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Sorbonne Université, 24 rue Lhomond, 75231 Paris cedex 05, France
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Identifying transition paths between distant regions of an energy landscape is an important goal
in statistical and computational physics, with relevant applications in evolutionary biology. We
here consider the case of Potts-like landscapes, in which configurations are made of a large number
of categorical variables, taking A distinct values. We show that, when A ≥ 3, a phase transition
arises, separating a regime in which transition paths connect directly the two edge configurations,
from another regime, where paths can explore the energy landscape more globally to minimize the
energy. This phase transition, controlled by the elasticity of the path, is first illustrated and studied
in detail on a mathematically tractable Hopfield-Potts toy model. We then show that this direct-to-
global phase transition is also found in energy landscapes inferred from protein-sequence data using
Restricted Boltzmann machines.

I. INTRODUCTION

Characterizing transition paths in complex, rugged en-
ergy landscapes is a major goal in statistical physics and
in other fields. In evolutionary biology, for instance,
a fundamental problem is to sample mutational paths
that, starting from a given protein (described as a given
sequence of amino acids) introduce single mutations at
each step, until a known homologous protein is reached,
in such a way that all the intermediate sequences do not
lose their biological activity. Solving this problem would
be crucial to better understand the navigability of fit-
ness landscapes [1]. From a statistical mechanics point
of view, substantial efforts have been done to charac-
terize how systems dynamically evolve in complex, e.g.
glassy landscape to escape from meta-stable local min-
ima to reach lower energy equilibrium configurations. In
this context, recent works have focused on p-spin-like
energy functions with quenched interactions, generally
giving rises to very rugged landscapes [2, 3].

Of particular interest is the case of energy func-
tions E(v) defined over Potts-like configurations v =
(v1, v2, ..., vN ), where the variables vi can take one out
of A categorical values [4]. Consider a path joining two
configurations, hereafter referred to as vstart and vend.
A priori, intermediate configurations along the path can
take any of the AN possible values, which we refer to
as global configuration space below. However, the initial
and final configurations define, for each variable i, (at
most) two categorical values, defining a sub-space with
2N configurations, which we call direct space in the fol-
lowing. The question we address in the present work may
be informally phrased as follows: under which conditions
are good transition paths naturally living in the direct
space rather than in the global one?

This question is of conceptual interest, but has also
practical consequences. Consider again the case of mu-
tational paths joining two protein sequences, see Fig. 1.
Due to the huge number of possible paths in the global
space (A = 20), mutagenesis experiments generally re-
strict to direct paths [5]. However, constraining paths
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to be direct may preclude the discovery of much bet-
ter global paths, involving mutations and their rever-
sions and reaching more favorable regions in the sequence
space (Fig. 1). Whether paths remain direct or explore
the global space will depend on their length, on their
‘elastic’ properties (defined by the mutation process), as
well as on the nature of the energy (minus fitness) land-
scape. While this landscape is a priori unknown a vast
use of data-driven models managed, over the past years,
to capture the relation between protein sequences and
their functionalities. Unsupervised machine-learning ap-
proaches such Boltzmann machines or Variational Au-
toEncoders could be trained from homologous sequence
data. score the sequences, hence defining an empirical
energy, and were in particular shown to be generative,
i.e. they could be used to design novel proteins with
functionalities comparable to natural proteins [6, 7].

In the present article, we investigate the issue of di-
rect vs. global paths in the mean-field framework we
recently introduced [8]. The energy of a path is defined
as the sum of the energies of the intermediate configu-
rations along the path, and of elastic contributions mea-
suring the dissimilarities between successive configura-
tions (Fig. 1). In the simplest setting, the energy corre-
sponds to a Hopfield-Potts model with P patterns, defin-
ing a rank P pairwise coupling matrix between the vi’s.
When N is sent to infinity while keeping P finite, this
path model can be analytically solved using mean-field
theory, with two sets of time-dependent order parame-
ters, where the time t denotes the coordinate along the
path: (1) the average magnetizations mµ

t of configura-
tions along the patterns µ = 1, ..., P ; (2) the overlaps
qt between the configurations vt and vt+1 on the path.
We show that, depending on the stiffness coefficient of
the elastic term acting on qt two regimes can be encoun-
tered. For path under high tension transition paths are
likely to remain confined within the direct space. For
low tension, path are likely to explore the global path to
minimize their energy. The nature of the phase transi-
tion, such as the critical tension and the time-behaviour
of the order parameters are analytically unveiled. Im-
portantly, the mean-field formalism can be transferred
to restricted Boltzmann machines (RBM) trained from
natural protein sequence data [9, 10]. We show that the
same direct-to-global phase transition is found in transi-
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FIG. 1. Mutational paths between two subfamilies in
the sequence landscape associated to a protein fam-
ily. Darker blue levels correspond to increasing values of the
protein fitness. Paths are either direct (green: each site car-
ries the amino acid present at the same position in the initial
or in the final sequence) or global (red: no restriction on
amino acids), making possible the exploration of high-fitness
regions).

tion paths built from such data-driven models.

This paper is organized as follows. In Section II we re-
call the transition-path framework introduced in [8], in
particular the expression of the probability distribution
of paths, and the mean-field free-energy as a function
of the order parameters {mµ

t , qt} for a generic Hopfield-
Potts energy. We also expose how to compute the en-
tropy of transition paths interpolating between the an-
choring (initial and final) configurations. In Section III
we study in detail in the direct-to-global phase transi-
tion in a very simple Hopfield-Potts model with P = 2
non-orthogonal patterns. We apply our mean-field ap-
proach to inferred energy landscapes in Section IV, from
in silico lattice-protein models [11] to benchmark our ap-
proach, and from natural protein sequence data associ-
ated to the WW domain, a short protein domain involved
in signalling [10]. Conclusive remarks can be found in
Section V.

II. TRANSITIONS PATHS: FRAMEWORK AND
MEAN-FIELD THEORY

In this section we recall the general framework for tran-
sition paths introduced in [8]. We start by defining the
probability distribution of mutational paths interpolat-
ing between two sequences. We then consider Hopfield-
Potts models, and describe how to implement mean-field
treatment of this class of models.

A. Mutational paths over sequence space

We aim to describe paths of sequences interpolating
between two fixed targets, vstart and vend, in a landscape
modeled as a probability distribution overN -dimensional
configurations, Pmodel(v). We define a path of T steps as
a set of configurations V = {v1,v2, ...,vT−1}, anchored
at their extremities vstart and vend. The probability of

such a path reads

P[V|vstart,vend] =
1

Zpath

T−1∏
t=1

Pmodel(vt)× (1)

π(vstart,v1)×
T−2∏
t=1

π(vt,vt+1)× π(vT−1,vend) ,

where Zpath ensures normalization and π(v,v′) is the
’transition’ factor that increases with the similarity be-
tween the configurations v,v′. In this context, π plays
the role of an ’elastic’ term pushing the configurations
along the path to be closer as shown in Fig. 1. In prac-
tice, the transition term π(v,v′) is a function of the

overlap between sequences, q(v,v′) = 1
N

∑N
i=1 δvi,v′i . We

write

π(v,v′) = e−NΦ(q(v,v′)) , (2)

where Φ is an energy potential, decreasing with the over-
lap between adjacent configurations along the path, with
a minimal value for q = 1.

The probability of a path can therefore be rewritten
as a Boltzmann distribution P[V] ∝ e−NE(V), where the
path energy E is given by

E(V|vstart,vend) = − 1

N

T−1∑
t=1

logPmodel(vt)+

+ Φ(q(vstart,v1)) +

T−2∑
t=1

Φ(q(vt,vt+1))+

+ Φ(q(vT−1,vend)) (3)

This energy landscape promotes paths of configura-
tions with high scores according to the model under con-
sideration, as well as paths where intermediate config-
urations are not far away from each other in order to
guarantee smoothness in the interpolation. A key role
is played by the potential Φ, which controls the elastic
properties of the path. In [8], we considered two choices
for Φ, defining to different scenarios of mutational dy-
namics along the paths. The first one, denoted by Cont,
make sure that any two contiguous configurations along
the path, vt and vt+1, differ on a bounded (and small)
number of sites. The second choice for Φ is inspired by
Kimura’s theory of neutral evolution [12] and hereafter
called Evo. It enforces a constant dynamical rate for
each site on the configurations, see below.

In the Cont scenario, we aim to build paths that con-
tinuously interpolate between the two target configura-
tions as T growths. Hence, we choose Φ in order to avoid
small overlaps between adjacent sequences, i.e. q � 1
associated to large jumps along the path. More precisely,
we want to enforce that the total number of changes
along the path does not scale linearly with T . To do so we
impose a hard wall condition to the potential: Φ = +∞
if q < qc = 1 − γ/T . This choice allows the path to ex-
plore at most T ×N(1− qc) = γN mutations in T steps.
Defining the Hamming distance between the target con-
figurations vstart and vend as D = N

(
1−q(vstart,vend)

)
,

we see it is sufficient to choose γ > D/N to interpolate
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between the two target configurations. Larger values of
γ will authorize more flexible paths. In practice, we set

ΦCont(q) =
1

T 2|q − qc|
=

1

T 2
∣∣q − 1 + γ

T

∣∣ , (4)

where the 1/T 2 scaling in the potential guarantees the
existence of continuous solution in the large-T limit as
shown in Section III; Other choices of potentials with
hard-wall constraints give similar results.

In the Evo scenario, the potential Φ is chosen to em-
ulate neutral evolution with a certain mutation rate µ.
According to [12], the probability of a site i to be mu-
tated after a time interval ∆t under rate µ is (with A
denoting the number of possible states on each sites)

p6= =
1

A

(
1− exp

(
− A

A− 1
µ∆t

))
, (5)

while the probability of not mutating is p= = 1 − (A −
1)p6=. Setting ∆t = 1, we can now write the transition
probability between two configurations v and v′ having
overlap q as

π(v,v′) = (p=)Nq (p 6=)N(1−q) . (6)

Taking the logarithm of the previous equality, see Eq. (2),
we obtain

ΦEvo(q) = (1− q) ln

(
1 +

A

eµA/(A−1) − 1

)
, (7)

up to an irrelevant additive constant. In the Evo sce-
nario, the partition function Zpath in Eq. (2) is propor-
tional to the transition probability between vstart and
vend under a dynamics driven by random mutations and
selection parameterized by the mutation rate µ and the
fitness function logPmodel.

B. Mean-field theory of Hopfield-Potts paths

While Pmodel can be in principle any distribution over
the configuration space, we herafter focus on a simple
class of Hopfield-Potts models, with energy

E(v) = − 1

2N

M∑
µ=1

N∑
i,j=1

wiµ(vi)wjµ(vj) , (8)

which includes M patterns wiµ(vi). The probability
distribution, Pmodel(v) ∝ exp[−E(v)], can equivalently
be defined as the marginal distribution of a model, whose
energy is a function of the visible configuration v and the
hidden real-valued vector h:

Efull(v,h) = −
∑
i,µ

wiµ(vi)hµ +
N

2

∑
µ

h2
µ. (9)

The partition function Zpath defined in Eq. (2) with
the energy function in Eq. 8 can be computed in the
N → ∞ limit using mean-field theory. To this aim we
define the average projections of v along the patterns

wµ at each step of the path as mµ
t = 1

N

∑
i〈wiµ(vit)〉,

while the average overlap between adjacent sequences
is given by qt = 〈q(vt,vt+1)〉. Here, the average is
computed over the path distribution in Eq. (2), 〈·〉 =∑
V(·) exp(−βE(V))/Zpath(β), where β is an inverse tem-

perature. Using the projections m = {mµ
t } and overlaps

q = {qt} as the order parameters of our model, we can
write the partition function as

Zpath(β) =

∫
dm dq exp

[
Nβ

2

∑
µ,t

(mµ
t )2

−Nβ
∑
t

Φ(qt) +N S(m,q)

]
, (10)

where we have defined the entropy as

S(m,q) =
1

N
log
∑
V

∏
µ,t

δ

(
1

N

∑
i

wiµ(vi,t)−mµ
t

)

×
∏
t

δ

(
1

N

N∑
i=1

δvi,t,vi,t+1
− qt

)
. (11)

Using integral representations of the δ’s, we may express
the entropy as an integral over the auxiliary variables
m̂ = {m̂µ

t } and q̂ = {q̂t}:

S(m,q) =
1

N
log

∫
dm̂

2π/N

dq̂

2π/N
exp [−Nm · m̂−Nq · q̂]

×
∑
V

∏
i

exp

[∑
µ,t

m̂µ
t wiµ(vi,t) +

∑
t

q̂t δvi,t,vi,t+1

]
.

(12)

In the large–N limit we obtain

S(m,q) = min
m̂,q̂

[
−m · m̂− q · q̂ +

1

N

∑
i

logZ1D
i (m̂, q̂)

]
,

(13)
where

Z1D
i =

∑
{vt}

exp

[∑
µ,t

m̂µ
t wiµ(vt) +

∑
t

q̂t δvt,vt+1

]
(14)

is the partition function of a 1D-Potts models with
nearest-neighbour interactions. The auxiliary variables
m̂∗ and q̂∗ therefore fulfill the following set of coupled
implicit equations:

mµ
t =

1

N

∑
i

∂ logZ1D
i

∂m̂µ
t

(m̂∗, q̂∗) ,

qt =
1

N

∑
i

∂ logZ1D
i

∂q̂t
(m̂∗, q̂∗) . (15)

We conclude, according to Eq. (10), that the path free-
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energy is given by

fpath(β) = lim
N→∞

− 1

Nβ
logZpath(β)

= min
m,q

fpath(β,m,q) , (16)

where we have defined the free-energy functional

fpath(β,m,q) = −1

2

∑
µ,t

(mµ
t )2 +

∑
t

Φ(qt)−
1

β
S(m,q) .

(17)
The minimum of fpath is reached in m∗,q∗ solutions of

m̂∗ = βm∗ , q̂∗ = −β Φ′
(
q∗
)
, (18)

which, together with Eq.(15), form a closed set of self-
consistent equations for the order parameters.

From a practical point of view, despite the care
brought in numerically solving these equations a small
disagreement between the left and right hand sides of
Eq.(15) may subsist. As the number of order parame-
ters scales proportionaly to T and M , these inaccuracies
must be taken into account when estimating the entropy
S. To compute the latter we therefore estimate fpath at
different inverse temperatures β and use the identity

S = − dfpath

d(1/β)
. (19)

This procedure gives a more precise estimate of the en-
tropy than directly plugging the values of the order pa-
rameters in Eq.(13).

III. DIRECT-TO-GLOBAL PHASE
TRANSITION IN HOPFIELD-POTTS MODELS

As stated in the introduction, our main purpose is to
understand under which conditions transition paths be-
tween two configurations are direct, i.e. remain confined
to the Potts symbols present in the initial and in the
final configurations anchoring the path, or global, i.e.
possibly exploring favorable regions in the configuration
space. To measure how far a configuration v is from the
direct subspace, we introduce the distance

dDS(v) =
1

N

∑
i

(1− δvstarti ,vi)(1− δvend
i ,vi) . (20)

By definition, dDS vanishes if the configuration is within
the direct subspace, and is strictly positive otherwise. Its
maximal value is 1.

A. The model

We consider a Hopfield-Potts (HP) model with M = 2
patterns and A ≥ 3 states per site (called a, b and c
and so on). We will consider the thermodynamic limit

FIG. 2. Sketch of transition paths in HP models pre-
sented in Sec. III. Direct solutions (in green) linearly inter-
polate in the input space the two minima of the energy land-
scape. The global solutions are pushed away from the direct
ones by the presence of a third minima emerging from the
overlap ω between the two pattern of the model defined in
Eq. 21.

N →∞. The two patterns w are constructed as follows:

w1i(vi) = δvi,a + ω δvi,c ,

w2i(vi) = δvi,b + ω δvi,c , (21)

where ω is a positive parameter. The HP model proba-
bility reads

PHP(v) =
1

ZHP
e
β

2N

∑
i,j w1i(vi)w1j(vj)+w2i(vi)w2j(vj) ,

(22)
where ZHP is the normalisation constant. In this land-
scape, we will focus on paths of configurations start-
ing from vstart = {a, a, a, ..., a} and ending in vend =
{b, b, b, ..., b}. The parameter ω controls the overlap be-
tween the two patterns, along the direction c, which is
outside the direct space. For the sake of simplicity, we
will restrict ourselves to the Cont potential, see Eq.(4).
As the Hamming distance between the two edges of the
path is equal to D = N , the flexibility parameter γ must
be larger than 1.

We study the properties of the transition paths with
mean-field theory, see Section II B. To make the theory
easier to interpret, we will not consider the projections
mµ
t along the patterns wµ (µ = 1, 2) defined above at

different steps t along the paths, but rather the projec-
tions (denoted by m̃µ

t , with µ = 1, 2, 3, along the vectors
δvi,a, δvi,b, ω δvi,c. While introducing an additional order
parameter compared to the number of patterns makes
the computation slightly more lengthy, it offers the ma-
jor advantage to allow for immediate distinction between
direct (m̃3 = 0) and global (m̃3 > 0) paths. With this
choice, we rewrite the free energy of the path as

fpath(β, m̃,q) =
∑
t

(
1

2
(m̃1

t )
2 +

1

2
(m̃2

t )
2 + (m̃3

t )
2+

+ m̃3
t (m̃

1
t + m̃2

t )

)
+
∑
t

(Φ(qt)− qtΦ′(qt))−
1

β
logZ1D ,

(23)
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where

Z1D =
∑
{vt}

exp

[
β

(∑
t

δvt,a(m̃1
t+m̃

3
t )+δvt,b(m̃

2
t+m̃

3
t )+

+ ωδvt,c(m̃
1
t + m̃2

t + 2m̃3
t )− Φ′(qt)δvt,vt+1

)]
(24)

As we shall see, this model undergoes a first order
phase transition in the regime where β × T is large con-
trolled by the overlap between patterns, ω, the length of
the path, T , and the stiffness of the Cont potential, γ.
We will show the existence of a stretched regime when
either T and ω are small or γ is large. In this regime the
minimum of the free energy corresponds to the direct
solution from vstart to vend that one obtains by restrict-
ing the sum in Z1D over the first two colors only. We
will refer to this solution as #dir. If either T and ω are
large or γ is small, a floppy regime arises and #dir is no
longer a minimum of the free energy, and the latter is
minimized by global paths introducing novel mutations
at intermediate steps with non zero value of m̃3

t .

B. Minimization of the path free-energy in the
direct subspace

To understand this phase transition, we first have to
find a solution of the direct problem #2, that is, the set

of parameters {m̃1,dir
t , m̃2,dir

t , qdir
t }. The direct solution is

found by solving the following coupled equations similar
to Eq.(15):

m̃1,dir
t =

1

Zdir
1D

∑
{vt=a,b}

δvt,a e
−βE1D({vt}) , (25)

m̃2,dir
t =

1

Zdir
1D

∑
{vt=a,b}

δvt,b e
−βE1D({vt}) , (26)

qdir
t =

1

Zdir
1D

∑
{vt=a,b}

δvt,vt+1
e−βE1D({vt}) . (27)

where

E1D = −
∑
t

(
m̃1,dir
t δvt,a+m̃2,dir

t δvt,b−Φ′(qdir
t )δvt,vt+1

)
.

(28)
The partition function Zdir

1D is the same as in Eq.(24) with
the sum running over the states a, b only, and m̃3 = 0.

We now derive the analytical expression for the mean-
field solution when T � 1 (remember N was sent to
infinity first). Due to exchange symmetry a↔ b we have

m̃2,dir
t = 1− m̃1,dir

t . We then look for a direct solution of
the form

m̃1,dir
t = m̃

(
τ =

t

T

)
, (29)

where

m̃(τ) =


1 for τ < x̂

1− τ−x̂
1−2x̂ + η(τ) for τ ∈ (x̂, 1− x̂)

0 for τ > 1− x̂
(30)

where x̂ depends on T and the function η(τ) vanishes
at large T ; We will show below that η is of the order of
1/
√
T .

As the number of mutations at each step t is equiva-
lent to the difference in the magnetization m̃1,dir between
steps t and t+ 1, we write

qdir
t = 1− nb. mutations

N
= 1 + m̃1,dir

t+1 − m̃
1,dir
t

= 1 +
1

T
∂τm̃(τ) (31)

to dominant order in T . Hence the overlap order pa-
rameters are fully determined once the magnetization is,
with the explicit expression qdir

t = q(τ = t/T ) and

q(τ) =


1 for τ < x̂

1 + 1
T

(
−1

1−2x̂ + η′(τ)
)

for τ ∈ (x̂, 1− x̂)

1 for τ > 1− x̂ .
,

(32)

Our goal is to inject the above Ansätze into Eq. (27)
and determine the function η and the value of x̂ that
solve the equation at the 0-th order in T . First, we
expect the effective coupling −Φ′(q(τ)) between neigh-
bouring vt, vt+1 in the energy E1D to scale linearly with
the size of the system T . The reason is that, given a
configuration {vt} appearing in the sum of Zdir

1D , every
couple of adjacent sites vt and vt+1 occupying different
states, i.e. for every mutation along the path would pro-
duce an energetic penalty −Φ′(qt)δvt,vt+1

of the order of
T . The partition function will thus be dominated by the
configurations vt = a for τ < x̂ and vt = b for τ > 1− x̂,
that is, by configurations with a single mutation along
the path.

Computing the derivative of the Cont potential, we
obtain −Φ′(q(τ)) = |γ−1/(1−2x̂)+η′(τ)|−2. Therefore,
we expect

γ − 1

1− 2x̂
+ η′(τ) ≡ ξ(τ)√

T
. (33)

The partition function can then be rewritten as

Zdir
1D = T

∫ 1

0

dτ exp

[
βT

(∫ τ

0

dy m̃(y)+

+

∫ 1

τ

dy (1− m̃(y))− 1

ξ(τ)2

)]
(34)

where we explicitly integrate over the reduced ‘time’ τ
at which the a → b mutation occurs. When βT � 1,
the exponential integral in the partition function should
not depend on τ as the mutation may take place with
uniform probability in the interval (x̂, 1− x̂); hence, the
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mutations will happen at different times depending on
the site i. Differentiating the term in factor of βT with
respect to τ we obtain the following differential equation
for τ ∈ (x̂, 1− x̂):

m̃(τ)−
(
1− m̃(τ)

)
− d

dτ

(
1

ξ(τ)2

)
= 0 , (35)

or, equivalently in the large T limit,

1− 2
τ − x̂
1− 2x̂

+ 2
ξ′(τ)

ξ(τ)3
= 0 . (36)

Solving this differential equation leads to

ξ(τ) =

[
1

ξ(x̂)2
− τ2 − x̂2 − (τ − x̂)

(1− 2x̂)

]− 1
2

. (37)

In order to ensure the continuity of Φ′(q(τ)) in τ = x̂,

we choose ξ(x̂) = γ
√
T . Integrating Eq.(33) over τ we

obtain

η(τ)− η(x̂) =
1

T 1/2

∫ τ

x̂

ξ(y)dy +

(
1

1− 2x̂
− γ
)

(τ − x̂) .

(38)
Last of all, upon imposing the boundary condition
η(x̂) = η(1 − x̂) = 0, we also determine x̂ as a func-
tion of γ and of T . In particular, we can expand x̂ for
large T as

x̂ =
1

2
− 1

2γ
− π

2
√
γ3T

+ o
(
T−

1
2

)
. (39)

Consequently, m̃(τ) = m̃∞(τ)+O
(
T−

1
2

)
with m̃∞(τ) =

1 if τ < x̂∞ = 1
2

(
1− 1

γ

)
, m̃∞(τ) = 0 if τ > 1− x̂∞, and

m̃∞(τ) = 1− γ (τ − x̂∞) (40)

if x̂∞ ≤ τ ≤ 1−x̂∞. It is easy to check that Eqs.(25),(27)
are fulfilled at zeroth order by this solution.

The solution above holds as long as x̂ does not hit
the boundary, i.e. provided x̂ > 0. When x̂ = 0, using
Eq.(38) and integrating function ξ, we find that γ has to
satisfy the equation

γ = 1 +
2√
T

arctan

(
γ
√
T

2

)
. (41)

The root of this equation, which we denote by γ∗(T ) is
plotted in Figure 3. We may now conclude:

• If γ < γ∗(T ) we have x̂ = 0: the projection m̃(τ)
is smaller than 1 as soon as τ > 0, see inset in Fig-
ure 3. For such small γ the paths are not flexible
enough and the full ‘time’ T at their disposal is
needed to join the anchoring edges. We call this
regime overstretched. Notice that the boundary
conditions η(x̂ = 0) = 0 in Eq. (38) can be sat-
isfied by fixing the initial value of the function ξ,

FIG. 3. The ‘understretched’ and ‘overstretched’ sub-
regimes for direct paths. The solid black line represents
the root γ∗(T ) of Eq. (41). The three colored dots on the
black dashed line γ = 1.387 correspond to T = 25 (blue), 50
(orange), 150 (green). The blue and green dots respectively
correspond to the overstretched (x̂ = 0, γ < γ∗(T )) and un-
derstretched (x̂ > 0, γ > γ∗(T )) direct regimes. The orange
dot locates the crossover point (γ = γ∗(T )). Inset: Numeri-

cal solutions for m̃1,dir
t with those combinations of parameters

are shown in the inset plot for t/T ≤ 0.24. In the simulations
β = 6.

i.e. ξ(0). In particular, we find

ξ(x̂ = 0) = 2 tan

(√
T (γ − 1)

2

)
. (42)

• If γ > γ∗(T ), we have x̂ > 0. The available num-
ber of intermediate sequences along the path, T ,
is larger than what is actually needed to join the
two edges. A fraction (= 2x̂) of these intermediate
sequences are mere copies of the initial and final
configurations, see inset of Figure 3. We hereafter
call this regime understretched. All the analyti-
cal results reported in Eqs.39,40 are in excellent
agreement with the numerical resolution of the self-
consistent equations for the order parameters, see
Figure 4.

C. The direct-to-global phase transition

The solution #dir we have derived above assumes that
m̃3 vanishes at all time. This assumption is correct as
long as the minimum of the free energy fpath is located
in m̃3 = 0. We compute below the first derivative of the
free energy along the third magnetization m̃3

t :

∂fpath

∂m̃3
t

∣∣∣∣
#dir

= 1− 〈δvt,a + δvt,b + 2ωδvt,c〉1D|#dir
. (43)

By studying the sign of this derivative we will show the
existence of a critical value of ω appearing in the pat-
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FIG. 4. Mean-field solution of the HP model in the understretched regime for direct paths. (a) Numerical solutions

for m̃1,dir
t for different values of T (values showed in legend) compared with the limit solution m̃∞ in Eq.(40) for T →∞ (black

dashed line). (b) Scaling of the difference between m̃1,dir
t computed numerically and m̃∞t for large T . (c) Numerical solutions

for qdirt (solid lines) compared with the respective theoretical estimation (dashed lines) evaluated using x̂ according to Eq.(39).

(d) Numerical estimation of x̂ (black crosses: the value corresponds to the moment m̃1,dir
t becomes < 1) vs. theoretical scaling

from Eq.(39) (blue line). The parameters of the simulations are β = 6, γ = 3.

terns of the HP model, see Eq.(21). This critical value,
hereafter denoted by ωc, separating a regime where the
direct solution is stable (ω < ωc) and a regime where it is
not and the true mean-field solution is global (ω > ωc).

Two classes of competing configurations must be con-
sidered: the direct (dir) ones, which start in vstart = a
and turn into vend = b at some time τ ∈ (x̂, 1 − x̂).;
the global (glob) ones, which start in a then change to
c at some time τ ≡ x ∈ (0, 1/2), then turn into b when
τ = 1 − x. We estimate below the energies Edir and
Eglob corresponding to the two scenarios. In particular,
when Edir < Eglob, the direct configurations dominate
the average on the right hand side of Eq. (43), leading to

∂fpath

∂m̃3
t

∣∣∣∣
#dir

= 0 ∀ t . (44)

Conversely, when Edir > Eglob, we will have

∂fpath

∂m̃3
t

∣∣∣∣
#dir

= 1− 2ω for t ∈ (x, 1− x) , 0 otherwise.

(45)
Hence, the direct solution will be unstable if, in addition,
ω > 1

2 . As we shall check explicitly below this condition
is always met when Edir > Eglob.

1. Understretched regime

The energy of the direct configurations (for T � 1) is
given by:

Edir = −T
(
x̂+

1

2

)
+

1

γ2
, (46)

while the global ones have energy

Eglob(x) =



− T (2x+ ω(1− 2x)) +
2

γ2
for x ≤ x̂

− T
(

2x̂+ 2

∫ x

x̂

dy (1− y − x̂
1− 2x̂

)+

+ ω(1− 2x)− 2

|ξ(x)|2
)

for x ∈ (x̂, 1/2)

(47)
which is minimal for x = x̂ when ω ∈ (1/4, 1) and for
x = 0 when ω > 1. Here the condition Eglob < Edir

provides the critical value of ω for the phase transition:

ωunder
c (γ, T ) =

1

2
+

1

Tγ2(1− 2x̂)
' 1

2
+

1

Tγ
(48)

for large T .

2. Overstretched regime

In the overstretched case, the energy of the direct con-
figurations is given by

Edir = −T
2

+
T

ξ(0)2
, (49)

while the global configurations correspond to energy

Eglob = −Tω +
2T

ξ(0)2
. (50)

Here, ξ(0) is given by Eq.(42). The condition Eglob <
Edir leads to a new critical value for ω:

ωover
c (γ, T ) =

1

2
+

1

4 tan2(
√
T (γ − 1)/2)

. (51)
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FIG. 5. Crossover between direct and global transition
paths in the HP model. (a). Critical line ωc(γ, T ) vs. T
for two values of γ, see Eq.(52). The black dots show the
crossovers for ω = 3

4
. (b) Distance dDS to the direct space

(Top) and (logPHP)/N averaged over intermediate sequences
(Bottom; solid line: global, dashed: direct) vs. path length
T ; same parameters as in (a).

3. Comparison with numerics

Putting together the two regimes studied above, we
find that the transition takes place at

ωc(γ, T ) =

{
ωover
c (γ, T ) for γ < γ∗(T )

ωunder
c (γ, T ) for γ > γ∗(T )

. (52)

The phase diagram in the (ω, T ) plane is shown in Fig-
ure 5 for different values of the flexibility parameter γ.

While the transition formally takes place in the limit
β × T → ∞, a cross-over is observed for finite T and β.
We show in Figure 6 the coincidence of the average log-
likelihoods of intermediate sequences along direct and
global paths at large T for small ω, and the higher quality
of global paths for large ω. Notice that these results are
valid when T is sent to large values while keeping β fixed.
If β is small, e.g. of the order of 1

T , the domination of
global paths on direct paths is due to the larger entropy
of the former. Figure 6 shows that, for small β×T , global
paths are indeed of lesser quality (probability) than their
direct counterparts, even at high ω.

IV. MUTATIONAL PATHS WITH INFERRED
MODELS OF PROTEIN SEQUENCES

In this section, we aim to expand our mean-field anal-
ysis of transition paths to models of protein sequences,
where we use unsupervised machine learning to infer an
energy landscape from homologous sequence data.

FIG. 6. Average log-likelihood along the paths for the
HP model as a function of β × T . Inset plot shows the
average distance to direct space. Symbols stands for different
T (circles for T = 20, diamonds for T = 30 and pluses for T =
40). Green symbols represents direct solutions (which are
of course independent of ω), Red symbols represents global
solutions with ω = 0.4 and maroon symbols represent global
solutions for ω = 0.7. Here γ = 2. For high values of β × T
we see that the global paths for ω < 0.5 converge towards the
direct ones, while, for ω > 0.5, the two classes of paths remain
separated, in agreement with the phase transition shown in
Figure 5.

A. Restricted Boltzmann Machine for landscape
inference

Generally speaking, unsupervised machine learning
applied to protein sequence data aims to reconstruct the
fitness landscape of a protein family as a probabilistic
model Pmodel(v) over the sequences v. Sequences with
high probabilities according to the model are predicted
to have high fitnesses. Given a multi-sequence alignment
(MSA) of homologous proteins of length N and an alpha-
bet of size A = 21 (20 amino acids plus the gap symbol),
an unsupervised model adjusts its internal parameters to
infer the probability distribution that better represents
the data through maximum likelihood approach. We use
Restricted Boltzmann Machines (RBM) as unsupervised
models of protein families [9, 10]. RBMs are bipartite
neural network where the N visible neurons (represent-
ing the amino acid at each site) interact with M hidden
units through the weights matrix w. The joint prob-
ability distribution of visible and hidden configuration
(respectively v and h) is given by
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PRBM(v,h) ∝ exp

(∑
i

gi(vi)+

+
∑
µ

hµIµ(v)−
∑
µ

Uµ(hµ)

)
, (53)

where Iµ(v) =
∑
i wi,µ(vi) is the input to hidden unit µ.

The gi’s and Uµ’s are local potentials acting on, respec-
tively, visible and hidden units, and the wiµ’s are the
interactions between the two layers. The hidden poten-
tials Uµ are chosen among the class of double Rectified
Linear Units (dReLU):

Uµ(h) =
1

2
γµ,+h

2
+ +

1

2
γµ,−h

2
−+ θµ,+h+ + θµ,−h− , (54)

where h+ = max(h, 0) and h− = min(h, 0). All the pa-
rameters of the model are learned by maximizing the pos-

terior distribution
∏P
p=1 Pmodel(vp|w)pprior(w) over the

sequences vp of the MSA of the family using Persistent
Contrastive Divergence [13]. Here, the model probabil-
ity distribution of the sequences is given by the marginal
probability Pmodel(v) =

∫
dhPRBM(v,h) while the prior

distribution over the hyper-parameters accounts for regu-
larization terms. We use below the same models as in [8],
where all necessary information about training and data
can be found.

B. Mean-field theory

Due to the bipartite structure of their interaction
graph, the mean-field theory developed in Section II B
for the Hopfield-Potts model can be easily extended to
the case of RBM. Two differences are: (1) the effec-
tive energy is not a quadratic function of the magne-

tizations mµ
t = 1

N

∑N
i=1〈wiµ(vit)〉 when the hidden po-

tentials U(h) are not quadratic in h; (2) the 1D partition
function now depends on the potentials gi(vi) acting on
the visible units. The expression for the path free energy
is now

fpath(m,q) = −
∑
µ,t

Γµ(mµ
t ) +

∑
t

Φ(qt) −
1

β
S(m,q) ,

(55)
where Γµ(m) = 1

N ln
∫

dh eN mh−Uµ(h) and the entropy
S is given by Eq.(13) with

Z1D
i =

∑
{vt}

exp

(
β
∑
t

gi(vt) +

+
∑
t,µ

m̂µ
t wiµ(vt) +

∑
t

q̂t δvt,vt+1

)
. (56)

Zi can be efficiently estimated through products of A×A-
dimensional transfer matrices, where A is the number of
Potts states. For global paths, A = 21 (20 amino acids
plus the gap symbol), while A = 2 for direct paths.

This mean-field theory is exact when N →∞ [14] and

the numbers of hidden units, M , and of steps, T remain
finite, but it is already an accurate approximation for
some finite-N cases, as will be shown below.

Once the mean-field solution has been determined
through minimization of fpath we can compute any ob-
servable, such as the average frequencies of amino acids
on site i at intermediate step t on the path:

〈δvi,t,a〉 =
∂fpath

∂(βgi,t(a))
=
∑
{vt′}

δvi,t,a

Zi
exp

(
β
∑
t′

gi,t′(vt′)

+
∑
t′,µ

m̂µ
t′ wiµ(vt′) +

∑
t′

q̂t′ δvt′ ,vt′+1

 , (57)

where m̂µ
t = βΓ′µ(mµ

t ) and q̂t = −βΦ′(qt), see Eq.(18).

C. Lattice Proteins

We now apply our mean-field theory to characterise
global and direct paths. We start by considering the
toy-model of Lattice Proteins (LP) [15]. The model con-
siders sequences of N = 27 amino acids that may fold in
one out of ∼ 105 possible 3-dimensional conformations,
defined by all possible self-avoiding walks going through
the nodes of the 3× 3× 3 cubic lattice.

Given a structural conformation S, the probability of
a sequence v to fold into that structure is given by the
interaction energies between amino acids in contact in
the structure (occupying neighbouring nodes on the lat-
tice). In particular, the total energy of sequence v with
respect to structure S is given by

ELP(v|S) =
∑
i<j

cSijEMJ(vi, vj) , (58)

where cS is the contact map (cSij = 1 if sites are in contact
and 0 otherwise), while the pairwise energy EMJ(vi, vj)
represents the amino-acid physico-chemical interactions
given by the the Miyazawa-Jernigan knowledge-based
potential [16]. The probability to fold into a specific
structure is written as

pnat(S|v) =
e−ELP(v|S)∑
S′ e
−ELP(v|S′) , (59)

where the sum tuns over the entire set of folds on the
cubic lattice. The function pnat represents a suitable
landscape that maps each sequence to a score measuring
the quality of its folding.

To test our mean-field theory, we first train a RBM
over sequences sampled from the probability distribution

∝ pβsnat(·|S) for a specific structure S (with βs = 103) us-
ing Monte-Carlo [11]. Then we numerically compute the
MF solutions for paths connecting two far away target
sequence with high pnat for both the global and direct
cases. The trajectories of the inputs mµ

t and of the over-
laps qt reveal which and when latent factors of RBM
enter into play throughout the interpolation between the
initial and final sequences.

Figure 7(a) shows the trajectories of inputs associated
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FIG. 7. Mean-field description of mutational paths in
lattice proteins. (a) Values of two relevant inputs vs. number
t of mutations along paths of length T = 40. Red and green
lines correspond to, respectively, global and direct paths. Pa-
rameters: β = 3, γ = 3.5. In the inset we show the entropy
for the global and direct solutions. (b) Overlap qt (left scale)
and average number of mutations DH = N(1 − qt) (right
scale) between sequences at steps t and t+ 1 vs. t; The dark
line shows qc. (c) Logos of the attached weights wi,µ(v). (d)
Reference structure for the Lattice Protein model.

to the weights in Fig. 7(c) (associated with hidden vari-
able µ = 4 and 14). These two hidden variables are
strongly activated at sites that are in contact in the
tertiary structure of the protein (Figure 7(d)) and are
consequentially relevant for its stability. While the logo
of w4 show that the interaction between sites 2,16,18
and 25 can be realized through electrostatic forces be-
tween charged amino acids [17], w4 tells that contacts
between sites 5,6,11 and 22 can be realized through
disulfide bonds between Cysteines (C). The dynamics
explains how optimal paths exploit Cysteine-Cysteine
interactions (not present in the initial and final se-
quences) in order to maintain the structural stability of
the protein when the signs of the charge along the elec-
trostatic chain are flipped (Fig. 7(a)). The exploration of
favourable regions in the landscape is made possible by
the slightly higher number of mutations between succes-
sive sequences in the former case than in the latter, see
Fig. 7(b). Along global paths, most of the intermediate
mutational steps do not abruptly affect the inputs nor
the probability, with the exception of the bump in the
overlap q at step ∼10, possibly related to the presence of
preparatory mutations for the Cys-related transition in
Fig. 7(a).

Using Eq.(57) we can compute the amino acids fre-
quencies at each site along the path and use this infor-
mation to estimate the average log-likelihood and pnat

at each step. To estimate the pnat we use this frequen-
cies to build an independent site model that approxi-

FIG. 8. Average value of pnat and log-likelihood along
the paths estimated from the mean-field global (red) and
direct (green) solutions shown in Figure 7.

mate the true marginal distribution of sequences, then
we use this model to sample many sequences at a given
step t and compute the average pnat from this samples.
The results shown in Figure 8 confirm very good values
for the probabilities of intermediate sequences along the
path, both for pnat (Figure 8(a)) and for the model PRBM

(Figure 8(b)). We also observe that sequences along the
global paths have substantially higher probabilities than
along direct paths for the values of T and γ considered.

D. Application to WW domain

We apply the above approach to RBM models learnt
from sequence data of the WW family extracted from
public database (PFAM id: PF00397) [18, 19]. WW is a
small protein module with ∼ 30 − 40 amino acids, able
to specifically bind to peptidic ligands. In particular,
we will study paths interpolating between two proteins
known to have different binding activity:

vstart = LPAGWEMAKTSS-GQRYFLNHIDQTTTWQDP ,

vend = LPKPWIVKISRSRNRPYFFNTETHESLWEPP.

vstart was shown to have strong binding affinity to PPxY
(x = any amino acid) motifs [20] (called class I - WW
domains), while vstart binds to pTP or pTS motifs
(p=phosphorylated site) [21] (called class IV - WW do-
mains).

1. Direct-to-global phase transition

Direct-to-global transitions are observed in mutational
paths joining natural WW sequences, see Figure 9. This
figure shows in particular the presence of a cross-over,
when the path length T is kept fixed, between direct and
global solution at a value of γ ∼ 0.92 and another jump
at γ ∼ 1.3, corresponding to the insertion of a novel
mutation outside the direct space.

To further study the difference between direct and
global solutions at different values of γ, we can compute
what and where the first relevant mutations that push
the solutions outside the direct space should be consid-
ered. Differently stated, given a direct path computed
for certain value of length T and potential stiffness γ, we
would like to know what sites will be the first to mutate
outside the direct space immediately after we release the
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FIG. 9. Direct-to-global phase transition in WW
domain. Mean-field estimates of dDS (Left) and of
(logPRBM)/N (Right ; red: global paths, green: direct) vs.
γ for mutational paths of the WW domain of length T = 10.
In all panels β = 3.

FIG. 10. Probability of non-direct amino acids along
direct paths as a function of the step t (x-axis) and of the
sequence site i (y-axis) for the WW domain. Results are
shown for four values of γ, see panels. Parameter: β = 3.

constraint on the path to be direct (i.e. we compute the
mean-field solution only considering as accessible sites
the ones present at the target sequences). To do so, we
use Eq. (57) to compute the frequencies of each amino
acid 〈δvit,a〉 in the global space (where the transfer ma-
trix that defines Z1D

i is of size 21×21) around the direct
solution. Then we compute the probability assigned to
non-direct amino acids at some point by the direct mean-
field solution, pout

DS (i, t), as:

pout
DS (i, t) = 1− 〈δvit,vstart,i〉#dir

− 〈δvit,vend,i
〉#dir

. (60)

Results for different values of γ are shown in Figure 10.
As expected for higher values of γ the interaction poten-
tial ΦCont becomes less stiff and allows the emergence of
more mutations escaping the direct space. In the case
of γ = 1 the Cont potential is stiff enough to allow only
one mutation outside the direct space. In particular
this mutation appears in the middle of the path and
stays until the very end (before returning to the final
state at step 10), showing that the path has to reach
a proper region of the sequence space before engaging
non-direct mutations. The difference between these
global mutations computed on the direct solution and
the global solution is shown in Figure 11, where we used
Eq. (57) to compute the frequencies of each amino acid.
This approach can be useful to improve mutagenesis ex-
periments by suggesting a minimal number of mutations
outside the direct space that can already improve the
quality of the intermediate sequences.

FIG. 11. Logos of the amino-acid frequencies at three
arbitrarily chosen sites along a path of length T = 10 joining
two WW domains. (Top) logos computed using the MF direct
solution; the two amino acids allowed on each site in the direct
subspace are the ones corresponding to vstart and vend. The
other amino acids are candidate for mutations outside the
direct space. (Bottom) logos computed using the MF global
solution. Here γ = 1.6 and β = 3.

2. Entropy of paths

Our mean-field theory allows us to compute other
quantities of interest, such as the number of relevant
transition paths. Knowing the entropy of the distribu-
tion of paths would be useful for example to estimate how
rare the transition between two regions of the sequence
space is. To compute this entropy we follow Eq.(19). In
the case of RBM the latter equation can be written as

Spath = − β
N

∑
i,t

〈gi,t(a)〉+
1

N

∑
i

logZi

− β

N

(
Γ′(m)

∂

∂m̂
− Φ′(q)

∂

∂q̂

)∑
i

logZi . (61)

Estimates of Spath in the Cont and Evo scenarios are
given in Figure 12(a). The first important aspect to be
noted regards the scaling of Spath with the path length
T : while in the Evo scenario the entropy seems to grow
linearly with T , we notice a slower growth T in the Cont
scenario. This behaviour can be understood in the fol-
lowing toy model. We consider a uniform (flat) landscape
Pmodel, without constraint on the final sequence. In the
Evo scenario, it is easy to show that each time step cor-
responds, on average, to a constant number of mutations
whose value depends on µ and on A only. Hence, the en-
tropy is approximately added the logarithm of this num-
ber at each step, and the total entropy will scale linearly
with T . In the Cont scenario, the number of possible
configurations at each step is bounded from above by the
hard wall in ΦCont, defined by the overlap qc = 1− γ/T .
Considering that ΦCont(q > qc)� 1, each sequence along
a path will have on average ρN mutations with respect
to the previous sequence, where ρ = γ/T is the mutation
probability per site. We then estimate the entropy of a
binary variable (mutation or no mutation on each site)
with probability ρ is −ρ log ρ−(1−ρ) log(1−ρ) ' γ

T log T
for large T . Hence, the total entropy (per site) of the
paths of length T is expected to scale as ∼ log T .
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3. Transition and escape probabilities

The partition function in Eq.(16) is computed on the
ensemble of paths fixed at both ends to be equal to se-
quence vstart and vend. One can easily redo the compu-
tation by relaxing one of these constraints. In particular
one can compute the sum over all the paths anchored on
the starting sequence vstart but free to take any config-
uration at the other extremity. We show in Figure 12(a)
the entropies of these partially unconstrained paths for
the Cont and Evo potentials. In the Evo scenario the un-
constrained solution shows lower entropy than the con-
strained one (and the opposite for the Cont scenario).
This arises from the fact that the unconstrained Evo so-
lution in jumps directly from the initial configuration to
the closest minimum of the energy landscape, while the
constrained Evo solution has to interpolate distant tar-
get sequences. The presence of an hard wall potentials
in the Cont scenario forbids both solutions to remain in
the same configurations for long times and then jump di-
rectly to another distant point in sequence space. Hence,
Cont solutions will explore many more different configu-
rations making their entropy higher with respect to their
Evo counterparts. Moreover, since the Cont constrained
solution has to smoothly interpolate between distant re-
gion in such a way that the energy along the path is op-
timized, this makes the number of accessible paths lower
with respect to the unconstrained solution.

Knowledge of the corresponding partially uncon-
strained free energy allows us to compute the probability
to go from vstart to vend in T dynamical steps:

P (vstart → vend|T ) =

∑const.
V e−NE(V;vstart,vend)∑unconst.
V e−NE(V;vstart)

∼
N�1

e−Nf
const.
path (vstart,vend|T )

e−Nf
unconst.
path (vstart|T )

. (62)

This probability acquires an evolutionary interpretation
in the case of the Evo potential. It estimates the proba-
bility to join the two sequences in T steps consisting of
mutations at rate µ (per step) combined with selection
with probability Pmodel. We show in Figure 12(b) the
transition probabilities for the Cont and Evo scenarios.
The Evo scenario shows an optimal length T ∗ for which
the probability is maximised, while, in the Cont scenario,
the transition probability decreases linearly with T . This
may be explained from the fact that the Evo potential
emulates a mutational dynamics in which T ∗ plays the
role of an evolutionary distance between the two edge
sequences. On the contrary the emergence of this opti-
mal T ∗ is forbidden in Cont scenario by the stiffness of
ΦCont, which increases with T .

The framework above can be extended to compute the
probabilities of escaping from some minima of the free
energy corresponding to the starting sequence towards
some region R of the sequence space in T steps. We
define the escape probability through

Pescape(R|T ) = 1− Pstay(R|T ) , (63)

FIG. 12. Entropies and probabilities of transition for
the Cont (left) and Evo (right) potentials. (a) Entropy
Spath of paths as a function of T . (b) Transition probabil-
ity as a function of T . Results are shown for paths joining
the two WW domain wild-type sequences (constrained) and
paths anchored by the starting sequence and free at the other
extremity (unconstrained). Parameters for Evo: µ = 10−4,
β = 1; for Cont: γ = 3, β = 1.

with

Pstay(R|T ) =

∑const.
V e−NE(V;vstart,R)∑unconst.
V e−NE(V;vstart)

∼
N�1

e−Nf
const.
path (vstart,R|T )

e−Nf
unconst.
path (vstart|T )

, (64)

where the sum at the numerator is restricted to the paths
ending in R, while the second sum is constrained only
at the beginning. This leads to two free-energy optimi-
sation problems: one for the constrained paths ensemble
and one for the unconstrained one. Minimizing the free
energy (Eq.(55)) for both scenarios and comparing them
as in the last line of Eq. (64) leads to an estimation of
the escaping probability. In Figure 13 we plot the proba-
bility of remaining in a certain local minima of the WW
domain energy landscape in the Evo scenario. For dif-
ferent values of µ we are able to estimate at which time
an evolving configuration is supposed to escape from the
minima. We observe the existence of a trade-off between
the time and the probability of sojourn in the starting
region depending on the value of µ.

V. CONCLUSION

In the present work, we have focused on the nature
of transition paths in Potts-like energy landscapes in
high dimension N . These paths join two configura-
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FIG. 13. Probability of remaining in (main panel, log.
scale along y-axis) and of escaping from (inset) the
neighborhood of vstart for the WW domain, computed us-
ing Eq.(64) in the Evo scenario (β = 1). Three different
values of the mutation rate µ are considered.

tions through a set of intermediates under two condi-
tions. First, contiguous configurations along the path
should differ little from each other, in a way controlled
by an elastic potential. Second, intermediate configu-
rations should have low energies, or, equivalently, high
probabilities.

We have considered two kinds of elastic potentials.
The Evo potential corresponds to evolutionary paths, i.e.
it mimics random mutations at a constant rate µ [22],
while the Potts-like energy plays the role of the selective
pressure driving the evolution. To avoid local maxima
in the landscape successive intermediate along Evo paths
may occasionally differ by more than the average number
of mutations, µN . To avoid such ‘jumps’ between config-
urations, we have introduced another potential, referred
to as Cont, which uses a hard wall to impose a maximal
number of mutations and ensure a smooth interpolation
between sequences along the path.

Using mean-field theory, we have computed the typ-
ical properties of Evo and Cont paths in two contexts.
The first one, called direct (dir) interpolates between two
edge sequences, assigning on each site along the path one
of the two active states present at the fixed edges. If
the Hamming distance between the two extremities of
the path is D, there are 2D distinct direct intermedi-
ate sequences. The second one, called global (glob), may
introduce novel mutations along the path compared to
the target sequences, allowing for a deeper exploration
of the energy landscape. While global paths can find
better (i.e. with lower energy) intermediate sequences,
they are associated to higher elastic potential energy due
to the fact that global paths are in general longer (in
terms of total number of mutations) than direct paths.
Whether the subspace of direct paths is statistically dom-
inant in the set of all possible global paths depends on
their length and on their flexibility, controlled by the

elastic potential.
In the Cont case, we have unveiled the existence of

a direct-to-global phase diagram controlled by the stiff-
ness of the interacting potential and the total number of
steps of the path, together with the inner structure of the
energy landscape. We have analytically described this
phase diagram for the so-called Hopfield-Potts model,
with only two interaction patterns with projections out-
side the direct subspace of controlable amplitude. We
have analytically located the direct-to-global phase tran-
sition in a low temperature/high length regime as a
trade-off between long, flexible paths with low energy
intermediate configurations and short, stiff paths mini-
mizing the number of mutations to go from one sequence
to another. In this low temperature regime, the direct-to-
global transition is essentially not affected by the number
A of Potts states (colors). Conversely, in the high tem-
perature regime, that is, if the fluctuations of the energy
are smaller than, or comparable to the inverse of the path
length, paths tend to be global due to thermal fluctua-
tions and the entropy of the system will depend on the
total number of accessible state A per site.

From a statistical mechanics point of view, the mean-
field approach followed here computes transition paths
for a given realization of the quenched disorder. This
is made possible by the fact that, formally, the number
M of patterns in the Hopfield-Potts model (or of hidden
units in the RBM) is finite as N →∞. We plan in future
to extend our approach with M scaling linearly with N .
A possible application, in the case of RBM, would be the
so-called compositional phase of [23], where each data
configuration activate a finite number of hidden units.

Last of all, we have tested our method on to data-
driven models of natural proteins, showing how we could
compute different quantities of interest, such as the en-
tropy, i.e. the number of relevant transition paths, the
transition probability between two sequences, and the
escape probability from confined regions of the sequence
space. Future work are definitely needed to improve
our approach, e.g. by considering finite-N fluctuations
around the mean-field theory solution. From an biologi-
cal point of view, understanding the shape and the con-
nectivity of the protein fitness landscape, and its entropy
is of fundamental importance in the field of natural evo-
lutionary processes and also for directed evolution exper-
iments. The motivation is here not only theoretical but
also practical, e.g. to gain intuition on how many ran-
dom sequences can evolve a given functionality under se-
lective pressure. In addition, better characterizing tran-
sition paths could help predict escaping mutations,e.g.
allowing a virus to escape from the control of the im-
mune system, and is therefore of primary importance in
the development of effective drugs or vaccines.
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