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Abstract

Predicting the effects of mutations on protein function is an important issue in evolutionary

biology and biomedical applications. Computational approaches, ranging from graphical

models to deep-learning architectures, can capture the statistical properties of sequence

data and predict the outcome of high-throughput mutagenesis experiments probing the fit-

ness landscape around some wild-type protein. However, how the complexity of the models

and the characteristics of the data combine to determine the predictive performance

remains unclear. Here, based on a theoretical analysis of the prediction error, we propose

descriptors of the sequence data, characterizing their quantity and relevance relative to the

model. Our theoretical framework identifies a trade-off between these two quantities, and

determines the optimal subset of data for the prediction task, showing that simple models

can outperform complex ones when inferred from adequately-selected sequences. We also

show how repeated subsampling of the sequence data is informative about how much epis-

tasis in the fitness landscape is not captured by the computational model. Our approach is

illustrated on several protein families, as well as on in silico solvable protein models.

Author summary

Is more data always better? Or should one prefer fewer data, but of higher relevance to the

task to be performed? Here, we investigate this question in the context of the prediction of

fitness effects resulting from mutations to a wild-type protein. We show, based on theory

and data analysis, that simple models trained on a small subset of carefully chosen

sequence data can perform better than complex ones trained on all available data. Further-

more, we explain how comparing the simple local models obtained with different subsets

of training data reveals how much of the epistatic interactions shaping the fitness land-

scape are left unmodeled.
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Introduction

Predictability of evolution of organisms in fitness landscape has been a driving concept in the

development of evolutionary biology since the origins of the field [1–5]. In particular, our

capability to predict the effects of detrimental mutations has enormous practical impact on the

diagnosis of genetic variances causing diseases [6–10]. This issue can now be quantitatively

investigated, thanks to high-throughput sequencing and mutagenesis experiments, which

allow for in-vivo and in-vitro measurements of the effects of many mutants [1, 5, 11–14, 14–

25]. However, despite the impressive progress of these large-scale techniques, the number of

possible mutations, growing exponentially with the protein length, is so huge that measuring

the fitness landscape in its entirety is out of reach, with the exception of short protein regions

[1]. Computational approaches, in particular machine-learning-based models exploiting the

large corpus of available sequence data [26, 27] are needed for the full reconstruction and pre-

diction of fitness landscapes. Briefly speaking, these methods are based on the assumption that

statistically rare mutations (in homologous sequence data) are likely to be deleterious [6, 28].

Such conservation-based methods can be combined with structural [7, 29], physico-chemical

[8], as well as phylogenetic [30, 31] information.

Graphical Potts models, also called direct coupling analysis (DCA) [32–34], have pushed

further the approaches based on sequence conservation by including statistical couplings cap-

turing pairwise amino-acid covariation. These couplings allow DCA to account for back-

ground effects on the mutations depending on the wild-type (wt) sequence under

consideration. DCA is thought to approximate the fitness landscape reflecting the structural

and functional properties common to homologous proteins. As sketched in Fig 1, natural

sequences are assumed to lie at, or close to the different peaks of the fitness landscape explored

during evolution. The scores of sequences around the wt protein provide predictions for the

effects of single or multiple mutations on fitness, in good agreement with mutational effects

measured through mutagenesis experiments [34–38]. Other approaches for fitness prediction

exploit deep learning (DL) architectures, at the origin of recent progress in image or natural

language processing, as well as in protein folding [9, 10, 39–41]. DL models have much higher

expressive power than pairwise graphical models, but demand massive sequence data to be

trained. Recent applications of DL to protein fitness modelling combine unsupervised learning

of hundreds of millions of sequences with supervised learning of mutagenesis experimental

data [38, 42, 43].

Depending on the protein family under consideration, multi-sequence alignments (MSA)

show huge variations in sizes, with tens to hundred of thousands sequences, and in homology,

ranging from *30%, for alignments of orthologous sequences [27, 37, 44], to 90%, for HIV

sequences of the same clade [35, 45]. The quantity and diversity of the data, as well as the mod-

els considered are empirically known to strongly impact the performances for fitness predic-

tion. As pointed out in [46], classical methods based on homology detection, such as SIFT [6],

PolyPhen-2 [7], Align-GVGD [8], rely on different empirical procedures in selecting the align-

ments, and are not always optimal. Remarkably, single mutations effects are predicted with

comparable accuracy by graphical models inferred from a small number of highly similar

sequences of the HIV envelope protein [35] and from a much larger number of diverse

sequences of Betalactamases, while the two proteins have comparable lengths [37]. Gemme, a

recently introduced algorithm based only on conservation and phylogenetic tracing of muta-

tions [31] was shown to outperform deep neural networks models [39] in predicting the effect

of mutations in viral sequences, all characterized by a large degree of similarity. Furthermore,

the performance of models trained from Uniprot sequences with high pairwise alignment

score to a fixed wt sequence considerably vary with the threshold used for alignment [37, 46].
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These examples suggest the existence of a compromise between taking into account many

sequence data to get statistics and removing far away sequences, whose relation to fitness may

be very different from wt due to complex epistatic effects. This compromise, in turn, depends

on the expression power of the model considered, which can be tuned at will, and on the com-

plexity of the fitness landscape, which is generally unknown. As sketched in Fig 1, on the one

hand, predicting mutations around the wt requires local reconstruction of the landscape only,

a task within reach of simple models with few defining parameters. These models are however

unreliable for sequences far away from the wt sequence; hence, only few data points, concen-

trated around the latter can be actually used for training. On the other hand, powerful models

able to capture the complex features, such as high-order epistasis that characterize the global
fitness landscape on large scales can, in principle, exploit at best sequence data. However, even

if the available data are sufficient to infer their huge number of parameters with enough accu-

racy, it is unclear whether the global description they offer allows for an accurate local recon-

struction of the fitness landscape around the wt protein. The scope of the present work is to

provide theoretical foundation to address this question.

Careful analysis of the different contributions to the prediction error allows us to quantita-

tively understand how fitness prediction performance depend on both model complexity and

on the sequence data, and to estimate the amount of ‘complexity’ in the fitness landscape that

is not captured by the model. Our theory is in full agreement with the analysis of sequence

data and mutagenesis experiments for 7 protein families we have studied. We also validate our

approach in silico on Lattice-Protein models [47–50], for which the ground truth for the fitness

is mathematically well defined. Last of all, we demonstrate how our framework allows us, in

practice, to optimally tune sequence alignments and models to maximize the performance in

fitness prediction.

Fig 1. Schematic visualization of the fitness landscape over the sequence space (green curve). Two models (red and

blue curves) are inferred to assign high fitness values to sequences found in the Multi-Sequence Alignment (MSA) of a

protein family. A complex model (red curve) can be a better predictor of the landscape globally while scoring poorly in

predicting single-point mutations around a specific wild-type sequence, see local fitness landscape in the zoomed area.

Conversely, a simple model (blue line) fitted on a local subset of sequences can give a better local approximation of the

landscape, but will likely fail in distant regions of the fitness landscape.

https://doi.org/10.1371/journal.pcbi.1011521.g001
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Results

Quantity-relevance trade-off in MSA sequence selection

We consider a reference sequence, hereafter referred to as wt. We denote by E ia the variation

of fitness resulting from the mutation wti! a on the ith site of wt. This quantity can be esti-

mated experimentally, either in vivo (relative enrichment of organisms with mutated gene

compared to wt), or in vitro (measurement of appropriate biochemical property).

A computational model provides a predictor, Ê ia, for the difference of fitness between the

mutant and the wt. The overall quality of the predictor will be assessed through the Spearman

coefficient ρ between the mutation effects computed with the model Ê ia and with the experi-

mental data E ia. Using Spearman correlations allows one to capture monotonous relations,

irrespective of non-linearities.

The computational model is generally trained from homologous sequences to wt, i.e.
belonging to the same protein family. The similarities between the wt and these sequences,

sampled from evolutionary diverse organisms, can vary significantly. As an illustration, we

consider the RNA binding domain of the nuclear poly(A)-binding protein (PABPN1),

involved in the synthesis of the mRNA poly(A) tails in eukaryotes [14]. Any two sequences in

the corresponding MSA (as used in [37]) generally have few amino acids in common (mean

Hamming distance -normalized by sequence length- between pairs of sequences in the

MSA = 0.75). As a result, a specific sequence, such as the wt of Saccharomyces cerevisiae, is gen-

erally surrounded by a small number of similar sequences and is far away from most of the

MSA (RNA-bind protein: mean normalized Hamming distance between wt and MSA

sequences = 0.73, Fig 2A; see S1 Fig for similar results on other families).

Hereafter, we show that sequences far away from wt are not relevant for fitness prediction.

To do so we train independent-site Potts models (Methods) on shorter MSAs obtained by dis-

carding sequences further than a certain cut-off distance dcut from wt. As dcut becomes smaller,

fewer sequences with higher proximity are selected (Fig 2A). We see that the performance con-

sistently increases when decreasing the cut-off distance, up to a peak ρ = 0.56 at dcut = 43, a

33% increase with respect to the full MSA (ρ(dcut = 82) = 0.42), see Fig 2B and 2C). After peak-

ing, the performance starts decreasing again due to the increasingly-lower number of

sequences in the MSA, see Fig 2C.

The non-monotonous behavior of the predictive performance indicates that a trade-off

between the number of sequences and their proximity to wt is controlling the predictive per-

formance of the inferred model. To investigate the respective effects of these two quantities, we

create sub-alignments of the original MSA with controlled sizes B (effective number of

sequence taking into account sequence redundancy, see [51] and Methods) and average Ham-

ming distances to wt, which we denote as D. We then test how the performance of the inde-

pendent-site Potts model trained on these sub-alignments relates to these two quantities.

This analysis showed that the predictive performance strongly depends on the mean Ham-

ming distance D and on the number B of sequences (P< 0.001 for all Spearman correlations

between ρ and B or D, Fig 2D). The performance significantly decreases with D at fixed B, i.e.,
when the relevance of the data deteriorates and their quantity is kept fixed, and increases with

B at fixed D, i.e., when the quantity of data increases at fixed similarity with wt. Similar results

are found for the six other protein families under study (see S1 Fig).

Theoretical investigation of the quantity-relevance trade-off

To study the trade-off between relevance and quantity we draw our inspiration from the bias-

variance framework developed in statistics [52, 53]. Let us consider the error Ê ia � E ia between
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the statistical predictor Ê ia and the experimental fitness E ia. This error can be decomposed into

the sum of two contributions: (1) a systematic bias in the prediction, due to the inability of the

model to capture the exact relation between sequence mutation and fitness, (2) a statistical

error coming from the fact that the predictive model has been trained on a particular data set;

the value of this contribution fluctuates when the data set changes, and is expected to be

smaller and smaller for larger and larger data sets.

Consequently, the mean squared error on the single-point mutation wti! a can be written

as the sum of a squared bias and a variance contributions,

ðÊ ia � E iaÞ
2

h i

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
mean squared error

¼ ð½Ê ia� � E iaÞ
2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
squared bias m2

ia

þ
h
ðÊ ia � ½Ê ia�Þ

2
i

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
variance s2

ia

;
ð1Þ

where averages [] are taken on repetitions of the prediction process in fixed conditions (rele-

vance and quantity of data). Notably, these two quantities are hard to minimize together. For

instance, powerful models with many parameters will accurately fit the data and thus achieve

small squared biases m2
ia, but will result in large variances s2

ia due to the statistical errors on the

many parameters to be inferred. As we will see below, we can directly relate our descriptors of

Fig 2. Behaviour of model predictive performance with different selections of training data. A. Distribution of Hamming distances to the wt sequence (RNA-

binding domain of Pab1-Yeast) in the MSA of [37]. Note the log scale on the y axis. The three colored lines correspond to three possible sequence selections performed

by excluding sequences farther than a certain threshold dcut from wt. A smaller dcut corresponds to fewer sequences with a lower mean Hamming distance to the wt,
denoted as D. B Comparison between predicted and experimental fitness mutational effects for an independent-site model trained on the three sub-MSAs

corresponding to, respectively, dcut = 32 (orange), 43 (purple), and 82 (green). The Spearman correlation coefficient ρ between predicted and experimental values

defines the predictive performance of the model. C Same analysis as panel B repeated for all possible cutoffs between dcut = 32 and dcut = 82 (the sequence length). The

non monotonous behavior of the predictive performance indicates that a trade-off between number of sequences (denoted as B) and proximity to wt is controlling the

predictive performance of the inferred model. D. Systematic analysis of the predictive power ρ as a function of the mean Hamming distance D of sub-alignments with

fixed size B (top), and of the sub-alignment size B at fixed Hamming distance D (bottom). Each individual point shows the average over n = 5 sub-samples obtained at

the corresponding values of D and B (see Methods). The dashed curves and error bars are computed by binned average and standard deviation over the displayed

individual points. All significance levels refer to Spearman rank correlation of the individual points. *** P< 0.001.

https://doi.org/10.1371/journal.pcbi.1011521.g002
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relevance (D) and quantity (B) of the sequence data to, respectively, the squared bias and the

variance as defined in (1). Furthermore, we will introduce a class of increasingly powerful

Potts models to investigate the effect of model complexity on these two quantities. In addition

to its theoretical appeal and close connection with the bias-variance decomposition, consider-

ing the mean–squared error is ultimately justified by the empirically observed monotonic rela-

tion with the predictive performance as measured through the Spearman coefficient ρ.

K–link Potts model. We consider hereafter the class of sparse Potts models, which

include K pairwise couplings between the protein sites, Jij(a, b), whose values depend on the

amino acids they carry and a field (position weight matrix) hi(a) on each site; These parameters

are learned from the MSA (Methods). The choice of the K pairs of sites carrying couplings is

decided based on heuristics, which aim at capturing interrelations between the residues

(Methods).

By tuning the value of K, we can interpolate between the independent-site model (K = 0, i.e.
no coupling) and the full Potts model (K ¼ Kmax �

1

2
NðN � 1Þ couplings, where N is the pro-

tein length). Imposing small values of K is a way to regularize the inferred network of interac-

tions. Notice that the number of parameters to be inferred, Npar = NQ + KQ2, where Q = 20 is

the number of amino acids, grows quickly with K since Q2 = 400.

For the K-link Potts model the predictor of the fitness difference resulting from the muta-

tion wti! a reads

Ê ia ¼ hiðaÞ � hiðwtiÞ þ
X

j2N i

�

Jijða;wtjÞ � Jijðwti;wtjÞ
�

; ð2Þ

where the sums runs on the sites j in the neighborhood N i of site i, i.e. coupled to i (Methods).

This neighborhood is empty for the independent-site model.

Estimation of variance. For the Potts model, expressions for the uncertainties on the

inferred fields hi(a) and couplings Jij(a, b) can be formally derived from sampling errors due to

the finite size of the data set. The resulting variance s2
ia of the predictor Ê ia for a specific K-link

model can then be estimated from (2) [38, 54], see Appendix A in S1 Text. Averaging s2
ia over

the sites i and mutations a, we obtain a single global variance,

s2 ’
1

B
1

NQ

X

i;að6¼wtiÞ

(
jki � 1j

piðaÞ
þ
jki � 1j

piðwtiÞ

þ
X

j2N i

1

pijða;wtjÞ
þ

1

pijðwti;wtjÞ

 !)

;

ð3Þ

where Q = 20 is the number of amino-acid types, and ki is the cardinality of N i, i.e. the number

of sites interacting with i in the model. The global variance depends on the statistics of the data

through the probabilities pi(a) of finding amino acid a on the i-th site and pij(a, b) of finding

simultaneously a on site i and b on site j computed on the sub-alignment. Thus, σ2 increases

with residue conservation, due to the contributions of amino acids that are rarely observed on

some sites in the sub-alignment and have low pi(a), and with the number K of coupling param-

eters in the model. We also see that σ2 is inversely proportional to the number of sequences, B.

The variance therefore decreases with the quantity of data.

Estimation of squared bias. Computing the squared bias μ2 in (1) is generally hard, not

to say impossible, as it requires detailed knowledge of the fitness landscape. We rely below on

simplifying assumptions to gather insights on the value and meaning of the bias.
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Assume first that we use the independent-site model for fitness prediction. If the ‘true’ fit-

ness landscape shows no epistasis, this model is exact (up to statistical fluctuations due to the

finite amount of training data, taken care of by σ2), and the bias vanishes. Therefore, a non

zero bias would signal the presence of epistatic interactions between residues not captured by

the simple model used for predictions. We stress that this statement is true in an idealized set-

ting, in which the only source of bias is the mismatch between the model power and the

ground-truth fitness landscape. In reality, biases can have multiple origins, including non-uni-

form sampling of sequence data (resulting from preferential choices of organisms or from evo-

lutionary correlations), discrepancies between in vivo fitness reflected by sequence data and in

vitro biochemical measurements, etc.

Let us now turn to more complex landscapes and models. We assume that the fitness land-

scape is characterized by pairwise epistasis only, i.e. the fitness differences E ia are exactly

described by a full Potts model with Kmax interactions JFijða; bÞ through an equation analogous

to (2). The K–link Potts model used for fitness prediction will not be powerful enough to

account for the complexity of this landscape and of the sequence data if K< Kmax. As a result a

non-zero squared bias will appear, whose expression is derived in Appendix B in S1 Text, and

reads

m2 ’ J0 D ; ð4Þ

where D is the mean Hamming distance of the sub-alignment sequences to wt, and the bias
factor J0 is the product of a multiplicative factor depending on the background distribution of

amino acids in the MSA and of the variance of the epistatic couplings JFnot included in the pre-
diction model. J0 is thus a decreasing function of K.

This expression of μ2 confirms that the Hamming distance D is related to the notion of rele-
vance (similarity to the wt) of the sequence data, as varying D affects the systematic error (bias)

of the predictive model.

Validation of the theory on Lattice Proteins

To validate the key role of the squared bias and of the variance in explaining performance, as

well as their approximate expressions above and the interpretation of the bias factor J0 as

reflecting un-modeled epistasis, we resort to an in silico model for proteins folding on a 27-site

cubic lattice [47, 49, 50, 55, 56], see Fig 3A. In the model, the fitness represents the propensity

of a protein sequence to fold into one specific conformation, called native, out of the’ 105

folds on the cube [49]. Following [50], the native fold and wildtype sequence were chosen such

that the fitness of the wildtype was high enough to be stable but low enough to allow for posi-

tive mutations (Pnat’ 0.995, see Methods). As we can precisely compute the exact value of the

fitness, the ground-truth values of the squared bias and of the variance defined in (1) can be

computed with great accuracy (see Methods); we hereafter denote these ground truth values

by �m2 and �s2.

Bias and variance are sufficient to explain model performance. Eq (1) stipulates that

the mean squared error over fitness prediction depends on the sum of squared bias and vari-

ance of the fitness predictors. If the performance ρ is, in turn, controlled by this mean squared

error, we expect a relation such as

r ¼ Fðm2 þ s2Þ ; ð5Þ

where F is a decreasing function of its argument.

To test the validity of (5), we compare the values of ρ obtained with the independent-site

Potts models (K = 0) and different K-link Potts models (K = 4, 8, 16, 24) trained from various

PLOS COMPUTATIONAL BIOLOGY Quantity-relevance trade-off in protein fitness predictions from sequence data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011521 October 26, 2023 7 / 22

https://doi.org/10.1371/journal.pcbi.1011521


sub-alignments with different B, D to the sums of the squared bias and variance, see Fig 3B.

We obtain an excellent anti-correlation between ρ and �m2 þ �s2 across a large range of values of

B and D, in full agreement with (5) (R* 1 for every K–link model). The sum of squared bias

and variance is by far the biggest factor in determining the predicting performance of the

models.

Bias and variance are related to the relevance and the quantity of data as predicted by

theory. We then test the relation between the squared bias and the Hamming distance in (4),

by generating MSAs at a given D and numerically computing �m2 for several K-link Potts model

of increasing complexity. As shown in Fig 3C, the linear relation between the true squared bias

and D is confirmed for every value of K (R’ 1 for every tested K-link model).

Similarly, we find a good agreement between the numerical variance and our theoretical

estimate in (3), see Fig 3D (R’1 for every K-link Potts model).

J0 reflects the un-modeled epistasis. The slope of the numerical bias μ2 with D (Fig 3B)

gives access to an estimate for J0. We plot in Fig 3F the corresponding J0 as a function of the

number K of links in the Potts model, from K = 0 (independent model) to K = 40. We find that

J0(K) decreases almost linearly with K before reaching a saturation point around K = 20.

This decrease is in accordance with the notion of J0 as reflecting the un-modeled epistasis.

In the context of Lattice Proteins, this saturation behavior is expected to reflect the presence of

Fig 3. Quantity-relevance trade-off for lattice proteins. A: Cubic fold that defines the protein family in the lattice model. Amino acids on sites that are in proximity to

each other interact and define the energy of the protein (Methods). B: Predictive performance ρ for single mutations of 5 Sparse Potts models with different degrees of

sparsity (defined by K, the number of pairwise links included in the energy function; K = 0 is the independent model) vs. �m2 þ �s2. The collapse of the results is in

agreement with Eq (5). C: Squared bias �m2 vs. mean Hamming distance in the sequence data, see Eq (4), for the same sparse Potts models as in panel B. Line plots and error

bars show mean and standard deviation at a given D and different Bs. D: Variance σ2 vs. estimated variance σ2 in Eq (3) for the same Sparse Potts models as in panel B. E:

Bias factor J0(K) (divided by J0(0)) obtained by fitting the squared bias as a linear function of the mean Hamming distance for the various K-link models in panel C. F:

Visualization of pairwise couplings inferred by a fully-connected Potts model, highlighting the larger variance of couplings associated to structural contacts (in orange)

compared to non-structural ones (in blue)—note the log scale on the y-axis. G: Normalized value of J0(K) (divided by J0(0)) obtained with an effective theory using the

variance of couplings associated to modeled and un-modeled structural contacts, see Appendix A in S1 Text. H: scaling for predictive performance ρ of our statistical

models for single point mutations as a function of the sum of the estimated squared bias J0D and of the variance σ2 in Eq (3). J0(K) (denoted as Jbf
0

in the plot axis label) is

fitted to for each value of K by maximizing the scaling correlation as explained in the main text. I: Bias factor J0(K) (normalized by J0(0)) inferred from maximizing the

scaling correlation as in panel H.

https://doi.org/10.1371/journal.pcbi.1011521.g003
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two distinct classes of un-modeled epistatic couplings. Strong pairwise interactions correspond

to the Nc = 28 contacts on the 3D fold (Fig 3A). These “structural” couplings are expected to be

largely responsible for the magnitude of epistatic effects in the fitness function, therefore con-

tributing the most to the value of J0. The remaining Kmax − Nc are weaker, and may be due to

the need to avoid other folds (negative design) or to higher-order interactions [50].

To verify this hypothesis, we retrieve a pairwise approximation of the real fitness function

by inferring a fully-connected Potts model from a very large alignment (B* 106 sequences).

We then separate the inferred Potts couplings into structural and non-structural and compute

their variance as a proxy for their expected contribution to the value of J0 (see Appendix A in

S1 Text). As shown in Fig 3F, structural couplings have a much larger variance than the other

ones. We can devise an effective theoretical approximation of the behavior for J0(K) by assum-

ing that all structural and non-structural couplings are uniformly drawn from two distribu-

tions with the two variances above, and that the sparse model progressively includes structural

couplings in its energy function up to K = Nc. The expected behavior of J0(K) under this effec-

tive model, shown in Fig 3G, agrees with Fig 3E, and saturates to its lowest value around

K = 28, which corresponds to the total number of structural couplings.

J0 can be inferred from mutational scan data. Last, we propose an alternative approach

to estimate the bias factor J0, which is applicable to real protein data, where the sequence-to-fit-

ness mapping is unknown but mutational scans are available. For fixed model complexity

(value of K), we subsample the MSA, infer the corresponding K-link Potts models, and esti-

mate the predictive performances ρ. The procedure is repeated by varying the quantity (B) and

relevance (D) of the sub-MSAs. We then consider J0 as a free parameter and infer its value by

maximizing the Spearman correlation between the two sides of (5), where σ2 is estimated from

Eq (3) and μ2 = J0D. We call this approach the “best scaling fit”.

We apply this procedure to the same lattice protein data shown above. Results for the per-

formance ρ vs. J0D + σ2 are shown in Fig 3H for all K-link Potts models (R’ 1 for every tested

K-link model), in excellent agreement with the ground truth results of Fig 3B. The fitted values

of J0(K) are reported in Fig 3I, in excellent agreement with Fig 3E and 3G.

Performance vs. quantity and relevance of sequence data for real proteins

Trade-off explains the predictive performance in mutagenesis experiments. The rela-

tion in (1), which we verified on in-silico proteins, postulates that the performance ρ of the pre-

dictive model is controlled by the sum of the squared bias J0D, as an inverse proxy for the

relevance of the sequence data, and of the variance σ2, which inversely depends on the quantity
of data. To test our theory on real data, we consider 7 different mutagenesis experiments on 7

proteins. For each protein, we sub-sample the corresponding MSA as done in Fig 2, to obtain

sub-MSAs with a large range of values of D and B, from which we can compute the estimated

variance σ2. We then compute the two descriptors D and σ2 from each sub-MSA, and compare

them with the predictive performance inferred from the data.

As reported in Fig 4A, D is a fairly good predictor for the performance of an independent-

site Potts model (RNA-binding domain—absolute value of Spearman correlation coefficient rS
between D and ρ = 0.70), while the variance alone correlates more weakly with the predictive

performance (RNA-binding domain—absolute value of Spearman correlation coefficient rS
between σ2 and ρ = 0.25). However, when the performance is compared to the sum of the

squared bias and the variance, J0D + σ2, the correlation can be made much higher through fit-

ting of J0 (RNA-binding domain—absolute value of Spearman correlation coefficient rS
between J0D + σ2 and ρ = 0.95, Fig 4B). This strong correlation is confirmed for the 7 protein

PLOS COMPUTATIONAL BIOLOGY Quantity-relevance trade-off in protein fitness predictions from sequence data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011521 October 26, 2023 9 / 22

https://doi.org/10.1371/journal.pcbi.1011521


Fig 4. Relevance-quantity trade-off explains the predictive performance of statistical modelling. A predictive performance of single-point

mutations using the Independent-site on the RNA-bind protein, shown as a function of the mean Hamming distance of the MSA (top) and variance

estimated from the alignments (bottom). B predictive performance of single-point mutations as a function of the linear sum of squared bias and

variance. The scaling correlation rS is computed as the absolute value of the Spearman correlation coefficient of J0D + σ2 vs. ρ. The bias factor J0 is

inferred by maximizing rS, as done in Fig 2E. C scaling correlation rS for the seven protein families, compared to chance levels. The chance distribution

is built by destroying the relationship between the performance ρ and the two descriptors by random order shuffling, then repeating the J0 inference

procedure to account for the scaling optimization during its estimation. Error bars show standard deviations over n = 100 repetitions of the random

shuffling. D top: RNA-bind family, predictive performance ρ as a function of the cutoff distance dcut, showing the existence of an optimal cutoff dopt

(black dashed line). Bottom: individual contributions of squared bias (J0 D, purple line), variance (σ2, green line) and their sum (blue line). The red

dashed line indicates the minimum of J0D + σ2, which corresponds to the predicted maximum performance cutoff dbv. E Values of predictive

performance ρ at the optimal cutoffs compared to the full alignments for the 7 protein families. F ratio between performance increase at cutoffs of

interest and at the optimal cutoff for the 7 protein families.

https://doi.org/10.1371/journal.pcbi.1011521.g004
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families (rS> 0.9 for all 7 families, Fig 4C and S2 Fig), providing a strong verification of the

theoretical and numerical framework developed above.

Optimization of performance through a focusing procedure. We may now exploit our

understanding of how performance depends on the number B and on the mean Hamming dis-

tance D of the sequences in the MSA to find the optimal sub-alignments maximizing ρ.

As we see in Fig 2, we can start from the full MSA and progressively focus around wt by

excluding all sequences of “low relevance”, i.e., at Hamming distances higher than a given cut-

off dcut. As we lower dcut from its maximal value (N, number of sites) down to 0, this focusing

procedure increases the variance while decreasing the bias, as we select fewer sequences with

higher homology to wt. As already seen in Fig 2C, the predictive performance ρ has a maxi-

mum at a certain optimal cutoff dopt (Fig 4D (top panel)), highlighting the trade-off between

bias and variance in controlling the performance.

In Fig 4E, we report the performance of the independent-site model at the optimal cutoff

dopt. We find notable improvements in the predictive performance for 6 out of 7 protein fami-

lies with respect to the full MSA (mean improvement Δρ(dopt) = 0.081). Importantly, for 3 fam-

ilies out of 7 (DNA-bind, RL401, WW), the value of ρ at the optimal cutoff exceeded the best

performance reported in [37] and obtained with PLM-DCA, a standard approach to learn the

Potts model parameters [57]. This result is striking, as both the number of parameters and the

number of training sequences involved in the inference at dopt are greatly reduced compared

to fully-connected Potts models on large MSAs. The most outstanding illustration is the DNA-

bind family, where top performance (Δρ = 0.26) is found for dopt = 29, corresponding to only

B = 37 effective sequences in the MSA (see S3 Fig).

Cutoff for optimal focusing can be reliably predicted from heuristics. According to (5)

the best performance is reached for the alignment that minimizes the sum J0D + σ2. We call

this optimal predicted cutoff dbv, as for bias-variance,

dbv ¼ argmin fJ0 DðdcutÞ þ s
2ðdcutÞg ð6Þ

As reported in Fig 4D(top) (red line) and Fig 4F, this procedure allows us to predict the opti-

mal cutoff with good precision (mean relative error = 0.08). Importantly, the performance

increase at the predicted cutoff dbv captures most of the total possible improvement (mean

guessed relative increase for the 7 families Δρ(dopt)/Δρ(dopt) = 0.86 ± 0.08, see Fig 4F). Globally,

the performance at the predicted cutoff dopt is systematically higher than the performance with

the full MSA (mean Δρ(dopt) = 0.073, paired Wilcoxon test over the n = 7 families: P = 0.018).

However, knowledge of the bias factor J0 entering Eq (6) is not always available, as it

requires a systematic analysis of predictive performance relying on the outcome of mutagene-

sis experiments as a reference. We propose below a simple heuristics for predicting the optimal

cutoff, requiring no experimental input and based on a signal-to-noise ratio (SNR) comparing

the spread of inferred fitness values across sites and mutations and the statistical variance σ2,

Fig 4D(bottom):

SNRðdcutÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
Ê iaðdcutÞ

2
i

ia
�
h
Ê iaðdcutÞ

i2

ia

s2ðdcutÞ

v
u
u
t ð7Þ

Setting for instance the cutoff dsnr corresponding to a threshold of SNR = 3, we again find sys-

tematic improvements in the predictive performance (mean guessed relative increase for the 7

families Δρ(dsnr)/Δρ(dopt) = 0.71 ± 0.10, see Fig 4F, S3 and S4(b) Figs), providing an unsuper-

vised, parameter-free criterion to select the optimal MSA for the predictive analysis. Notice
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that the choice of the value SNR = 3 above is arbitrary; A consistent improvement of perfor-

mance can be found for SNR in the range * 2 to * 4, see S4(a) Fig.

The bias factor J0 depends on the model expressivity. We repeat in Fig 5A the approach

of Fig 4B, using the K–link Potts model rather than the independent-site model for fitness pre-

dictions. The number of couplings, K, is chosen to be a fraction of N, and is much smaller than

Kmax, implying that the Potts model is very sparse. For each sub-alignment of the RNA-bind-

ing domain data we determine the best scaling fit bias J0(K). We observe very high correlations

between ρ and J0(K)D + σ2. We also observe that top performances are found for a non-zero

value of K, e.g. K = 0.1N in Fig 5A. The optimal value of K generally varies from family to fam-

ily, as reported below.

The value of the bias factor J0(K) is shown as a function of the number of links per site in

Fig 5B for the RNA-binding domain and for all 7 protein families in Fig 5C. The general

behaviour is similar to the one observed for lattice proteins (Fig 3), and shows that J0(K)

Fig 5. The bias factor J0 depends on the model expressivity. A Scaling correlation between predictive performance ρ and J0D + σ2 for the RNA-bind protein, modeled

with the Sparse Potts Model with different numbers K of couplings. N is the length of the protein (82 sites). B: values of the bias factor J0 as a function of the number of

modelled couplings in the Sparse Potts Model for the RNA-bind protein. C: same as B for the seven protein families combined; the black line and the blue area

represent the mean and the standard deviation over the seven protein families. D Relation between bias factor J0(K) and improvement at best cutoff Δρ(dopt) for the

RNA-bind protein. E same of D for the seven families combined. Values of K range from K = 0 to K = N. Each color corresponds to a different protein family as

reported in the legend.

https://doi.org/10.1371/journal.pcbi.1011521.g005
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decreases with K until saturation is reached. As the expressive power of the predictive model

increases, the squared bias decreases and is less affected by the relevance of the sequence data.

The saturation indicates that, above some critical K, adding more pairwise couplings does not

help to reduce the bias. A possible explanation for this residual bias is the presence of higher-

order epistasis, e.g. 3-site couplings between residues, which cannot be accounted for by the

K–link Potts model.

Empirically, we expect that the focusing procedure should provide substantial improvement

if the bias strongly decreases with D, that is, if the bias factor J0 is large, e.g. in the case of the

independent-site model. The intuition is that, when the bias quickly decrease with the rele-

vance of the data, there is a margin for improvement of performances by removing some low-

relevance data, while not increasing too much the statistical variance of the inferred model

parameters. We report in Fig 5D the gain in performance ρ (compared to the independent

Potts model, with K = 0) for the RNA-binding domain as a function of the bias factor J0 when

K is varied. Results show a strong positive correlation between the two quantities. The same

correlation is found across all 7 protein families, see Fig 5E and S5 Fig.

Materials and methods

Multiple sequence alignments

Proteins families and the corresponding alignments were taken from [37]. The alignment pro-

cedure of EVmutation (https://github.com/debbiemarkslab/EVmutation) is based on a query

against the UniRef100 database of nonredundant protein sequences (release 11/2015) [58]

from the wild-type sequence, using the profile HMM homology search tool jackhmmer [59]

and choosing a default score in the alignment depth of about 0.5 bits/residue; the threshold

was adjusted if the alignment had not enough coverage or number of sequences [37]. Redun-

dant sequences were removed from the alignments, as well as sites with more than 50% of gaps

in the alignment. The list of families and wild type, the sequence length, the number of

sequences, and the reference to the mutational scans are given in Table 1. Alignments are

made available in Supplementary Information.

Sequence re-weighting and MSA descriptors

We partially corrected for sampling biases by using a re-weighting procedure with 80% homol-

ogy threshold in all statistical estimates on sequence data [32]. We therefore define the weight

of a sequence s to be

zðsÞ ¼
1

P
s02MSAdðdðs; s0Þ < 0:2Þ

; ð8Þ

Table 1. From left to right: Numbers N of sites, B of sequences (after removal of redundant sequences from the alignment), M1
test of tested single mutations, M1 of

possible single mutations, and corresponding references.

Protein Name (wt name) N B M1
test M1 Ref

Betalactamase (BLAT-ECOLX) 253 7620 4610 4807 [19]

DNA Binding domain (GAL4-YEAST) 63 11278 1196 1197 [60]

Ubiquitin (RL401_YEAST) 71 10023 1160 1349 [22]

RNA Binding (PABP-YEAST) 82 70779 1188 1558 [14]

PDZ (DLG4-RAT) 84 24795 1577 1596 [13]

UBOX Domain (UBE48-MOUSE) 76 6153 614 1444 [20]

WW (YAP1-HUMAN) 31 8251 319 589 [21]

https://doi.org/10.1371/journal.pcbi.1011521.t001
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where δ(X) = 1 if condition X is satisfied, and 0 otherwise,and d(s, s0) is the normalized Ham-

ming distance between sequences s and s0. The MSA descriptors were then computed as

weighted averages:

B ¼
X

s2MSA

zðsÞ and D ¼
1

B

X

s2MSA

zðsÞ dðwt; sÞ : ð9Þ

Fitness predictions and comparison with experiments

With the K-sparse Potts model the probability of the sequence s reads

PðsÞ / exp
X

i

hiðsiÞ þ
1

2

X

i

X

j2N i

Jijðsi; sjÞ

 !

ð10Þ

up to a normalization constant. N i denotes the set of sites connected to site i on the interaction

graph. The predicted fitness difference is defined as the difference in the log probabilities of

the wild-type sequence (wt) and of the one where the amino acid at site i in is substituted with

the amino acid a as wti!a:

Ê ia ¼ log Pðwti!aÞ � log PðwtÞ ; ð11Þ

giving Eq (2). The predictive performance ρ of the model is then computed as the Spearman

rank correlation between experimental measures of delta-fitness for single-point mutations

and the corresponding predictions.

Inference of sparse Potts models

Following a number of recent works [34, 36–38, 61], we predicted the effects of single point

mutations by inferring a Potts model from sequence data in the alignment. Here, we employed

a K-link Potts model introduced in [38], where we constrain the model to have non-zero

couplings only on K statistically-relevant links (i, j) (K = 0 being the independent model,

K = N(N − 1)/2 the fully connected Potts model).

We chose the K links by scoring each link (i, j) as done for contact prediction in DCA analy-

sis: we inferred a fully-connected Potts model with parameters optimized to perform contact

prediction by pseudo-likelihood maximization [57]; from the resulting couplings JPLM we

defined a score for each link (i, j) based on the Frobenius norm of the two-sites coupling

matrix JPLMij . Finally, we selected those K pairs (i, j) that showed the highest Frobenius score.

We then used a two-site approximation to re-infer the value of the Jij matrix for each of these

K pairs given the sparsity constraint [38].

Sub-sampling the MSA allows for varying data relevance and quantity

To create new MSAs of different degrees of relevance and quantity for real protein families, we

sub-sampled the corresponding MSA using the following procedure. We first chose a target

Hamming distance D and a number of sequences B0 (before re-weighting). We then randomly

sampled B0 sequences s from the full MSA (without repetition) with a probability decreasing

with the Hamming distances d(s, wt) between the sequences s and the wildtype:

pðsÞ ¼
e� a dðs;wtÞ

Z
ð12Þ
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where Z = ∑s02MSAe−αd(s0,wt). The parameter α was optimized to reach the defined D within a

given precision (here set to 0.01).

From each sampled sub-MSA, we then computed the effective number of sequences B as

described above, as well as the variance σ2 for each sparse Potts model with K links through

(3).

We repeated this procedure for all combinations of 16 values of D 2 [0.4N, 0.8N], where N
is the protein length, and 10 values of B0 in a range that depended on the protein family and its

initial MSA size. Doing so, we obtained a population of 160 sub-MSAs with as many corre-

sponding values of D and B.

Lattice proteins

Lattice proteins are in silico proteins of fixed sequence length (N = 27) folding on the sites of a

3 × 3 × 3 cube [47, 49, 55]. The protein family attached to a specific fold F is defined as the set

of sequences s with low (favorable) folding energies �(F, s) in F and unfavorable folding ener-

gies �(F0, s) for all other possible folding structures F0 (little competition) [56]; �(F, s) is defined

as the sum of Miyazawa-Jernigan interactions [62, 63] between residues si, sj in contact on

structure F. The fitness of a protein s (with respect to the native fold F) is defined as

HðsjFÞ ¼ � log PnatðsjFÞ with PnatðFjsÞ ¼
e� �ðF;sÞ

P
F0e� �ðF

0 ;sÞ
: ð13Þ

An MSA for the family F can then be obtained by sampling from the effective Hamiltonian H.

To control for the mean Hamming distance from a given wildtype sequence wt of the sampled

MSA, we follow the procedure of [50] and sample from a biased Hamiltonian

Hg
ðsjF;wtÞ ¼ HðsjFÞ � g dðwt; sÞ : ð14Þ

As in [50], Monte Carlo sampling is performed with the Metropolis rule at effective tempera-

ture β = 1000 and with T = 1000 thermalization steps between each sampled sequence. Precise

values of D were obtained by sub-sampling and mixing four large alignments obtained with γ
= 0, 0.025, 0.050, and 0.075. From each MSA, the computation of descriptors σ2 and D as well

as training and performance assessment of Potts models, were performed as explained below

for real proteins, with the difference that no re-weighting procedure was applied to lattice pro-

teins data.

Numerical estimation of bias and variance in Lattice Proteins

In the case of Lattice Proteins, we numerically computed the real fitness difference caused by

single-point mutations as E ia ¼ Hðwti!aÞ � HðwtÞ. For a given inferred Potts model, we then

computed the bias �m2
ia and variance �s2

ia of its delta-fitness predictors Ê ia as

�m2

ia ¼
�h

Ê ia � E ia

i�2

ð15Þ

�s2

ia ¼
h
Ê 2

ia

i
�
h
Ê ia

i2

; ð16Þ

where averages are computed over n = 10 inferences performed on as many sampled align-

ments with fixed number B of sequences and mean Hamming distance D to wt.
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To relate these quantities to the single predictive performance value ρ of the inferred

model, we defined two global measures that account for all single-point mutations (i, a):

�m2 ¼ ½�m2

ia�i;a � ½�mia�
2

i;a ð17Þ

�s2 ¼ ½�s2

ia�i;a ; ð18Þ

where [�]i,a denotes the averages over sites and mutations, and the global shift in the bias ½�m ia�
2

i;a

is removed, as the Spearman rank correlation ρ is invariant under the addition of a constant to

Ê ia. In these numerical settings, some mutations are so deleterious that will never be observed

in the data, and their effect is systematically estimated by regularization only. To avoid that

these outliers dominate the averages above, we restricted our analysis to those mutations that

satisfy an “observability” criterion of jE iaj < y. Unless specified differently, we use θ = 5.0

throughout all Lattice Protein results.

Discussion

In this work, we have investigated, through a combination of analytical and numerical

approaches, how the nature (quantity, similarity to wt) of sequence data determine the capabil-

ity of statistical models, with variable expressive power, to predict the fitness effects of single-

point mutations. As expected from the bias-variance trade-off of statistics, simple models

require few data to be inferred, but result in systematic prediction errors (bias μ). Conversely,

powerful models are in principle capable of expressing complex sequence-to-fitness relation-

ships but their many defining parameters are subject to more statistical errors due to the lim-

ited amount of available data (variance σ2). We have shown that a good predictor of

performances was given by the sum μ2 + σ2, and have analytically related the variance to the

number of sequences B in the alignment and the squared bias μ2 to the evolutionary depth,

estimated through the mean Hamming distance D to the mutated wild type sequence. Our the-

ory was quantitatively confirmed by extensive tests on in silico lattice proteins for which the

ground-truth fitness is known, and on mutagenesis datasets of 7 proteins families we have ana-

lyzed. Based on the results above, we then proposed a “focusing” procedure to optimally select

the best subset of sequences from a multi-sequence alignment, and tested it on the 7 mutagene-

sis experiments. With this procedure, the least powerful, independent sites model, showed per-

formances higher than fully connected graphical models trained on the same data for 4 out of

7 studied protein families, and comparable performances for the remaining ones.

An important finding of the present work is the so-called bias factor J0, which relates the

squared bias μ2 to the mean Hamming distance D of the sequence data to the wild-type

sequence: μ2’ J0 D. In our idealized theoretical framework, confirmed by simulations on in
silico proteins, J0 accounts for un-modelled epistasis, i.e., for the statistical properties of the fit-

ness landscape that cannot be reproduced by the class of models considered. Though other

sources of biases can be present in real data or in the inferred models due to regularization,

and contribute to J0, our result has two consequences, both conceptual and practical. First, it

explicitly demonstrates that key information about the unmodeled features of fitness land-

scapes are, in principle, accessible even with models with limited complexity, constrained by

data availability. From a practical point of view J0 can be estimated through a regression of the

performance ρ vs. a linear combination of D –chosen at will through subsampling of the

multi-sequence alignment– and σ2 –given by Eq (3)–, see Fig 5A; this procedure can therefore

be applied to any protein family, for which sequence and mutagenesis data are available. Sec-

ond, the meaning of J0 emphasizes the role of the expressive power of the model in the relative
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importance of the bias and variance terms, and to what extent each one of these factors affect

performances. The value of J0 is a good predictor of how much can be gained in performance

by pruning the sequence data and focusing around the wt sequence (Fig 5E). This result entails

that simpler models have higher potential for improvement in fitting a local neighborhood

through focusing, and can overcome complex models when training data is appropriately

selected.

Determining the optimal cutoff distance for focusing can theoretically be done following

the quantity-relevance trade-off analysis presented above, e.g. using some already available

mutagenesis experiment. We proposed an empirical rule that did not require any mutational

information and was based on a signal-to-noise criterion. This empirical cutoff led to system-

atic improvement of performance for all tested families (S3 Fig).

Our focusing and modeling procedures could be further improved along several directions.

First, in the the K-links Potts model considered here we have selected relevant links according

to the Frobenius norms of the couplings of the inferred Potts model (equivalently, in the Direct

Coupling Analysis, DCA). The rationale for this criterion is that the coupling norm is a good

proxy for coevolution and contact between residues. Sparsity of the interaction graph can be

enforced, within DCA, through L1 regularization over the couplings [54, 61, 64]. However, in a

related work [38], we have shown that DCA-based ranking is not an optimal predictor of rele-

vance of couplings for protein function. Couplings can be better selected using a semi-super-

vised procedure, which exploits a subset of mutational data. Such optimally selected K-Links

Potts models achieve a clear increase of the performances in predicting the effect of mutations.

Second, we have estimated, so far, the closeness of an alignment to the wild-type sequence

through the average Hamming distance D. This choice is justified both by its simplicity, and

the deep relation between D and the (squared) bias. However it would be worth considering

more refined estimates for the distances, taking into account the phylogeny of the sequence

data. Residue conservation can be assessed according to mutational history [30, 31], or to their

relevance in the functionality under consideration. In addition, our focusing procedure could

make use of alignment methods based on local homology, recently used to discover specific

functionality proper to some protein subfamilies [65].

Our theoretical study could help improve models and alignment processing for predicting

the effects of missense mutations and their impact in genetic diseases [6–10]. Natural align-

ments of sampled missense mutations are limited in depth and naturally focused around the

human genome, making independent-site models (or K-link Potts models with small K values)

especially adequate. It would be very interesting to apply our focusing approach to understand

how to best select sequence data in this context.

The capability of deriving optimal independent-site models, whose parameters are tuned

according to the region in the sequence space under focus, could be also be important for phy-

logeny studies. Inferring phylogenetic relations between a set of sequences requires the capa-

bility to compute transition probabilities under a mutation-selection process. Independent-

site models are particularly attractive in this regard as they lead to mathematically tractable

expressions for the transitions [66], but cannot describe complex sequence-to-fitness map-

pings. An alternative would be to use multiple focused independent-site models to compute

transitions, adapted to the multiple portions of the sequence space explored by the phyloge-

netic tree.

Last of all, we stress that the question of how to select the best subset of data ensuring opti-

mal performance given a statistical model is of interest in the field of proteins beyond fitness

predictions, and, more generally, in machine learning. In the context of structural predictions,

it is known that AlphaFold performances are sensitive to the input multi-sequence alignment;

in CASP15 some methods found improved predictions by changing the way sequence data
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were generated [67]. From a general machine-learning point of view, the present work bears

some similarity with classical issues in statistics, in particular, the dependence of performance

on the quantity of training data. In theoretical consistency frameworks, data are assumed to be

generated independently at random from a fixed model distribution (sometimes referred to as

the teacher), and then used to train another model with the same architecture (the student),

see for instance [68–70] for applications to graphical model reconstruction. However, in our

case, the teacher (fitness landscape) is of high and unknown complexity, while the student is

much simpler (independent-site or sparse Potts models). Our goal was to provide theoretical

support for a pruning strategy, in which data likely to be poorly modeled by the student are

explicitly filtered out in the training phase. Our focusing procedure is, in this sense, conceptu-

ally related to local regression methods, such as moving least squares approaches, which aim at

locally fitting a function from data. It is therefore expected that it will find applications beyond

the prediction of fitness considered here. For instance, focused independent-site models could

be useful in the context of gene expression, where microarray data generally suffer from miss-

ing values, impeding the use of many multivariate statistical methods [71].
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sponding values of D and B (see Methods). All significance levels refer to Spearman rank

correlation. * P< 0.05; ** P< 0.01; *** P< 0.001.
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S2 Fig. Supplementary figure 2. Same as Main text Fig 4A&4B for all protein families except

RNA-Bind (shown in Main text Fig 4A&4B): predictive performance of single-point mutations

using the independent-site models, as a function of the squared bias and variance estimated

from the alignments, separately (left and right panels) and combined (central panel).
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S3 Fig. Supplementary figure 3. Top: single mutation prediction performance of the indepen-

dent Potts model (K = 0) along the focusing axis (as a function of the cutoff distance D0) for

the 7 studied protein families. Black dashed lines indicate the optimal cutoffs dopt; blue lines

indicate the predicted cutoffs dbv by minimizing the linear sum of bias and variance; the light

blue lines indicate the predicted cutoff from the signal-to-noise heuristic dsnr. Green areas

highlight the performance increase from the full alignment (dc = N) to the predicted cutoff dbv.
Yellow areas indicate the remaining performance increase to the optimal cutoff dopt. Horizon-

tal dashed grey lines indicate the performance reported in [37] with a fully connected Potts

model inferred by pseudo-likelihood. Bottom: distribution of the hamming distance to the

wildtype D of sequences in the MSA. Black dashed lines indicate the optimal cutoff at which

the best performance is reached. Bopt
eff is the effective number of sequences remaining in the

MSA at the optimal cutoff. Refer to Table 1 in Methods for the original number of sequences

in the MSA.
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threshold, for the 7 protein families. b comparison between performance without any cutoff

(MSA full) and performance at the cutoff predicted by using the rule of thumb SNR = 3.
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S5 Fig. Supplementary figure 5. Relation between the bias factor J0(K) and improvement Δρ
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