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MECHANICAL BALANCE LAWS FOR TWO DIMENSIONAL BOUSSINESQ

SYSTEMS

CHOUROUK EL HASSANIEH, SAMER ISRAWI, HENRIK KALISCH, DIMITRIOS MITSOTAKIS,
AND AMUTHA SENTHILKUMAR

Abstract. Most of the asymptotically derived Boussinesq systems of water wave theory for long waves of

small amplitude fail to satisfy exact mechanical conservation laws for mass, momentum and energy. It is
thus only fair to consider approximate conservation laws that hold in the context of these systems. Although

such approximate mass, momentum and energy conservation laws can be derived, the question of a rigorous
mathematical justification still remains unanswered. The aim of this paper is to justify the formally derived

mechanical balance laws for weakly nonlinear and weakly dispersive water wave Boussinesq systems. In

particular, two asymptotic expansions used for the formal and rigorous derivation of the Boussinesq systems
and the same are employed for the derivation and rigorous justification of the balance laws. Numerical

validation of the asymptotic orders of approximation is also presented.

1. Introduction

The propagation of surface water waves is described by the Euler equations of fluid mechanics, which
are accompanied by dynamic boundary conditions at the free surface and the sea floor, as detailed in
[21]. The solutions of the Euler equations also satisfy essential conservation equations, such as those for
mass, momentum, and energy. While the Euler equations are a well-justified model both physically and
mathematically, as indicated in [17], solving them, whether theoretically or numerically, remains a formidable
challenge. This difficulty arises from the fact that the domain in which dependent variables like velocity and
pressure are defined changes over time and is bounded by the unknown free surface.

As a result, numerous approximate models have been developed to approximate solutions of the Euler
equations. These approximations rely on simplification assumptions about the characteristics of the waves
to be described. These assumptions typically give rise to what are known as wave regimes. Two significant
examples of water wave regimes are the small amplitude and long wave regime and the large amplitude,
long wave regime. In both of these regimes, the primary focus is on long water waves, which means that
the waves are considered to have a much greater wavelength compared to the depth of the water. In the
small amplitude regime, the waves are assumed to have small amplitudes in comparison to the water depth,
whereas in the large amplitude regime, there is no restriction on the amplitude of the waves.

In both regimes, formal approximations of the Euler equations are typically referred to as Boussinesq
systems, with the exception of the large amplitude and long wave regime, where these systems are often
termed Serre-Green-Naghdi equations, as mentioned in [17]. This nomenclature stems from the fact that
the initial approximations were first formulated by J. Boussinesq [5] under the small amplitude assumption.
Subsequently, the small amplitude assumption was removed by F. Serre [20] and independently by Green
and Naghdi in [10], who derived equations describing strongly nonlinear and weakly dispersive water waves.
For more comprehensive details, please refer to [17].

The initial approximations of the Euler equations had several theoretical and sometimes practical limita-
tions. Therefore, research efforts were focused on deriving mathematically sound Boussinesq systems that
possess favorable nonlinear and dispersive properties. Building upon Boussinesq’s work, a whole class of
Boussinesq-type systems were derived [3, 4] and were subsequently justified both theoretically and numeri-
cally, as documented in [17, 6, 7, 8, 9, 13, 15]. Since these models find applications in the nearshore zone, it
is imperative to be able to assess their accuracy concerning mass, momentum, and energy balance laws.
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In the one-dimensional case of the Serre equations, balance laws have been estimated using asymptotic
techniques, and it has been established that these balance laws are satisfied by the solutions of the Serre
equations with the same level of accuracy as they approximate the Euler equations, as discussed in [14].
Similarly, for one-dimensional Boussinesq systems, similar estimates were obtained, as documented in [1].

In this paper, we focus on a two-dimensional shallow water wave regime modeled by a set of Boussinesq-
type equations initially presented in [4]. These two-dimensional Boussinesq Equations can be derived from
the Water Waves problem through a straightforward asymptotic expansion based on the potential Φ. They
describe the propagation of long waves with small amplitudes on the surface of an ideal fluid. The motion
of the free surface and the evolution of the velocity field of an incompressible, inviscid, and irrotational fluid
under the influence of gravity is the actual notion of water waves on the surface of an ideal fluid.

After revisiting the derivation of the systems through asymptotic techniques, we conduct an asymptotic
analysis of the mass, momentum, and energy balance laws. Theoretical justifications are provided for these
balance laws, along with the approximations of the velocity field within the systems under consideration.
These justifications are based on error estimates between solutions of the Euler equations and the Boussinesq
systems, assuming identical initial data.

This paper is structured as follows: In Section 3, we provide an asymptotic derivation of the two-
dimensional Boussinesq systems found in [4, 3]. In Section 4, we offer a mathematically rigorous derivation
of the balance laws, expanding significantly on the preliminary work presented in [12, 11, ?]. Additionally,
we conduct an analysis of the errors in the balance laws. We introduce essential theorems to enhance the
understanding of the relationship between the formal derivation of the balance laws and their theoretical
justification. These mechanical balance laws are dependent on the conventional small parameters α and
β, which quantify the nonlinearity and dispersion of the system, respectively. We validate our theoretical
findings numerically in Section 5. The numerically computed errors in mass, momentum, and energy conser-
vation align with the theoretically derived estimates for the propagation of two-dimensional water waves. We
employ linear analysis to elucidate the behavior of the solutions and their adherence to balance laws. Fur-
thermore, our estimation of the solutions of the linearized Boussinesq equations reveals a distinct behavior
of the two-dimensional solutions compared to what is known for one-dimensional problems, as documented
in [21].

2. Notation

We start by introducing some notation. In what follows we denote by X ∈ R2 the horizontal variables
X = (x, y). We denote by α and β the non-linearity and shallowness and parameters respectively given by
(3.5). We use the following notations for the gradient and laplacian:

∇ = (∂x, ∂y)
T , ∆ = ∂2x + ∂2y , ∇X,z = (∂x, ∂y, ∂z)

T , ∇β
X,z = (

√
β∇, ∂z)T .

We denote by ez the upward normal unit vector in the vertical direction, while ∂nu is the upward co-normal
derivative of u. The non-dimensional fluid domain will be defined as

Ωt =
{
(X, z) ∈ R3, 0 ≤ z ≤ 1 + αη(t,X)

}
.

For all a, b ∈ R we write a ∨ b = max{a, b}. We denote by C(λ1, λ2, · · · ) a constant depending on the
parameters λ1, λ2, · · · , and whose dependence on the λj is always assumed to be non-decreasing.

Let p be a constant with 1 ≤ p < ∞ and Lp(R2) the space of all Lebesgue-measurable functions f with
the standard norm

|f |Lp(R2) =
( ∫

R2

|f(X)|pdX
)1/p

<∞.

The space L∞(R2) consists of all essentially bounded, Lebesgue-measurable functions f with the norm

|f |L∞(R2) = ess sup |f(X)| <∞ .

Let f : (−1, 0) 7→ Hs(R2) be a Bochner measurable function. The space L∞Hs = L∞((−1, 0);Hs(R2)) is
endowed with the canonical norm:

|f |L∞Hs = ess sup
z∈(−1,0)

|f(X, z)|Hs(R2) .
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For any real constant s, Hs = Hs(R2) denotes the Sobolev space of all tempered distributions f with the
norm |f |Hs = |Λsf |L2 < ∞, where Λ is the pseudo-differential operator Λ = (1 − ∆)1/2. We denote by
(Hs,k, | · |Hs,k) the Banach space defined by

Hs,k =

k⋂
j=0

Hj
(
(−1, 0);Hs−j(R2)

)
, |u|Hs,k =

k∑
j=0

|Λs−j∂jzu|L2

We denote by Ḣs+1(R2) the topological vector space

Ḣs+1(R2) =
{
f ∈ L2

loc(R2), ∇f ∈ Hs(R2)×Hs(R2)
}
,

equipped with the semi-norm |f |Ḣs+1(R2) = |∇f |Hs(R2).

3. Formal derivation of the Boussinesq systems

We start with the derivation of the a − b − c − d family of Boussinesq systems of [4]. We consider
the domain

{
(x, y, z) ∈ R3,−h0 < z < η(x, y, t)

}
where the parameter h0 represents the undisturbed depth

of the fluid and η(x, y, t) represents the free surface deviation above its rest position. If u(x, y, z, t) =
(u(x, y, z, t), v(x, y, z, t)) denotes the horizontal components and w(x, y, z, t) the vertical component of the
fluid velocity vector field, the assuming an ideal and irrotational flow we can define the velocity potential Φ
as

(3.1) u = ∇Φ, w = Φz ,

where ∇ is the two-dimensional gradient operator ( ∂
∂x ,

∂
∂y ). Then, the Bernoulli equation and the free-surface

boundary condition governing the motion of the fluid are formulated in terms of the potential and the surface
excursion by

(3.2)
Φt +

1
2 (Φ

2
x +Φ2

y +Φ2
z) + gη = 0

ηt +Φxηx +Φyηy − Φz = 0

}
on z = η(x, y, t) ,

where g is is the gravitational acceleration, [21]. The derivation of asymptotic models relies on appropriate
scaling. Here, we use non-dimensional variables:

x̃ =
x

l
, ỹ =

y

l
, z̃ =

z + h0
h0

, t̃ =

√
gh0t

l
,(3.3a)

η̃ =
η

A
, Φ̃ =

h0

Al
√
gh0

Φ ,(3.3b)

where tilde denotes non-dimensional variables, l and A denote a characteristic wavelength and wave am-
plitude. The governing equations and boundary conditions for the fully dispersive and fully non-linear
irrotational water wave problem are given by the Euler equations:

β∇2Φ̃ + Φ̃zz = 0, 0 < z̃ < αη̃ + 1 ,(3.4a)

Φ̃z̃ = 0, z̃ = 0 ,(3.4b)

Φ̃t̃ +
α

2

(
Φ̃2

x̃ + Φ̃2
ỹ +

1

β
Φ̃2

z̃

)
+ η̃ = 0, on z̃ = αη̃ + 1 ,(3.4c)

η̃t̃ + α
[
η̃x̃Φ̃x̃ + η̃ỹΦ̃ỹ

]
− 1

β
Φ̃z̃ = 0, on z̃ = αη̃ + 1 ,(3.4d)

where α and β are measures of nonlinearity and frequency dispersion defined as

(3.5) α =
A

h0
, β =

h20
l2

.

The derivation then follows by considering the following formal asymptotic series expansion of the velocity
potential Φ̃,

(3.6) Φ̃(x̃, ỹ, z̃, t̃) =

∞∑
n=0

z̃nΦ̃n(x̃ .ỹ, t̃) .
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Substituting (3.6) into (3.4a) and the Neumann boundary condition at bottom (3.4b) we obtain a polynomial
in z̃ and requiring the coefficient of each power of z̃ to vanish, we obtain the classical recurrence relation

(3.7) Φ̃n+2 = −β ∇2Φ̃n

(n+ 1)(n+ 2)
, n = 1, 2, 3, · · · .

From (3.1), (3.6) and (3.7) one obtains the expression for velocity potential in the form

(3.8) Φ̃(x̃, ỹ, z̃, t̃) =

∞∑
n=0

(−1)n
z̃2n

(2n)!
βn∇2nf̃ ,

where f̃ = Φ̃(x̃, ỹ, 0, t̃) is the potential evaluated at the bed. Substituting the above expression for Φ̃ into
(3.4c) yields the relation

(3.9) f̃t̃ −
β

2
∆f̃t̃ + η̃ +

α

2
|∇f̃ |2 = O(αβ, β2) .

Differentiating (3.9) with respect to x and y and expressing the equations in terms of the non-dimensional

velocities at the bottom f̃x̃ = ũ, f̃ỹ = ṽ, we have the following equations

ũt̃ + η̃x̃ − 1

2
β∆ũt̃ + α (ũũx̃ + ṽṽx̃) = O(αβ, β2) ,(3.10a)

ṽt̃ + η̃ỹ −
1

2
β∆ṽt̃ + α (ũũỹ + ṽṽỹ) = O(αβ, β2) ,(3.10b)

η̃t̃ + ũx̃ + ṽỹ −
1

6
β (∆ũx̃ +∆ṽỹ) + α ((η̃ũ)x̃ + (η̃ṽ)ỹ) = O(αβ, β2) .(3.10c)

Now we let Ũ , Ṽ are the dimensionless velocities at a dimensionless height θ (0 ≤ θ ≤ 1) in the fluid column.
A formal use of Taylor’s formula shows that

Φ̃x̃|z̃=θ = Ũ = ũ− θ2

2
β∆ũ+

θ4

24
β2∆2ũ+O(β3) ,(3.11a)

Φ̃ỹ|z̃=θ = Ṽ = ṽ − θ2

2
β∆ṽ +

θ4

24
β2∆2ṽ +O(β3) ,(3.11b)

as β → 0. Solving these equations for ũ and ṽ we have that

ũ =

(
1 +

θ2

2
β∆+

5θ4

24
β2∆2

)
Ũ +O(β3) ,(3.12a)

ṽ =

(
1 +

θ2

2
β∆+

5θ4

24
β2∆2

)
Ṽ +O(β3) .(3.12b)

We substitute the relations (3.12a) and (3.12b) into (3.10a), (3.10b) and (3.10c) to obtain

Ũt̃ + η̃x̃ +
β

2
(θ2 − 1)∆Ũt̃ + α

(
Ũ Ũx̃ + Ṽ Ṽx̃

)
= O(αβ, β2) ,(3.13a)

Ṽt̃ + η̃ỹ +
β

2
(θ2 − 1)∆Ṽt̃ + α

(
Ũ Ũỹ + Ṽ Ṽỹ

)
= O(αβ, β2) ,(3.13b)

η̃t̃ + Ũx̃ + Ṽỹ +
β

2

[
θ2 − 1

3

](
∆Ũx̃ +∆Ṽỹ

)
+ α

(
(η̃Ũ)x̃ + (η̃Ṽ )ỹ

)
= O(αβ, β2) .(3.13c)

Observing that

Ũt̃ + η̃x̃ = O(α, β) ,(3.14)

Ṽt̃ + η̃ỹ = O(α, β) ,(3.15)

η̃t̃ + Ũx̃ + Ṽỹ = O(α, β) ,(3.16)
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we can write for all λ, µ ∈ R

β ∆
[
Ũx̃ + Ṽỹ

]
= λβ ∆

[
Ũx̃ + Ṽỹ

]
+ (1− λ)β ∆

[
Ũx̃ + Ṽỹ

]
= λβ ∆

[
Ũx̃ + Ṽỹ

]
− (1− λ)β ∆η̃t̃ +O(αβ, β2) ,

and also

β ∆Ũt̃ = µβ ∆Ũt̃ + (1− µ)β ∆Ũt̃

= µβ ∆Ũt̃ − (1− µ)β ∆η̃x̃ +O(αβ, β2) ,

and similarly,
β ∆Ṽt̃ = µβ ∆Ṽt̃ − (1− µ)β ∆η̃ỹ +O(αβ, β2) .

Substitution of these relations into (3.13a)–(3.13c) leads to the following general a− b− c− d Boussinesq
system

Ũt̃ + η̃x̃ + α
(
Ũ Ũx̃ + Ṽ Ṽx̃

)
+ βa∆η̃x̃ − βb∆Ũt̃ = O(αβ, β2) ,(3.17a)

Ṽt̃ + η̃ỹ + α
(
Ũ Ũỹ + Ṽ Ṽỹ

)
+ βa∆η̃ỹ − βb∆Ṽt̃ = O(αβ, β2) ,(3.17b)

η̃t̃ + Ũx̃ + Ṽỹ + α
(
(η̃Ũ)x̃ + (η̃Ṽ )ỹ

)
+ βc∆

(
Ũx̃ + Ṽỹ

)
− βd∆η̃t̃ = O(αβ, β2) .(3.17c)

where

(3.18)

a =
1

2
(1− θ2)µ, b =

1

2
(1− θ2)(1− µ),

c =
1

2

(
θ2 − 1

3

)
λ, d =

1

2

(
θ2 − 1

3

)
(1− λ) .

After neglecting the high-order terms and writing the variables in dimensional form system (3.17a)–(3.17c)
is written as

Ut + gηx + (UUx + V Vx) + gh20a∆ηx − h20b∆Ut = 0 ,(3.19a)

Vt + gηy + (UUy + V Vy) + gh20a∆ηy − h20b∆Vt = 0,(3.19b)

ηt + h0 (Ux + Vy) + ((ηU)x + (ηV )y) + h30c∆(Ux + Vy)− h20d∆ηt = 0 .(3.19c)

Remark 1. One should note that by introducing another parameter ν, the system (3.17a),(3.17b),(3.17c)
can be generalized to the a− b− a1 − b1 − c− d system

Ũt̃ + η̃x̃ + α
(
Ũ Ũx̃ + Ṽ Ṽx̃

)
+ βa∆η̃x̃ − βb∆Ũt̃ = O(αβ, β2) ,

Ṽt̃ + η̃ỹ + α
(
Ũ Ũỹ + Ṽ Ṽỹ

)
+ βa1∆η̃ỹ − βb1∆Ṽt̃ = O(αβ, β2) ,

η̃t̃ + Ũx̃ + Ṽỹ + α
(
(η̃Ũ)x̃ + (η̃Ṽ )ỹ

)
+ βc∆

(
Ũx̃ + Ṽỹ

)
− βd∆η̃t̃ = O(αβ, β2) ,

where

a1 =
1

2
(1− θ2)ν, b1 =

1

2
(1− θ2)(1− ν).

Choosing distinct parameters µ and ν could be of interest when studying waves in the nearshore, where the
dominant wave direction is approximately normal to the shoreline. However, in the present work, we will
stick to the four-parameter system (3.17a),(3.17b),(3.17c) for the sake of tidiness.

In order to compute the associated mass, momentum and energy densities and fluxes, we need expressions
for the velocities and pressure. The velocity field can be easily computed using (3.11a)–(3.11b). The
expression for the pressure is obtained from Bernoulli’s equation,

(3.21) Φt +
1

2
|∇X,zΦ|2 = −P

ρ
− gz + C .
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We can find the constant C by evaluating the previous equation at the free surface z = η. Specifically, we
find

(3.22) C =
Patm

ρ
,

where Patm refers to the atmospheric pressure. We introduce the dynamic pressure with the equation

(3.23) P ′ = P − Patm + ρgz ,

which can be scaled using a typical wave amplitude by ρgAP̃ ′ = P ′, then

P̃ ′ = −Φ̃t̃ −
1

2
α(Φ̃2

x̃ + Φ̃2
ỹ)−

1

2

α

β
(Φ̃2

z̃)

= −f̃t̃ + β
z̃2

2
∆f̃t̃ −

α

2

[
f̃2x̃ + f̃2ỹ

]
+O(αβ, β2) .

If we use the relation (3.9) and recall the relation f̃x̃x̃t̃ + f̃ỹỹt̃ = Ũx̃t̃ + Ṽỹt̃ +O(β), then the scaled dynamic
pressure becomes

(3.24) P̃ ′ = η̃ +
1

2
β(z̃2 − 1)[Ũx̃t̃ + Ṽỹt̃] +O(αβ, β2) .

The total pressure in-terms of dimensional variables is then given by

(3.25) P = Patm − ρg(z − η) +
ρ

2

[
(z + h0)

2 − h20
]
(Uxt + Vyt) +O(αβ, β2) .

The following section is devoted to a mathematically rigorous approach to understanding the validity of
the two-dimensional Boussinesq system as an approximation of the the water-wave problem represented by
the Euler equations (3.4) with a particular focus on justifiying approximate mass, momentum and energy
balance laws similar to those presented in [1], [2], [14].

4. Rigorous approach to balance laws

As we showed in the previous section, appropriate assumptions on the respective magnitude of the param-
eters α and β, lead to the derivation of (simpler) asymptotic models from the Euler equations. The Stokes
number

S =
α

β
,

is introduced in order to quantify the applicability of the equation to a particular regime of surface water
waves. For the Boussinesq regime, the Stokes number is usually considered to be of order 1. Here, for
the sake simplicity, we assume that the Stokes number is equal to 1 (α = β), so that we can work with a
single small parameter α or β. Throughout this section we will denote by O(βn), with n ∈ N any family

of functions (fβ)β∈]0,1[ such that
1

βn
fβ remains bounded in L∞([0, Tβ ], H

r), for all β ≪ 1 and for possibly

different values of r. It is noted that in the sequel we consider the Zakharov-Craig-Sulem formulation of the
Euler equations. Specifically, we consider the Euler equations in terms of the Dirichlet-Neumann operator
as follows :

(4.1)


η̃t̃ −

1

β
Gβ [βη̃]ψ = 0 ,

ψt̃ + η̃ +
β

2
|∇ψ|2 − [Gβ [βη̃]ψ + β2∇η̃ · ∇ψ]2

2(1 + β3|∇η̃|2)
= 0 .

Given a solution of this system, we reconstruct the potential Φ̃ by solving the Laplace equation (4.2) below.
More precisely, we introduce the trace of the velocity potential at the free surface, defined as

ψ = Φ̃|z̃=1+βη̃
,

and the Dirichlet-Neumann operator Gβ [βη̃]· as

Gβ [βη̃]ψ = ∂z̃Φ̃|z̃=1+βη̃
,
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with Φ̃ solving the boundary value problem

(4.2)


β∂2x̃Φ̃ + β∂2ỹΦ̃ + ∂2z̃ Φ̃ = 0 ,

∂nΦ̃|z̃=0
= 0 ,

Φ̃|z̃=1+βη̃
= ψ .

We look for an asymptotic expansion of Φ̃ of the form

(4.3) Φ̃app =

N∑
j=0

βjΦ̃j .

Plugging this expression into the boundary value problem (4.2) one can cancel the residual up to the order
O(βN+1) provided that

(4.4) ∂2z̃ Φ̃j = −∂2x̃Φ̃j−1 − ∂2ỹΦ̃j−1, j = 0, · · · , N ,

(with the convention that Φ̃−1 = 0), together with the boundary conditions

(4.5)

{
Φ̃j|z̃=1+βη̃

= δ0,jψ ,

∂z̃Φ̃j|z̃=0
= 0 ,

j = 0, · · · , N ,

(where δ0,j = 1 if j = 0 and 0 otherwise). Solving equation (4.4) with the boundary conditions (4.5) as in
[16] one finds

Φ̃0 = ψ ,

Φ̃1 = −1

2
z̃2∆ψ +

1

2
∆ψ + βη̃∆ψ +

1

2
β2η̃2∆ψ

Φ̃2 =
1

24
z̃4∆2ψ − 1

4
z̃2∆2ψ +

5

24
∆2ψ +

5

6
βη̃∆2ψ − 1

2
βz̃2∆η̃∆ψ +

1

2
β∆η̃∆ψ

− βz̃2∇η̃ · ∇∆ψ + β∇η̃ · ∇∆ψ − 1

2
βz̃2η̃∆2ψ +O(β2) .

4.1. Preliminary Results. We first present results related to the formal approximations of the velocity
potential. These results are necessary ingredients not only for the justification of the derivation of the
Boussinesq systems but also of the justification of the mechanical balance laws that we will derive in the
next section.

We denote by Φ̃Asym, the formally defined potential in Section 3, and we begin by decomposing Φ̃Asym

into two parts; a finite part P series and a remainder term Rseries,

Φ̃Asym :=

∞∑
n=0

(−1)n
z̃2n

(2n)!
βn∇2nf = P series +Rseries ,

where

(4.6) P series := f − β
z̃2

2
∆f + β2 z̃

4

24
∆2f ,

and

f := Φ̃|z̃=0 .

We can consider the following choice of f :

(4.7) f = ψ + β
1

2
∆ψ + β2 5

24
∆2ψ + β2η̃∆ψ .

Remark 2. Note that our choice for f turns out to be well justified (up to order β3) using the following
definition:

(4.8) Φ̃app|z̃=0 = ψ + β
1

2
∆ψ + β2 5

24
∆2ψ + β2η̃∆ψ +O(β3) .
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Using the new notation ũ = fx̃ and ṽ = fỹ, we easily verify the following expressions:

(4.9) P series
x̃ = ũ− z̃2

2
β∆ũ+

z̃4

24
β2∆2ũ ,

and

(4.10) P series
ỹ = ṽ − z̃2

2
β∆ṽ +

z̃4

24
β2∆2ṽ .

Theorem 1. Let (ηEuler, Φ̃) be a regular solution of the Euler system (3.4), such that (ηEuler,∇ψ) ∈
Hs(R2)×Hs(R2) with s large enough. Then, for 0 < t̃ < T/β we have,

|P series − Φ̃app|L∞(Ωt) ≤ Cβ3 ,

where C is uniform with respect to the parameter β.

Proof. We denote by η̃ = ηEuler, and we make use of the following identity

P series = f − β
z̃2

2
∆f + β2 z̃

4

24
∆2f

= ψ + β
1

2
∆ψ + β2 5

24
∆2ψ + β2η̃∆ψ − 1

2
βz̃2∆ψ − 1

4
β2z̃2∆2ψ +

1

24
β2z̃4∆2ψ + ζ

= Φ̃app + h ,

where h = β3ζ and ζ is a function of z̃, η̃ and the derivatives of ψ resulting from the asymptotic expansion
of the potential given by Φ̃app. Looking for solutions to the water-wave equations with ψ in some Sobolev
space would be too restrictive. Therefore, we can assume that the derivatives of ψ belong to some Sobolev
space Hs(R2) with s large enough so that Hs(R2) ↪→ L∞(R2). Using the fact that z̃ is bounded above by
1 + βη̃ and (ηEuler,∇ψ) ∈ Hs(R2)×Hs(R2), we deduce that h = O(β3), and hence the result follows. □

Since we aim in finding a rigorous justification of the formally derived mechanical balance laws for two-
dimensional Boussinesq systems, we must first estimate approximations between the velocities ∇X,zP

series

and ∇X,zΦ̃ as well as for the pressure P̃ ′.

4.2. Flattening the Domain. The aim of this subsection is to present the method of ”flattening the
domain” of [17] so as to normalize the domain of the differential equations. Consider the boundary-value
problem 

β∂2x̃ω + β∂2ỹω + ∂2z̃ω = R in Ωt,

ω|z̃=1+βη̃ = 0,

∂nω|z̃=0 = 0,

(4.11)

where ω and R are smooth functions. Our goal is to give estimates on ω and ωt that justify the results
obtained in theorems 3 and 4. To do that we transform the above system into an elliptic boundary value
problem on a fixed domain. We assume that the water height is always bounded from below. In other words,

∃hmin > 0, ∀X = (x, y) ∈ R2, 1 + βη̃ ≥ hmin.(4.12)

We transform the variable domain Ωt into a flat strip S = R2 × (−1, 0) by introducing the following
diffeomorphism1 (see Figure 1):

Σ : S 7−→ Ωt

(X, z) → Σ(X, z) = (X, (1 + βη̃)z + 1 + βη̃)

1We choose here the most obvious diffeomorphism but there are other choices of regularizing diffeomorphisms that are useful
for obtaining optimal regularity estimates
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Figure 1. The transformation Σ in a two-dimensional setting

Then, the new variables w = ω ◦ Σ and R = R ◦ Σ satisfy the following elliptic boundary-value problem on
the fixed domain S: 

1

1 + ∂z̃σ
∇β

X,z · P (Σ)∇
β
X,zw = R in (−1, 0)× R2

w|z̃=0 = 0

ez · P (Σ)∇β
X,zw|z̃=−1 = 0

(4.13)

Here we use the notation

σ(X, z̃) = βη̃z̃ + 1 + βη̃, P (Σ) = I +Q(Σ), Q(Σ) =

(
∂z̃σI2 −

√
β∇σ

−
√
β∇σT −∂z̃σ+β|∇σ|2

1+∂z̃σ

)
.

Theorem 2. Let R ∈ Hs,0, w ∈ Hs+1,1, s ≥ 0 solution of (4.13) such that assumption (4.12) is satisfied,
then there exists a constant C such that, for some t0 > 2, the following estimate holds

|Λs∇β
X,zw|L2 ≤ C(h−1

min, βmax, |η̃|Hs+1∨t0+1) |ΛsR|L2 ,

where βmax is an upper bound of the shallowness parameter β.

Proof. We briefly state the results, first for the case s = 0. Multiplying the first equation of (4.13) by w and
integrating yields ∫

S

∇β
X,zw · P (Σ)∇β

X,zw =

∫
S

Rw.

Using the coercivity2 of P (Σ) along with Poincaré inequality one gets the following estimate:

|∇β
X,zw|2L2 ≤ C(h−1

min, βmax, |η̃|Ht0+2)|R|L2 |w|L2 ,

≤ C |R|L2 |∇β
X,zw|L2 ,

which proves the theorem for s = 0. The result follows by an induction relation for s > 0. For details of this
argument, the reader may consult [17]. □

Theorem 3. Let (ηEuler, Φ̃) be a regular solution of the Euler system such that (ηEuler,∇ψ) ∈ Hs(R2) ×
Hs(R2) with s large enough. Assume that the total water depth satisfies (4.12). Then, for 0 < t̃ < T/β we
have,

|Φ̃app
x̃ − Φ̃x̃|L∞(Ωt) ≤ Cβ2 ,

|Φ̃app
ỹ − Φ̃ỹ|L∞(Ωt) ≤ Cβ2 ,

|Φ̃app
z̃ − Φ̃z̃|L∞(Ωt) ≤ Cβ2 ,

where C is a constant independent of β.

2The coercivity of P (Σ) follows from the choice of the diffeomorphism, and we have ∀θ ∈ R3, ∀(X, z) ∈ S, ∃K >
0/P (Σ)(X, z)θ.θ ≥ K|θ|2
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Proof. Let ω = Φ̃app− Φ̃. Since Φ̃ is a solution of (4.2) then its asymptotic expansion given by Φ̃app satisfies
β∂2x̃Φ̃

app + β∂2ỹΦ̃
app + ∂2z̃ Φ̃

app = β3r ,

Φ̃app|z̃=1+βη̃ = ψ ,

∂nΦ̃
app|z̃=0 = 0 ,

where r is a regular function in terms of z̃ and the derivatives of ψ.
Moreover, it is evident that

∂nω|z̃=0 = 0 and ω|z̃=1+βη̃ = 0 .

Then ω satisfies the following boundary-value problem:

(4.14)


β∂2x̃ω + β∂2ỹω + ∂2z̃ω = β3r ,

∂nω|z̃=0 = 0 ,

ω|z̃=1+βη̃ = 0 .

Let Σ be the diffeomorphism defined in section 4.2. Using Σ, we transform system (4.14) into a boundary
value problem on a flat strip S = (−1, 0)×R2 and hence it follows by theorem 2 that there exists a constant
C such that:

|Λs∇β
X,zw|L2 ≤ Cβ3 |Λsr|L2 ,

where w = ω ◦ Σ and r = r ◦ Σ. We shall use the fact that Hs−1,1(S) ↪→ L∞((−1, 0);Hs−3/2(R2)) with the
following estimate

|∇β
X,zw|Hs−1,1(S) = |Λs−1∇β

X,zw|L2 + |Λs−1∇β
X,z∂zw|L2

≤ C(h−1
min, βmax, |η̃|Hs+1 , |Q|L∞Hs , |Q|Hs,1 , |∂zQ|L∞Hs)|Λs∇β

X,zw|L2 .

Moreover, for s large enough we have Hs−3/2(R2) ↪→ L∞(R2), therefore by using the above information we
get

|∇β
X,zw|L∞(S) = ess sup

(X,z)∈S

|∇β
X,zw|

≤ |∇β
X,zw|L∞((−1,0);Hs−3/2(R2))

≤ Cβ3.

where C is a constant independent of β. The last estimate remains true on Ωt for ∇β
X,zω. Since, after

changing variables we have

∇β
X,zω = ∇β

X,z

(
w ◦ Σ−1

)
= JT

Σ−1

(
∇β

X,zw ◦ Σ−1
)
,

where the coefficients of the Jacobian matrix JT
Σ−1 are bounded. □

In the following corollary, we justify rigorously the equations (3.11a) and (3.11b),

Corollary 1. Let (ηEuler, Φ̃) be a regular solution of the Euler system (3.4) such that (ηEuler,∇ψ) ∈
Hs(R2)×Hs(R2) with s large enough. Then, for 0 < t̃ < T/β we have,

|Φ̃x̃ − P series
x̃ |L∞(Ωt) ≤ Cβ2 ,(4.15)

|Φ̃ỹ − P series
ỹ |L∞(Ωt) ≤ Cβ2 ,(4.16)

|Φ̃z̃ − P series
z̃ |L∞(Ωt) ≤ Cβ2 .(4.17)

Where C is uniform with respect to the parameter β.

Proof. We proceed by using a triangle inequality followed by previous estimates. In fact, from Theorem 1
we have

P series
x̃ − Φ̃app

x̃ = hx̃,
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where hx̃ = β3ζx̃ and ζ is a function of z̃, η̃ and the derivatives of ψ regular enough. Therefore, for s large
enough such that Hs(R2) ↪→ L∞(R2) with z̃ bounded above by 1 + βη̃, one can write

|Φ̃x̃ − P series
x̃ |L∞(Ωt) ≤ |Φ̃x̃ − Φ̃app

x̃ |L∞(Ωt) + |Φ̃app
x̃ − P series

x̃ |L∞(Ωt)

≤ Cβ2 ,

where C is uniform with respect to the parameter β. Similar considerations apply to the second and third
inequalities. □

4.3. Expression for the pressure. The aim of this section is to find an approximation of the pressure
defined in the context of the Euler equations. We begin with a useful remark derived from the Zakharov-
Craig-Sulem equations, cf. [18].

Remark 3. Let η̃ ∈ Hs+1/2(R2) ∩ Ht0+2(R2) with s ≥ 0, t0 > 1 satisfying (4.12). Then, the following
mappings are continuous:

Gβ [βη̃] : Ḣ
s+1(R2) → Hs−1/2(R2)(4.18)

ψ 7→ Gβ [βη̃]ψ(4.19)

ν[βη̃] : Ḣs+1/2(R2) → Hs−1/2(R2)(4.20)

ψ 7→ [Gβ [βη̃]ψ + β2∇η̃ · ∇ψ]2

2(1 + β3|∇η̃|2)
(4.21)

Theorem 4. Let (ηEuler, Φ̃) be a regular solution of the Euler equations, such that (ηEuler,∇ψ) ∈ Hs(R2)×
Hs(R2) with s large enough. Assume that the total water depth satisfies (4.12). Then, for 0 < t̃ < T/β we
have,

|Φ̃app

t̃
− Φ̃t̃|L∞(Ωt) ≤ Cβ2 ,

where C is independent of β.

Proof. Let (η̃,∇ψ) ∈ Hs(R2)×Hs(R2) with s large enough. As a result of Remark 3 we have,

[Gβ [βη̃]ψ + β2∇η̃ · ∇ψ]2

2(1 + β3|∇η̃|2)
∈ Hs−1/2(R2) .

In fact, this quantity appears in the expression of ψt̃ as shown in system (4.1):

ψt̃ = −η̃ − β

2
|∇ψ|2 + [Gβ [βη̃]ψ + β2∇η̃ · ∇ψ]2

2(1 + β3|∇η̃|2)
.

Hence ψt̃ ∈ Hs−1/2(R2), and for s large enough we have Hs−1/2(R2) ↪→ L∞(R2).

We will use the notation ω = Φ̃app − Φ̃. Then ω satisfies the boundary value problem (4.14). In fact, if we

denote ϕ = Φ̃ ◦ Σ then ϕ satisfies:
∇β

X,z · P (Σ)∇
β
X,zϕ = 0 in R2 × (−1, 0)

ϕ|z̃=0 = ψ

ez · P (Σ)∇β
X,zϕ|z̃=−1 = 0

(4.22)

We look for an approximate solution to the above system of the form

ϕapp =

N∑
j=0

βjϕj .

By replacing ϕapp in (4.22) and canceling higher order terms in β one obtains:

1

H
∂2z̃ϕ0 = 0, ϕ0|z̃=0 = ψ,

1

H
∂z̃ϕ0 = 0,(4.23)
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and for all 1 ≤ j ≤ n, 
1

H
∂2z̃ϕj = −A(∇, ∂z̃)ϕj−1,

ϕj |z̃=0 = ψ,
1

H
∂z̃ϕj = 0.

(4.24)

The operator A(∇, ∂z) is given by

A(∇, ∂z̃)• = ∇ · (H∇•) + ∂z̃(
|∇σ|2

H
∂z̃•)−∇ · (∇σ ∂z̃•)− ∂z̃(∇σ · ∇•),

where H(t,X) = 1 + βη̃(t,X) denotes the water depth and σ(t,X, z̃) = βη̃(t,X)z̃ + (1 + βη̃(t,X)).
Then, ϕ0 = ψ and hence we can write:

ϕ = ψ + h,

where h is function of z̃, η̃ and the derivatives of ψ. Thus, for w = ω ◦ Σ one has wt̃ ∈ Hs−1/2(R2). (One
can choose initially (η̃,∇ψ) ∈ Hs+t0(R2) × Hs+t0(R2) with t0 large enough.) Differentiating (4.13) with
respect to time, and for the sake of brevity (we refer to Lemma 5.4 in [17]) one readily obtains the following
estimate:

|Λs∇β
X,zwt̃|L2 ≤ β3C(h−1

min, βmax, |η̃|Hs+t0 , |∇ψ|Hs+t0 ).

Using the embedding Hs−1,1 ↪→ L∞((−1, 0);Hs−3/2) as in Theorem 3 one obtains the result. □

Theorem 5. Let (ηEuler, Φ̃) be a regular solution of the Euler system such that (ηEuler,∇ψ) ∈ Hs(R2) ×
Hs(R2) with s large enough. Then, for 0 < t̃ < T/β we have,

|P series
t̃ − Φ̃t̃|L∞(Ωt) ≤ Cβ2 ,

where C is uniform with respect to the parameter β.

Proof. The following identity holds (we refer to the proof of Theorem 1 for clarification):

P series = Φ̃app + h ,

where h = O(β3) is a function of z̃, η̃ and the derivatives of ψ. Hence, we can write

P series
t̃ = Φ̃app

t̃
+ ht̃ ,

and we aim to show that ht̃ ∈ Hs−1/2(R2) for s large enough. In fact, from the second equation in system
(4.1) we have

ψt̃ = −η̃ − β

2
|∇ψ|2 + [Gβ [βη̃]ψ + β2∇η̃ · ∇ψ]2

2(1 + β3|∇η̃|2)
.

Then, as a consequence of Remark 3, ψt̃ ∈ Hs−1/2(R2). Moreover, from the first equation in system (4.1)
we have

η̃t̃ =
1

β
Gβ [βη̃]ψ ,

which implies that η̃t̃ ∈ Hs−1/2(R2). Choosing s large enough such that Hs−1/2(R2) ↪→ L∞(R2) and for z̃
bounded from above by 1 + βη̃, we can write:

(4.25) |P series
t̃ − Φ̃app

t̃
|L∞(Ωt) ≤ Cβ2 ,

where C is independent of β. □

The approximation of the pressure term P̃ ′ is given by the following corollary.

Corollary 2. Let (ηEuler, Φ̃) be a regular solution of the Euler system such that (ηEuler,∇ψ) ∈ Hs(R2) ×
Hs(R2) with s large enough. Then, for 0 < t̃ < T/β we have,

|P̃ ′ − Q̃|L∞(Ωt) ≤ C(αβ + β2),(4.26)
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where Q̃ is an approximation of the pressure defined by:

Q̃ = −P series
t̃ − 1

2
α
(
(P series

x̃ )2 + (P series
ỹ )2

)
− 1

2

α

β
(P series

z̃ )2 ,(4.27)

and C is a constant independent of β.

Proof. In fact, the definition of the pressure P̃ ′ is given in section 3 by

P̃ ′ = −Φ̃t̃ −
1

2
α
(
Φ̃2

x̃ + Φ̃2
ỹ

)
− 1

2

α

β
Φ̃2

z̃ ,(4.28)

and thus one has

P̃ ′ − Q̃ =− (Φ̃t̃ − P series
t̃ )− 1

2
α
(
Φ̃x̃ − P series

x̃

)(
Φ̃x̃ + P series

x̃

)
− 1

2
α
(
Φ̃ỹ − P series

ỹ

)(
Φ̃ỹ + P series

ỹ

)(4.29)

− 1

2

α

β

(
Φ̃z̃ − P series

z̃

)(
Φ̃z̃ + P series

z̃

)
.(4.30)

Given that Φ̃ is regular enough and choosing s sufficiently large such that Hs(R2) ↪→ L∞(R2) implies that
∇X,zP

series ∈ L∞(Ωt) and consequently

|∇X,zΦ̃ +∇X,zP
series|L∞(Ωt) ≤ |∇X,zΦ̃|L∞(Ωt) + |∇X,zP

series|L∞(Ωt)

≤ k ,

for some constant k. Hence using the previous estimates, one can deduce the result. □

4.4. Mass balance. In this section, we establish the mass conservation properties of the general family of
the two-dimensional Boussinesq systems (3.17a)–(3.17c), (3.18). The incompressibility of the fluid can be
expressed in the form

ρt +
∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0 ,

which after integration and using Leibniz rule yields

∂

∂t

∫ η

−h0

ρ dz − ρηt +
∂

∂x

∫ η

−h0

ρu dz − ρu|z=ηηx

+
∂

∂y

∫ η

−h0

ρv dz − ρv|z=ηηy +

∫ η

−h0

∂

∂z
(ρw) dz = 0 .

However, without loss of generality we assume that ρ = 1 which simplifies the previous relation. Since the
vertical velocity at the bottom w|(−h0) = 0 and the kinematic boundary condition at the free surface of the
water is ηt +Φxηx +Φyηy − Φz = 0 on z = η(x, y, t) , we have

(4.31)
∂

∂t

∫ η

−h0

dz +
∂

∂x

∫ η

−h0

u dz +
∂

∂y

∫ η

−h0

v dz = 0 ,

or equivalently in non-dimensional variables

(4.32)
∂

∂t̃
(1 + αη̃) +

∂

∂x̃

∫ 1+αη̃

z̃=0

αΦ̃x̃ dz̃ +
∂

∂ỹ

∫ 1+αη̃

z̃=0

αΦ̃ỹ dz̃ = 0 .

Substituting the expressions for Φ̃x̃ and Φ̃ỹ in terms of Ũ and Ṽ gives

(4.33)

∂

∂t̃
(1 + αη̃) +

∂

∂x̃

[
Ũ(α+ α2η̃) +

αβ

2

(
θ2 − 1

3

)
∆Ũ

]
+

∂

∂ỹ

[
Ṽ (α+ α2η̃) +

αβ

2

(
θ2 − 1

3

)
∆Ṽ

]
= O(αβ2, α2β) .

Finally, we obtain the differential balance equation

(4.34) η̃t̃ + Ũx̃ + Ṽỹ + α
[
(Ũ η̃)x̃ + (Ṽ η̃)ỹ

]
+
β

2

(
θ2 − 1

3

)
(∆Ũx̃ +∆Ṽỹ) = O(αβ, β2) .
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From (4.33) the non-dimensional mass density and the non-dimensional mass fluxes are

M̃ = 1 + αη̃ ,

q̃mx
= Ũ(α+ α2η̃) +

αβ

2

(
θ2 − 1

3

)
∆Ũ ,

q̃my = Ṽ (α+ α2η̃) +
αβ

2

(
θ2 − 1

3

)
∆Ṽ .

Thus, the mass balance is

(4.35)
∂

∂t̃
M̃ +

∂

∂x̃
q̃mx

+
∂

∂ỹ
q̃my

= O(αβ2, β3) .

In dimensional variables the quantities in mass balance equation (4.35) are the following:

M = h0 + η ,

qmx = U(h0 + η) + h30
1

2

(
θ2 − 1

3

)
∆U ,

qmy
= V (h0 + η) + h30

1

2

(
θ2 − 1

3

)
∆V .

4.5. Momentum balance. In this section we find an approximate expression for momentum density and
flux. for obtaining momentum balance, we first consider the Euler equation (4.36) and the incompressibility
condition (4.37)

u⃗t + (u⃗ · ∇)u⃗+∇P = g⃗ ,(4.36)

∇ · u⃗ = 0 ,(4.37)

where u⃗ = (u, v, w) represents the velocity field, P (x, y, z, t) represents the pressure and g⃗ = (0, 0,−g)
represents gravitational vector. Writing the Euler equations in terms of the velocity potential u⃗ = ∇Φ we
obtain the equations

Φxt + (Φ2
x)x + (ΦxΦy)y + (ΦxΦz)z + Px = 0 ,

Φyt + (Φ2
y)y + (ΦyΦx)x + (ΦyΦz)z + Py = 0 .

Integrating over a fluid column and using the kinematic boundary condition (3.2) yields

∂

∂t

∫ η

−h0

Φx dz +
∂

∂x

∫ η

−h0

(
Φ2

x + P
)
dz +

∂

∂y

∫ η

−h0

ΦxΦy dz = 0 ,

∂

∂t

∫ η

−h0

Φy dz +
∂

∂y

∫ η

−h0

(
Φ2

y + P
)
dz +

∂

∂x

∫ η

−h0

ΦyΦx dz = 0 .

Expressing the above relations in non-dimensional variables leads to the equations

α
∂

∂t̃

∫ 1+αη̃

z̃=0

Φ̃x̃ dz̃ +
∂

∂x̃

∫ 1+αη̃

z̃=0

{
α2(Φ̃2

x̃) + αP̃ ′ − (z̃ − 1)
}
dz̃ + α2 ∂

∂ỹ

∫ 1+αη̃

z̃=0

Φ̃x̃Φ̃ỹ dz̃ = 0 ,

α
∂

∂t̃

∫ 1+αη̃

z̃=0

Φ̃ỹ dz̃ +
∂

∂ỹ

∫ 1+αη̃

z̃=0

{
α2(Φ̃2

ỹ) + αP̃ ′ − (z̃ − 1)
}
dz̃ + α2 ∂

∂x̃

∫ 1+αη̃

z̃=0

Φ̃x̃Φ̃ỹ dz̃ = 0 .

Substituting non-dimensional velocity potentials Φ̃x̃ and Φ̃ỹ and P̃ ′ in terms of Ũ and Ṽ gives the momentum
balance equations

(4.38)

∂

∂t̃

{
(1 + αη̃)Ũ +

β

2

(
θ2 − 1

3

)
∆Ũ

}
+

∂

∂x̃

{
η̃ + αŨ2 +

α

2
η̃2 − 1

3
β(Ũx̃t̃ + Ṽỹt̃) +

1

2

}
+
∂

∂ỹ
(αŨṼ ) = O(αβ, β2) ,
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(4.39)

∂

∂t̃

{
(1 + αη̃)Ṽ +

β

2

(
θ2 − 1

3

)
∆Ṽ

}
+

∂

∂ỹ

{
η̃ + αṼ 2 +

α

2
η̃2 − 1

3
β(Ũx̃t̃ + Ṽỹt̃) +

1

2

}
+
∂

∂x̃
(αŨṼ ) = O(αβ, β2) .

If the terms of order O(αβ, β2) are neglected, then the momentum balance equations written in dimensional
variables take the following form

∂

∂t

{
(h0 + η)U +

1

2

(
θ2 − 1

3

)
∆U

}
+

∂

∂x

{
h0U

2 +
g

2
(h0 + η)

2 − h30
3
(Uxt + Vyt)

}
+

∂

∂y
(h0UV ) = 0 ,

∂

∂t

{
(h0 + η)V +

1

2

(
θ2 − 1

3

)
∆V

}
+

∂

∂y

{
h0V

2 +
g

2
(h0 + η)

2 − h30
3
(Uxt + Vyt)

}
+

∂

∂x
(h0UV ) = 0 .

4.6. Energy balance. The exact energy balance equation reads

(4.40)
∂

∂t

{
1

2

∣∣∇Φ2
∣∣+ gz

}
+∇ ·

{(
1

2

∣∣∇Φ2
∣∣+ gz + P

)
∇Φ

}
= 0 .

Integrating over the a water column yields

∂

∂t

{∫ η

−h0

1

2
|∇Φ|2 dz +

∫ η

0

gz dz

}
+

∂

∂x

{∫ η

−h0

(
1

2
|∇Φ|2 + gz + P

)
Φx

}
dz

+
∂

∂y

{∫ η

−h0

(
1

2
|∇Φ|2 + gz + P

)
Φy

}
dz = 0 .

Using non-dimensional variables the last equation reads

∂

∂t̃

{∫ 1+αη̃

z̃=0

α2

2

(
Φ̃2

x̃ + Φ̃2
ỹ +

1

β
Φ̃2

z̃

)
dz̃ +

∫ 1+αη̃

z̃=1

(z̃ − 1) dz̃

}

+
∂

∂x̃

∫ 1+αη̃

z̃=0

{
α3

2

(
Φ̃2

x̃ + Φ̃2
ỹ +

1

β
Φ̃2

z̃

)
+ α (z̃ − 1) + α2P̃ ′ + α (1− z̃)

}
Φ̃x̃ dz̃

+
∂

∂ỹ

∫ 1+αη̃

z̃=0

{
α3

2

(
Φ̃2

x̃ + Φ̃2
ỹ +

1

β
Φ̃2

z̃

)
+ α (z̃ − 1) + α2P̃ ′ + α (1− z̃)

}
Φ̃ỹ dz̃ = 0 .

Substituting the expressions for Φ̃x̃ and Φ̃ỹ in terms of Ũ and Ṽ and (3.24) leads to the energy balance
equation

∂

∂t̃

[
1

2
(Ũ2 + Ṽ 2 + η̃2) +

β

2

(
θ2 − 1

3

)
(Ũ∆Ũ + Ṽ∆Ṽ ) +

β

6
(Ũx̃ + Ṽỹ)

2 +
α

2
η̃(Ũ2 + Ṽ 2)

]
+

∂

∂x̃

[
α

2
(Ũ3 + Ṽ 2Ũ) + αη̃2Ũ + η̃Ũ +

β

2

(
θ2 − 1

3

)
η̃∆Ũ − β

3
Ũ(Ũx̃t̃ + Ṽỹt̃)

]
+

∂

∂ỹ

[
α

2
(Ṽ 3 + Ũ2Ṽ ) + αη̃2Ṽ + η̃Ṽ +

β

2

(
θ2 − 1

3

)
η̃∆Ṽ − β

3
Ṽ (Ũx̃t̃ + Ṽỹt̃)

]
= O(αβ, β2) .

Hence, the general form of the energy balance equation is

∂

∂t̃
Ẽ +

∂

∂x̃
q̃Ex

+
∂

∂ỹ
q̃Ey

= O(αβ, β2) .(4.41)

The dimensional form of the quantities are

E =
1

2
h0
(
U2 + V 2

)
+

1

2
h30

(
θ2 − 1

3

)
(U∆U + V∆V )(4.42)

+
1

2

(
U2 + V 2

)
η +

1

6
h30 (Ux + Vy)

2
+

1

2
gη2 ,

and

qEx
=

1

2
h0
(
U3 + UV 2

)
+ gh0ηU +

1

2
gh30

(
θ2 − 1

3

)
η∆U − 1

3
h30U (Uxt + Vyt) + gUη2 ,(4.43)
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qEy
=

1

2
h0
(
V 3 + U2V

)
+ gh0ηV +

1

2
gh30

(
θ2 − 1

3

)
η∆V − 1

3
h30V (Uxt + Vyt) + gV η2 .(4.44)

4.7. On the role of the rigorous approach. Here we justify the terms O(αβ, β2) and O(αβ2, β3) in the
mechanical balance laws by justifying the formal use of Taylor’s formula in (3.11a) and (3.11b). We first
verify that the expressions (3.13a), (3.13b), and (3.13c) hold for an explicit definition of the variable f given
by (4.7).
We focus on finding a common ground between the expressions used in Section 3 with new similar expressions
satisfied by P series

x̃ and P series
ỹ .

In fact, from equations (4.9) and (4.10) one can write up to order O(β3) :

P series
x̃ |z̃=θ = Ũ = ũ− θ2

2
β∆ũ+

θ4

24
β2∆2ũ ,(4.45)

P series
ỹ |z̃=θ = Ṽ = ṽ − θ2

2
β∆ṽ +

θ4

24
β2∆2ṽ .(4.46)

One can verify that f satisfies (3.9) and thus (3.13a), (3.13b), and (3.13c) hold in terms of the variables Ũ

and Ṽ which are now well justified in terms of f and its derivatives. Therefore, giving a rigorous justification
to the formally applied Taylor’s formula used in (3.11a) and (3.11b). This would not have been possible
without using the fact that the approximations in Section 4.1 hold, specifically Corollary 1 and Theorem 5
that bring together the results and ensure that the use of ∇P series, P series

z and P series
t to approximate ∇Φ̃,

Φ̃z and Φ̃t is valid up to order O(β2).

Theorem 6. Let (ηEuler, Φ̃) be a regular solution of the Euler system such that (ηEuler,∇ψ) ∈ Hs(R2) ×
Hs(R2) with s large enough. Then, there exists constants C1, C2, C3, C4 independent of β such that the
following approximate mechanical balance laws are satisfied:∣∣∣ ∂

∂t̃
(1 + αη̃) +

∂

∂x̃

{
Ũ(α+ α2η̃) +

αβ

2

(
θ2 − 1

3

)
∆Ũ

}
+

∂

∂ỹ

{
Ṽ (α+ α2η̃) +

αβ

2

(
θ2 − 1

3

)
∆Ṽ

} ∣∣∣
L∞(R2)

≤ C1(αβ
2 + α2β) ,∣∣∣ ∂

∂t̃

{
(1 + αη̃)Ũ +

β

2

(
θ2 − 1

3

)
∆Ũ

}
+

∂

∂x̃

{
η̃ + αŨ2 +

α

2
η̃2 − 1

3
β(Ũx̃t̃ + Ṽỹt̃) +

1

2

}
+

∂

∂ỹ
(αŨṼ )

∣∣∣
L∞(R2)

≤ C2(αβ + β2) ,∣∣∣ ∂
∂t̃

{
(1 + αη̃)Ṽ +

β

2

(
θ2 − 1

3

)
∆Ṽ

}
+

∂

∂ỹ

{
η̃ + αṼ 2 +

α

2
η̃2 − 1

3
β(Ũx̃t̃ + Ṽỹt̃) +

1

2

}
+

∂

∂x̃
(αŨṼ )

∣∣∣
L∞(R2)

≤ C3(αβ + β2) ,∣∣∣ ∂
∂t̃
Ẽ +

∂

∂x̃
q̃Ex +

∂

∂ỹ
q̃Ey

∣∣∣
L∞(R2)

≤ C4(αβ + β2) ,

where Ẽ, q̃Ex
, and q̃Ey

are given by:

Ẽ =
1

2
(Ũ2 + Ṽ 2 + η̃2) +

β

2

(
θ2 − 1

3

)
(Ũ∆Ũ + Ṽ∆Ṽ ) +

β

6
(Ũx̃ + Ṽỹ)

2 +
α

2
η̃(Ũ2 + Ṽ 2),

q̃Ex =
α

2
(Ũ3 + Ṽ 2Ũ) + αη̃2Ũ + η̃Ũ +

β

2

(
θ2 − 1

3

)
η̃∆Ũ − β

3
Ũ(Ũx̃t̃ + Ṽỹt̃),

q̃Ey
=
α

2
(Ṽ 3 + Ũ2Ṽ ) + αη̃2Ṽ + η̃Ṽ +

β

2

(
θ2 − 1

3

)
η̃∆Ṽ − β

3
Ṽ (Ũx̃t̃ + Ṽỹt̃) .

Proof. We present a full justification only for the first inequality (approximate mass balance). The others
follow by similar substitutions. In fact,

(4.47)
∂

∂t̃
{1 + αη̃}+ ∂

∂x̃

∫ 1+αη̃

z̃=0

αP series
x̃ dz̃ +

∂

∂ỹ

∫ 1+αη̃

z̃=0

αP series
ỹ dz̃ = O(αβ2) .
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We replace P series
x̃ and P series

ỹ by expressions (4.45) and (4.46) as follows

∂

∂t̃
{1 + αη̃}+ ∂

∂x̃

{
αũ(1 + αη̃)− α(1 + αη̃)3

6
β∆ũ+

(1 + αη̃)5

120
αβ2(∆2ũ)

}
+

∂

∂ỹ

{
αṽ(1 + αη̃)− α(1 + αη̃)3

6
β∆ṽ +

(1 + αη̃)5

120
αβ2(∆2ṽ)

}
= O(αβ2).

Substituting ũ and ṽ by their expressions in terms of Ũ and Ṽ given up to order O(β3) by (4.45) and (4.46),
one can write:

∂

∂t̃
{1 + αη̃}+ ∂

∂x̃

{
Ũ(α+ α2η̃) +

αβ

2

(
θ2 − 1

3

)
∆Ũ

}
+

∂

∂ỹ

{
Ṽ (α+ α2η̃) +

αβ

2

(
θ2 − 1

3

)
∆Ṽ

}
= Ξ.

Where,

Ξ =
∂

∂x̃

{
α2β

6
(α2η̃3 + 3αη̃2 + 3η̃ − 3θ2η̃)∆Ũ − αβ2

120
(α5η̃5 + 5α4η̃4 + 10α3η̃3 − 10α3θ2η̃3 + 10α2η̃2

− 30α2θ2η̃2 + 5αη̃ − 30αθ2η̃ + 25αθ4η̃ − 10θ2 + 25θ4 + 1)∆2Ũ

}
+

∂

∂ỹ

{
α2β

6
(α2η̃3 + 3αη̃2 + 3η̃ − 3θ2η̃)∆Ṽ − αβ2

120
(α5η̃5 + 5α4η̃4 + 10α3η̃3 − 10α3θ2η̃3 + 10α2η̃2

− 30α2θ2η̃2 + 5αη̃ − 30αθ2η̃ + 25αθ4η̃ − 10θ2 + 25θ4 + 1)∆2Ṽ

}
+O(αβ2).

Since Ũ and Ṽ can be expressed in terms of η̃ and ψ, hence taking s large enough such that Hs(R2) ↪→
L∞(R2), we get:

Ξ = O(αβ2, α2β).

Replacing P series
x̃ and P series

ỹ by expressions (4.45) and (4.46) once again in

α
∂

∂t̃

∫ 1+αη̃

z̃=0

P series
x̃ dz̃ +

∂

∂x̃

∫ 1+αη̃

z̃=0

{
α2(P series

x̃ )2 + αQ̃− (z̃ − 1)
}
dz̃ + α2 ∂

∂ỹ

∫ 1+αη̃

z̃=0

P series
x̃ P series

ỹ dz̃ = O(αβ, β2) ,

For the approximate momentum balance we give some details on the pressure term,∫ 1+αη̃

0

Q̃ dz̃ = − ∂

∂x̃

∫ 1+αη̃

0

{
P series
t̃ +

1

2
α
(
(P series

x̃ )2 + (P series
ỹ )2

)
− 1

2

α

β
(P series

z̃ )2
}
dz̃

Using the expressions of P series and f given by (4.6) and (3.9) respectively, and then substituting the

expressions of ũ and ṽ in terms of of Ũ and Ṽ given by (4.45) and (4.46), one can write∫ 1+αη̃

0

Q̃ dz̃ =
∂

∂x̃

{
η̃ + αη̃2 − β

3
(Ũx̃t̃ + Ṽx̃t̃) + r′

}
with

r′ =
α2β

2

(
η̃2 +

α

3
η̃3
)
(Ũx̃t̃ + Ṽx̃t̃)−

β2

120
(1 + αη̃)5(∆Ũx̃t̃ +∆Ṽx̃t̃)−

αβ

6
(1 + αη̃)3Ũ∆Ũ +

αβ2

2

(
− θ2

6
(1 + αη̃)3(

(∆Ũ)2 + (∆Ṽ )2 + Ũ∆2Ũ + Ṽ∆2Ṽ
)
+ αθ2

(
η̃2 +

α

3
η̃3
)
(∆Ũx̃t̃ +∆Ṽx̃t̃) +

(1 + αη̃)5

12

(
Ũ∆2Ũ + Ṽ∆2Ṽ

)
+

(1 + αη̃)3

12

(
(∆Ũ)2 + (∆Ṽ )2

))
− αβ

6
(1 + αη̃)3(Ũx̃ + Ṽx̃)

2 +
αβ2

6
θ2
(
(∆Ux̃)

2 + (∆Vx̃)
2 + Ũx̃∆Ṽx̃ + Ṽx̃∆Ũx̃

)
+
αβ2

30
(1 + αη̃)5(Ũx̃ + Ṽx̃)(∆Ũx̃ +∆Ṽx̃)−

β2

6
θ2(∆Ũx̃t̃ +∆Ṽx̃t̃) +O(β3).

The other terms are treated similarly as the terms in the approximate mass conservation equation. □
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5. Numerical validation

In this final section, we present a computational study to gain insight into the approximate conservation
of mass (4.35), momentum (4.38)–(4.39), and energy (4.41) in a practical scenario. We focus on the circular
expansion of water waves originating from an initial localized source.

For this purpose, we numerically solve the Boussinesq system (3.17a)–(3.17c) with θ2 = 9/11, using
periodic boundary conditions within the domainD = [−20, 20]×[−20, 20]. Boussinesq systems corresponding
to different values of θ are asymptotically equivalent to the present system and exhibit similar behavior. Our
numerical method employs the standard pseudo-spectral approach in combination with the classical four-
stage, fourth-order Runge-Kutta method.

We initiate the simulation with the following initial conditions: η(x, y, 0) = exp(−(x2+y2)/5), u(x, y, 0) =
v(x, y, 0) = 0, for various values of α = β as detailed in Table 1. We numerically integrate up to time T = 10
using a time step of ∆t = 10−4 and a spatial step of ∆x = 0.1. Throughout the computation, we record
values of the discrete quantities (4.35), (4.38)–(4.39), and (4.41).

To discretize the temporal derivatives in these quantities, we employ forward finite differences, while the
spatial derivatives are computed using the fast Fourier transform.

Figure 2. Generation of expanding water waves from a heap of water. The waves are propagating
in a circular pattern with growing radius.

0 10

1

Figure 3. Evolution of the amplitude of the leading expanding wave. The leading wave in the
numerical approximation is shown in blue.

The specific initial condition resembles a mound of water, often observed when an object falls into the
water or when a tsunami is triggered by changes in the bottom topography (for more details, see [19]).
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α = β Mass Momentum Energy
0.05 2.21× 10−5 4.16× 10−3 3.76× 10−4

0.10 1.57× 10−4 8.22× 10−3 1.35× 10−3

0.15 4.99× 10−4 1.21× 10−2 2.84× 10−3

0.20 1.12× 10−3 1.59× 10−2 4.76× 10−3

0.25 2.08× 10−3 1.96× 10−2 7.05× 10−3

0.30 3.43× 10−3 2.33× 10−2 9.67× 10−3

Table 1. Residuals of mass, momentum and energy conservation laws evaluated using the nu-
merical approximation of a solution of the Boussinesq system.

0

4
10

-3

0

0.03

0 5 10

0

0.01

Figure 4. Time development of the residuals (absolute errors) of mass, momentum and energy
balance laws using the numerical approximation of a solution of the Boussinesq system.

Figure 2 illustrates the initial condition and its evolution at T = 10. The initial condition transforms into
a series of expanding waves traveling at varying speeds due to dispersion. Over time, the amplitudes of these
waves decrease as a result of dispersion’s influence. This reduction in amplitude follows a rate proportional
to t−1 due to the radial spreading of the two-dimensional waves [21]. Figure 3 presents the amplitude of the
leading expanding wave, and for a detailed derivation of the decrease rate, we direct interested readers to
[21].

Subsequently, for the specific initial data presented in Figure 2, the computed residuals of the mass,
momentum, and energy balance laws initially increase but decay over time. The maximum value attained
by each conservation law is listed in Table 1. It’s worth noting that these maximum values were not reached
again, and the residuals appeared to decrease on average. Figure 4 displays the absolute error patterns for
the case where α = β = 0.3; patterns for other cases are quite similar and thus omitted.

A plausible explanation for the decaying of the residuals is that the expanding waves tend to approach
linear waves, as explained in the previous section. These numerical results validate the orders of accuracy
of the balance laws, particularly in the common scenario of dispersive waves generated from a general initial
condition.
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