and the upper threshold

 Upper is defined as the ( 𝜀 Lower + 10) th percentile. Second, because low-

anked connectivity bins can comprise negative connectivity weights,

e binarize the thresholded connectivity matrix by setting all the re-

ained positive or negative connections to 1 and 0 otherwise. This will

mphasize the topography of the thresholded connectivity structure at

elative connectivity ranks rather than absolute correlation values. Fi-

ally, a similarity matrix is established by calculating the vertex-wise

osine distance of this thresholded binary connectivity matrix. 

To establish the low-dimensional representations, i.e., connectivity

radients, we used Principal Component Analysis (PCA) of the similar-

ty matrix, because PCA showed an improved reliability and predictive

alidity compared to other manifold learning approaches ( Hong et al.,

020 ). An overview of the connectivity gradient workflow is shown in

ig. 1 . 
3 
Gradient analysis of the high-resolution HCP dense group-average

onnectome (91,282 grayordinates) requires a large amount of compu-

ational resources and is often infeasible on a standard computational

nfrastructure. Following previous work ( Kong et al., 2019 ; Yeo et al.,

011 ), instead of calculating the pair-wise connectivity profiles for each

rayordinate, we defined the connectivity profiles as the correlation of

ach grayordinate to 1049 landmark regions of interest (ROIs). These

andmark ROIs were defined by a functional cortical parcellation into

98 regions ( Schaefer et al., 2018 ) (2 ROIs of 1000 were not covered

y the dense connectome), 17 subcortical structures ( Patenaude et al.,

011 ), and 34 cerebellar ROIs ( Buckner et al., 2011 ). Thus, the HCP

ense group-average connectome was expressed by a 91,282 ×1049 ma-

rix. To establish the similarity matrix, we first calculated a 1049 ×1049

onnectivity matrix between all ROIs, referred to as region-wise connec-

ivity matrix. We then calculated the cosine distance between the thresh-

lded connectivity profiles and the thresholded region-wise connectivity

atrix. This resulted in a similarity matrix of size 91,282 ×1049 that was

mbedded via PCA. Connectivity gradients were simultaneously gen-

rated on a vertex-/voxel-level for cortex, subcortex, and cerebellum,

esulting in one set of gradients across all the structures. For visual-

zation purposes, the connectivity profiles and their spatial similarity of

he symmetric region-wise connectivity matrix is displayed for the dense

roup connectome. Because of the lower resolution and computational

easibility, for the HCP unrelated 100 and the NKI-RS samples, we fol-

owed the common approach without the landmarks and created a full

ymmetric similarity matrix ( Margulies et al., 2016 ). 

.3. Comparing gradients across the connectivity strength bins 

We establish connectivity gradients for different threshold bins

 𝜀 Lower , 𝜀 Upper ], ranging from the strongest negative correlations to the

trongest positive correlations along the connectivity spectrum, by sys-

ematically increasing the percentile thresholds 𝜀 Lower and 𝜀 Upper (de-

ned as the 𝜀 Lower + 10). To evaluate the order of the connectivity gra-

ients and ensure comparability across the different thresholds, we per-

ormed orthogonal Procrustes alignment ( Langs et al., 2015 ; Wang and

ahadevan, 2008 ). Each threshold-specific embedding was aligned

o the individual or group specific reference defined by the conven-

ional gradients based on the vertex-wise connectivity threshold of the

90,100] th percentile bin ( Margulies et al., 2016 ). Orthogonal Procrustes

nds the optimal linear transformation so that two sets of gradients

re matched, reflecting the component order and their similarity in the

ransformation matrix. The component order is informative for the oc-

urrence of specific connectivity gradients and their relative variance

xplained. 

After Procrustes alignment, we examined the cross-threshold

hanges of the gradient across the brain. To test which brain regions
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Fig. 1. Overview of the connectivity gradient workflow. In contrast to keeping only the strongest connections, the functional connectivity structure is vertex-wise 

(row-wise) thresholded based on a defined percentile bin with lower and upper boundary. This results in functional connectivity (FC) profiles with specific subsets of 

connections that are systematically defined based on their functional connectivity strengths. A similarity matrix is established by the vertex-wise cosine distance of 

this thresholded and binarized connectivity matrix. Principal component analysis (PCA) is then applied to this similarity matrix to establish a percentile bin-specific 

embedding and connectivity gradients. 
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hare the similar gradient scores across thresholds, we concatenated the

hreshold-specific gradients and used k-means clustering to partition the

rain into three regions that have a similar pattern of variation across

hresholds. 

.4. Reliability and the ability to identify individuals 

To quantify reliability of the principal gradients for each threshold,

e used 2 repeated resting-state acquisitions from 100 unrelated indi-

iduals in the HCP sample. At the global level, discriminability was used

o measure how similar an individual’s principal gradients are to each

ther ( Bridgeford et al., 2021 ). Briefly, discriminability is a nonpara-

etric multivariate statistic that assesses the degree to which repeated

easurements (e.g., gradients of different sessions) of one individual

re relatively similar to each other. It is defined as one minus the frac-

ion of times between-individual measurements are more similar than

ithin-individual measurements. An index of 1 indicates a perfect dis-

riminability. At the vertex level, we quantified the intraclass correla-

ion coefficient (ICC) ( Shrout and Fleiss, 1979 ), a univariate measure of

he degree of absolute agreement, for each threshold. ICC is defined as

he ratio of between-individual variation divided by the sum of within-

ndividual and between-individual variation. Similarly, we also used ICC

o measure the reliability of the gradients between thresholded connec-

ivity bins. We chose discriminability because it is a nonparametric mul-

ivariate statistic, and ICC because it is well established in the field of

euroimaging and can be used to measure the agreement between dif-

erent conditions ( Milham et al., 2021 ; Zuo et al., 2019 ). 

.5. The predictive potential across connectivity bins 

We used 313 individuals from the NKI-RS sample to compare which

hreshold provides better prediction of individual-specific measures
4 
i.e., age, sex, FSIQ). We performed predictive analyses using the prin-

ipal gradients of each connectivity strength bin as features, as well as

ll threshold-specific gradients combined as a feature ensemble. To re-

uce the feature dimensionality, we used the HCP multimodal parcella-

ion ( Glasser et al., 2016 ) and summarized the gradient coefficients as

he average of all the vertices in each of the 360 ROIs. We used ridge

egression to predict age and FSIQ, and logistic regression to classify

ex, both with a L2 regularization to combat overfitting. Both predic-

ion tasks were performed using glmnet ( Friedman et al., 2010 ) and

 nested 10-fold cross-validation scheme for hyperparameter (lambda)

election. The prediction of each fold was aggregated, and we reported

ccuracy for sex classification and mean absolute error (MAE) for age

nd FSIQ prediction. To test whether the predictions are significantly

reater than chance, we also performed the same predictive modeling

rocedures 500 times with randomly shuffled labels. 

. Results 

.1. A similar principal gradient for top- and bottom-ranked functional 

onnections 

First, we compared the principal gradients of the most opposing

unctional connectivity structures, defined by the 10% top-ranked con-

ections (functional affinity), and the 10% bottom-ranked connections

functionally enmity). For both functional affinity and the converse

unctional enmity, the low-dimensional embedding resulted in a sim-

lar principal gradient representation across the cortex ( r = 0.84), the

erebellum ( r = 0.88), hippocampus ( r = 0.86), thalamus ( r = 0.94), and

triatum ( r = 0.86) ( Fig. 2 ). While the thresholded FC profiles had an

pposing connectivity structure, their spatial similarities revealed a sim-

lar pattern of relationships ( r = 0.61) (see also Fig. 3 A second row). For

oth functional affinity and functional enmity, the principal gradient ex-
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Fig. 2. Similar principal gradients are observed for the top-ranked connections (functional affinity) and the opposing bottom-ranked connections (functional enmity). 

The thresholded functional connectivity (FC) profiles demonstrate a clear converse functional topography, while their intrinsic similarity structures exhibit a relatively 

common organizational pattern. The principal gradients in both cortex and subcortex exhibit a high spatial similarity ( r > = 0.84). 
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lained the most variance by a clear margin, suggesting a distinct and

lobal characteristic of its spatial pattern. Particularly for the default

ode network (DMN), situated on the apex of the principal gradients

or both thresholded connectomes, the conjunction of a strong intercon-

ectedness and a coherent segregation from other networks indicated a

common friends, common enemies ” analogy. 

.2. The principal gradient is omnipresent across different connectivity 

hresholds 

In a next step, we sought to explore the principal gradient of the con-

ectome at varying connectivity bins, ranging from functional affinity

i.e., the top ranked connections) to functional enmity (i.e., the bottom

anked connections). For all connectivity thresholds, we observed that

he sensorimotor-association axis (SA-axis) constitutes the principal gra-

ient ( Figs. 3 A; S1; Video 1). While the thresholded connectivity profiles

howed a transition between the opposing connectivity structures, their

ntrinsic similarity structures demonstrated a shared pattern of coher-

nce across all the different connectivity strengths ( Fig. 3 A). Compa-

able spatial similarities between the threshold-specific principal gradi-

nts were observed with and without Procrustes alignment respectively

mean increase in Spearman’s 𝝆 after Procrustes = 0.0552 ± 0.0588).

he SA-axis was also observed as the principal gradient of a graph com-

osed of vertex-wise similarity profiles from random connectivity bins

i.e. randomized connectivity strength thresholds [ 𝜀 Lower , 𝜀 Upper ]), em-

hasizing the shared intrinsic similarity structure across connectivity

trengths (Fig. S2). The omnipresence of the principal gradient was ev-

dent as well for graphs thresholded at a global correlation value (Fig.

3), group connectomes established with and without global signal re-

ression (Fig. S4), and when using the diffusion map approach (Fig. S5),

emonstrating that the observation is robust across common method-

logical approaches. We also confirmed that this finding is not a con-

truction by the algorithm. We examined the case of a random network
5 
nd found that the principal gradient is not similar across thresholds

Fig. S6A). Intriguingly, only in the real network data we observed a

omparable pattern of spatial similarities between the thresholded con-

ectivity profiles, indicating a similar connectivity structure of integra-

ion and segregation that persists across thresholds. Moreover, by eval-

ating a series of graphs with differing modularity structure, we found

hat only networks with a two modular structure yield a principal eigen-

ector that is roughly similar across all thresholds (Fig. S6B). This fur-

her strengthens the notion that the SA-axis separates two distinct func-

ional modules that fundamentally shape cortical organization. 

The consistency of the topographical pattern encoded by the princi-

al gradients across the connectivity thresholds was underscored by the

arameters of the Procrustes alignment ( Fig. 3 B top row). Importantly,

he SA-axis was always the first component of the embedding, i.e., the

rincipal gradient, explaining the most variance. The orthogonal ro-

ation and reflection component T indicated a coefficient consistently

lose to 1 (abs(T) > 0.85), suggesting similar spatial patterns of the

hreshold-specific principal gradients and the reference (i.e., based on

he strongest 10% connections). A slightly lower similarity and variance

xplained was observed for intermediate connectivity bins compared to

he bottom- and top-ranked ones, reflecting the variation in the principal

radient topography across the connectivity thresholds ( Fig. 3 B top). 

.3. Only the principal gradient is omnipresent across different threshold 

ins 

Notably, only the principal gradient was found to be omnipresent

cross different connectivity levels. The second gradient, characteriz-

ng an axis between the visual and somatomotor cortex, was not dis-

inctive for low-ranked connections ( Fig. 3 B middle row; Video 2). It

merged only with increasing connectivity strengths, as reflected in the

radient trajectory maps, but also in the parameters of the Procrustes

lignment and variance explained. At bottom-ranked connectivity lev-
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Fig. 3. The sensorimotor-association axis is omnipresent in the functional organization thresholded at different connectivity levels. (A) The thresholded connectivity 

profiles illustrate a gradual transition between an antagonistic spatial organization, but their intrinsic similarity structures resemble a shared pattern of coherence 

across the different connectivity levels. (B) Only the principal gradient is omnipresent across the different connectivity thresholds, explaining always the most variance 

as the first component. The topographical patterns of the somatomotor-visual and task-negative to task-positive gradients vary across the connectivity strengths. The 

somatomotor-visual gradient emerges only with increasing connectivity strengths, emphasizing its characterization of stronger short-range connections. The task- 

negative to task-positive gradient describes a similar spatial pattern for the more top- and bottom-ranked connections, but diverges for the intermediate connectivity 

structure. 

6 
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ls, the second gradient was encoded in trailing components that ex-

lained less variance. The third gradient, denoting a transition between

ask-negative and task-positive regions, showed the highest topograph-

cal similarity between low- and top-ranked connectivity bins, but ex-

ibited a deviation for intermediate connections ( Fig. 3 B bottom row;

ideo 3). Overall, the variable manifestations of gradients 2 and 3 across

he connectivity thresholds emphasize the ubiquitous topography of the

rincipal gradient (Fig. S1). This hints further at the importance of the

ensorimotor-association systems as a central feature of functional brain

rganization. 

.4. Distinct cortical zones are persistent across different connectivity 

trengths 

Next, to probe the consistency of the topographical pattern across

iffering connectivity bins, we clustered regions based on their changes

f the principal gradient profiles. The clusters exhibited a distinct spatial

attern that reflected the two ends of the SA-axis ( Fig. 4 A). The senso-

imotor and association clusters characterize the opposing ends of the

onnectivity spectrum, separated by an intermediate cluster that can be

elated to regional variation across the connectivity thresholds (we re-

er to this as the variable cluster). This transitional cluster layout was

lso observed in the cerebellum, hippocampus, thalamus, and striatum.

he cluster-specific gradient profiles revealed a convergence of the asso-

iation and the variable clusters at intermediate connectivity strengths

 Fig. 4 A right). 

At the individual level, the clustering was also consistently identi-

ed in the HCP sample ( Fig. 4 B), with and without global signal re-

ression (Fig. S7). The variable cluster showed the largest overlap in

ttention and limbic networks ( Fig. 4 B), emphasizing individual differ-

nces along the boundaries of the antagonistic association and senso-

imotor clusters. Importantly, the cluster configuration was consistent

ith individual-specific anatomical hierarchies as quantified by corti-

al myelination (T1w/T2w ratio) and cortical thickness ( Fig. 4 C). This

bservation was reproducible with and without global signal regression

Fig. S8). Taken together, the cluster pattern suggested an underlying

natomical principle for the topographic pattern of the principal gradi-

nts across the connectivity bins, indicating a non-random configuration

f intermediate, variable functional connections. 

.5. Intermediate connections relate to individual microstructure 

To characterize the gradient profiles across connectivity bins at the

etwork level, we averaged the gradient scores within canonical resting-

tate networks. Across connectivity thresholds, the principal gradients

eflected the difference between sensory and association cortices, sug-

esting that this is a relatively stable phenomenon ( Fig. 4 D). Notably,

t intermediate connectivity strengths the gradient scores for the at-

ention networks increased towards gradient scores of high-order net-

orks (i.e., DMN), while the limbic network showed the opposite pat-

ern ( Fig. 4 D). This finding was also replicated for data processed

ith and without global signal regression (Fig. S9). At the individual

evel, we also measured the association between principal gradients

nd brain microstructure. Notably, intermediate connectivity bins ex-

ibited the strongest (negative) association with a surrogate for myeli-

ation (T1w/T2w ratio), and the strongest positive correlation with cor-

ical thickness ( Fig. 4 E). Similar results were replicated with and with-

ut global signal regression, (Fig. S10). The relationship to individual

natomical features, and the increased integration of attention networks

nto the association cortex (i.e. the closer proximity between both on

he gradient spectrum) indicated that the principal gradient of inter-

ediate connections describes an individual-specific functional topog-

aphy. To unravel why the principal gradients at intermediate connec-

ions are more aligned with individual anatomy, we iteratively excluded

ach vertex from the microstructure-gradient correlation and quanti-

ed the resulting change in the relationship. Intriguingly, the differ-
7 
nce between the gradient coefficients of intermediate and top-/bottom-

anked connections overlapped with vertices that are relevant for the

mproved microstructure-gradient correlation at intermediate thresh-

lds (Fig. S11). 

.6. The principal gradients of intermediate connections capture individual 

ifferences 

Next, we used the HCP sample to evaluate the test-retest reliability

f the principal gradients at each connectivity bin with discriminabil-

ty and ICC, which can also reflect the ability to identify individuals.

igh discriminability was observed for the principal gradients at the

op-ranked and intermediate connectivity strengths ( Fig. 5 A left). ICC

lso exhibited higher scores at the top-ranked and the relative lower-

anked connectivity levels ( Fig. 5 A right). Analysis based on data with

lobal signal regression showed similar results, with an overall higher

iscriminability across all thresholds, but a drop in the ICC at intermedi-

te levels (Fig. S12A). In addition, we also evaluated the cross-threshold

greement of the principal gradients using ICC. We observed a robust

imilarity of the principal gradients between top- and bottom-ranked

onnections calculated on the same data ( Fig. 5 B left). This observa-

ion was also confirmed across test-retest sessions using the HCP sample

 Fig. 5 B right). Similar results are replicated with data based on global

ignal regression (Fig. S12B). Taken together, the strong ability to iden-

ify individuals, and the individuality of the principal gradients of more

oosely coupled connections suggested that they may provide greater

nformation about the individual than their more deterministic counter-

arts. 

.7. The principal gradients of intermediate connections can improve 

redictive modeling 

The preceding results suggested valuable features in the topography

f connectivity levels apart from the strongest connections. To inter-

ogate this notion further, we conducted prediction analyses to eval-

ate the relative prognostic value of the principal gradient across dif-

erent connectivity strengths. In a 10-fold cross-validation scheme, we

redicted sex, age, and FSIQ based on the principal gradient of each

ndividual connectivity threshold bin, and additionally using all bin-

pecific gradients combined as a feature ensemble. Of note, we did not

im for the best predictive performance for the phenotypic data, but

ather sought to compare the relative predictive power across different

onnectivity thresholds. For all three prediction tasks, the best perfor-

ance was achieved with a feature ensemble (i.e., gradients across all

hresholds combined) ( Fig. 5 C, D). The individual bin-specific principal

radients showed mixed performances for the individual predictions.

or sex classification, the bottom- and top-ranked connectivity bins had

he highest accuracy of 0.68, with only little loss in performance across

he individual thresholds (accuracy 0.63–0.67). For age prediction, the

rincipal gradients of the strongest connections achieved the best perfor-

ance, in terms of lowest mean absolute error, by a clear margin (MAE

4.5y). However, for the prediction of FSIQ, the principal gradients of

he more variable bottom-ranked and intermediate connectivity thresh-

lds had the best performance (MAE 10.54 FSIQ points). All predictions

ere greater than chance (true values always performed better than the

ull distribution based on shuffled labels), and similar observations were

ade for principal gradients based on global signal regressed data (Fig.

13). The feature coefficients for all three target variables (i.e., sex, age,

SIQ) and both models (i.e., with and without global signal regression)

re displayed in Fig. S14. For the prediction of FSIQ, greater coefficient

alues were observed in association cortices and default mode network

egions at intermediate connectivity thresholds. Reassuringly, these re-

ions have recently been associated with intelligence ( Feilong et al.,

021 ; Hearne et al., 2016 ; Hilger et al., 2017 ; Lohmann et al., 2021 ),

nd the increase in positive coefficients might explain the benefit of the

ntermediate connections for predicting FSIQ. 
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Fig. 4. Clustering of the gradient signatures across the connectivity levels reveals a distinct spatial pattern that reflects cortical hierarchy. (A) The sensorimotor 

and association cluster, characterizing the opposing ends of the connectivity spectrum, are separated by an intermediate cluster that indicates regional variation 

across the connectivity thresholds. (A similar spatial cluster pattern is observed for the cortex and in subcortical structures. At intermediate connectivity levels, the 

gradient coefficients of the association and the variable cluster are more similar. (B) The cluster configuration is repeatedly found across 100 individuals in the HCP 

sample, with the highest variability in the variable cluster. The variable cluster showed the largest overlap in attention and limbic networks, that are bordering the 

antagonistic association and sensorimotor clusters. (C) On the individual level, the clustering follows individual microstructural features such as cortical myelination 

(T1w/T2w ratio) and cortical thickness. (D) At intermediate connectivity levels, the gradient scores of brain regions associated with attention and higher-order 

networks are more similar, suggesting a stronger integration. (E) Particularly the principal gradients of intermediate connectivity bins are associated with individual 

microstructure as quantified by cortical myelination (T1w/T2w ratio) and cortical thickness. 
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. Discussion 

The present work evaluated the specificity and predictive utility of

onnectivity gradients calculated with differing subsets of connections,

hich were systematically defined based on their functional connectiv-

ty strengths. We demonstrated that regardless of the connection subset

xamined, the central organizational topography of the principal gradi-

nt was reflective of the SA-axis. These findings support the notion that

he SA-axis is a fundamental principle of macroscale brain organization.

mportantly, however, more loosely coupled connections appear to ex-

lain individual differences in anatomy and cognition - in some cases

ore than stronger connections (e.g., for FSIQ). 
8 
Our findings align with converging literature suggesting that

he SA-axis is a fundamental principle of large-scale brain orga-

ization, capturing patterns of anatomical and functional organi-

ation ( Huntenburg et al., 2017 ; Hutchinson and Barrett, 2019 ;

argulies et al., 2016 ; Raut et al., 2021 ; Sydnor et al., 2021 ). Previous

tudies have reported that the strongest functional connections place the

ensorimotor and association cortices on opposing ends of a connectivity

pectrum ( Golland et al., 2008 ; Margulies et al., 2016 ; Mesmoudi et al.,

013 ). Notably, our analysis revealed the SA-axis as the principal gradi-

nt also across a full range of connectivity thresholds, including connec-

ivity values that can be assumed to describe only intermediate and weak

onnectivity. This suggests that also the topography of more loosely cou-
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Fig. 5. The principal gradients of intermediate connections capture individual differences, and (A) demonstrate an increased ability to identify individuals. (B) 

Intraclass correlation between the principal gradients of different connectivity bins emphasizes the distinct topographical patterns of intermediate connections, and 

their reliability across sessions. C-E) Leveraging the principal gradients of intermediate connections as features can improve the prediction of Sex, Age, and full-scale 

intelligence quotient (FSIQ). 
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led, typically disregarded, connections are not randomly distributed,

ut are spatially organized along the SA-axis. Previous studies have em-

hasized the strength of weak ties in the functional organization of the

rain ( Gallos et al., 2012 ; Goulas et al., 2015 ; Santarnecchi et al., 2014 ),

nd the observed ubiquitous SA-axis could indicate an underlying or-

anizational principle that facilitates efficient information flow in the

omplex system that the brain is. It is worth noting that in our analyses,

he intrinsic similarities of connectivity profiles have always resulted

n a fully connected graph, regardless of the chosen connectivity level.

his interconnectedness across different thresholds could further reflect

 more global, underlying organizational principle of the brain that is

haped by relative connectivity ranks rather than connectivity strengths

s usually measured with static linear correlation. Also, our findings

ere similar for data with and without GSR, emphasizing the stability

f the relative connectivity ranks in the connectome. It is important to

ote that GSR changes connectivity values, increasing the amount of

egative connections. Thus, here, weaker and intermediate connections

efer primarily to connections at more intermediate positions rank-wise

long the connectivity spectrum ranging from the most negative to most

ositive functional connections. 

The tendency of the top- and bottom-ranked functional connections

o exhibit the greatest similarity in topographical patterns draws atten-

ion to the presence of a “common friends - common enemies ” organiza-

ion for the SA-axis. Initially formulated as the structural balance theory

n the context of complex social networks ( Cartwright and Harary, 1956 ;

acchetti et al., 2011 ), this phenomenon has recently been used to char-

cterize the stability of functional brain networks ( Saberi et al., 2021 ).

he topographical similarity between top- and bottom-ranked connec-

ions emphasizes the central position of the SA-axis in the brain’s func-

ional architecture, and attributes it a crucial role for functional in-

egration and segregation - as previously demonstrated for executive

unction ( Pines et al., 2022 ). Recent work in the area of autism, where
9 
n impaired structural balance of resting-state networks was associated

ith reduced functional integration and segregation ( Hong et al., 2019 ;

oradimanesh et al., 2021 ), highlights the potential relevance of un-

erstanding abnormalities associated with psychiatric illnesses. 

In contrast to the SA-axis, the somatomotor-visual and task-negative

o task-positive gradients were more variable across connectivity

trengths. The somatomotor-visual gradient was not well delineated at

ower connectivity thresholds, and only with increased threshold values

id the segregation between somatomotor and visual networks along the

radient axis become evident. This emphasizes that this gradient is de-

endent on stronger, more local connections, which are a key feature of

he unimodal cortex ( Sepulcre et al., 2010 , 2012 ). Additionally, the task-

egative to task-positive gradient appeared similar only at the extremes,

hile it differed across intermediate connectivity thresholds, under-

coring the antagonistic characteristic of these two systems ( Fox et al.,

005 ). Taken together, the diverging representations of other gradients

ighlight the apparently central nature of the SA-axis in the functional

rganization of the brain. Our findings suggest that this central role

s seemingly the pinnacle of evolutionary and developmental processes

hat shape the functional organization across lifespan ( Bethlehem et al.,

020 ; Dong et al., 2021 b; Larivière et al., 2020b ; Nenning et al., 2020 ;

ia et al., 2022 ) and species ( Huntenburg et al., 2021 ; Xu et al., 2020 ).

Despite its omnipresence, the principal gradient showed a pattern

f variation across the connectivity strengths that, consistent with pre-

ious approaches, delineated both association and sensorimotor clus-

ers ( Golland et al., 2008 ; Mesmoudi et al., 2013 ). Our analysis re-

ealed a variational cluster that systematically separated them across

ortex and subcortex, emphasizing the gradual transition between the

pex and nadir of the SA-axis ( Margulies et al., 2016 ; Sydnor et al.,

021 ). Notably, the cluster configuration followed individual structural

eatures such as myelination (T1w/T2w ratio) and cortical thickness,

inting at an underlying microstructural mechanism for less consistent
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onnections. At intermediate connections the association cortex and at-

ention networks had more similar gradient coefficients. This indicates

n increased integration between higher-order brain regions and their

ordering areas, characterizing an individual-specific functional topog-

aphy. Brain regions with variable connectivity across individuals are

ypically located on the border of core networks and have been acknowl-

dged to reflect individual differences ( Adelstein et al., 2011 ; Di Martino

t al., 2009 ; Mennes et al., 2010 ; Seitzman et al., 2019 ). Our findings

eflected this pattern and conceptually extended it with the observation

f meaningful variation along the principal gradient across intermediate

onnectivity thresholds. Also, the spatial pattern of vertices that are rel-

vant for the improved microstructure-gradient correlation at interme-

iate thresholds closely resembles the topography of intrinsic timescales

 Raut et al., 2020 ). This further suggests that the connectivity structure

f more loosely coupled connections is meaningful. 

Intriguingly, the variation along network borders also relates to re-

ent portrayals of the spatiotemporal structure of the brain. Specifically,

o-called traveling waves, which slowly propagate along the principal

radient from the sensorimotor towards the association cortex, show the

ighest variability in their propagation dynamics at the boundaries of

igher-order brain regions ( Raut et al., 2021 ). These boundaries were

lso observed in the spatiotemporal patterns that underlie a multitude

f static and dynamic connectivity findings ( Bolt et al., 2022 ), - ap-

earing to reflect a transition between two opposing cortical systems

 Mennes et al., 2010 ). On a participant-level, regions in those bound-

ries are often affiliated with higher-order networks ( Seitzman et al.,

019 ), suggesting an individualized functional topography that shapes

he inter-individual variability of functional connectivity ( Di Martino

t al., 2009 ; Mueller et al., 2013 ; Xu et al., 2019 ). Our findings fur-

her this notion, suggesting that intermediate connections shape a pat-

ern of integration and segregation between higher-order networks and

heir bordering regions. Additionally, more loosely coupled connections

ight align with the crossover between opposing large-scale anatomi-

al systems that underlie brain organization ( Mesmoudi et al., 2013 ;

eguin et al., 2019 ). 

The predictive modeling analysis reiterated the value and potential

tility of intermediate connections and their topographical pattern. In-

erestingly, we observed only a small variation in the prediction perfor-

ance across the thresholds, and the best performance was obtained by

n ensemble of threshold-specific connectivity features. This suggests

here is meaningful information in all threshold-dependent principal

radients, and that a combination thereof can fully exploit their util-

ty to predict individual-level measures. Also, particularly for the chal-

enging task of predicting FSIQ, the principal gradients of intermediate

onnections had the highest performance, highlighting the relationship

etween the functional topography characterized by those more lenient

hresholds and complex cognitive measures. This challenges the general

ssumption that loosely coupled connections mainly represent noise and

an be omitted without losing valuable information. Also in medicine, a

hift towards personalized medicine has increased interest in individual

ifference measures. Although the potential advantages of more loosely

oupled connections for specific clinical use cases remain to be deter-

ined, more lenient connectivity thresholds could be clinically mean-

ngful beyond diagnosis. For example, characterizing a more complete

ndividual functional network topography could allow functional con-

ectivity analyses to more reliably support outcome prediction. Alter-

tions in a diseased functional connectome might be driven by more sub-

le hypo- or hyper-connectivities, apparent only in more loosely coupled

onnections - which more stringent thresholds could miss. 

The principal gradients of intermediate connectivity levels were re-

iable across sessions and facilitated identifying individuals, which em-

hasize an individual-specific functional topography characterized by

ore variable connections. Such individual-specificity of more loosely

oupled connections appeared to be anatomically rooted and highly as-

ociated with cortical myelination (T1w/T2w ratio) and cortical thick-

ess. While more loosely coupled connections are not the primary
10 
rivers of connectivity differentiation, future work may address how

heir variance relates to low-dimensional representations of the con-

ectome to further characterize phenotypic differences. Taken together,

ur findings suggest that more loosely coupled connections, although

ndividual-specific and more variable, characterize the integration be-

ween higher-order brain networks and their adjacent regions, in par-

icular attention networks, which may be a fundamental principle of

omplex cognitive functions, underscoring the strength of weak ties . 

. Conclusions 

The SA-axis is thought to be a fundamental organizational feature

f the mammalian brain, and our results support and extend its puta-

ive role as a core pillar of cortical organization. The principal gradient

emonstrates a ubiquitous topography across connectivity strengths, in-

icating a “common friends - common enemies ” analogy for functional

rain networks. Along the SA-axis, principal gradients derived from typ-

cally ignored intermediate connectivity strengths are reliable and align

ith underlying individual differences in anatomy. More importantly,

sing the functional organization of intermediate connections enhanced

he prediction of individual variation in cognitive function, suggest-

ng that it is biologically meaningful and could be used as a potential

arker. Future work establishing the utility and limitations of gradients

erived from these more loosely coupled connections within the core SA-

xis in development, disease, and individual differences appears likely

o inform both basic and applied neuroscientific questions. 
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