
HAL Id: hal-04307032
https://hal.science/hal-04307032

Submitted on 25 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Degradation tolerant control learning for discrete-time
affine nonlinear systems

Soha Kanso, Mayank Shekhar Jha, Didier Theilliol

To cite this version:
Soha Kanso, Mayank Shekhar Jha, Didier Theilliol. Degradation tolerant control learning for discrete-
time affine nonlinear systems. 22nd IFAC World Congress, IFAC 2023, Jul 2023, Yokohama, Japan.
�10.1016/j.ifacol.2023.10.1178�. �hal-04307032�

https://hal.science/hal-04307032
https://hal.archives-ouvertes.fr


Degradation Tolerant Control Learning for
Discrete-Time Affine Nonlinear Systems

Soha KANSO, Mayank Shekhar JHA, Didier THEILLIOL

CRAN, UMR 7039, CNRS
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Abstract: This paper develops a degradation tolerant optimal control in the framework of Re-
inforcement Learning (RL). Safety-critical and mission-critical systems require the development
of new control designs that maintain system stability and performance specifications but also
address incipient degradation. The aim of this work is to decelerate the speed of degradation by
minimizing a cost function that includes the rate of evolution of degradation and the performance
requirements. The controller is developed for discrete-time nonlinear systems affine in control,
where the system’s states are affected by a nonlinear degradation. Value iteration (VI) algorithm
based approach is developed to find suitable approximations of both optimal control policy
and optimal cost, while guaranteeing closed-loop stability and minimization of degradation
rate. Offline model-based Adaptive Dynamic Programming (ADP) algorithm is developed and
implemented using actor-critic structure which involves training of both actor and critic neural
networks (NN). After training the actor NN with the optimal policy, the NN is implemented
in real time to generate the input of the system. Simulation example shows the efficiency and
feasibility of the algorithm.

Keywords: Adaptive Dynamic Programming, Reinforcement Learning, Actor-Critic Structure,
Optimal Control, Fault Tolerant Control, Safety-Critical Systems, Affine Nonlinear Systems.

1. INTRODUCTION

Traditional control system design (Stengel (1994)), (Åström
and Wittenmark (1995)) focuses only on the stability and
the performance without taking into consideration the
effects of aging, fatigue, and damage of the concerned
components and without minimizing the risk of failure.
However, safety-critical systems (Knight (2002)) arise in
several application areas, such as transportation and air-
traffic control systems, space systems, nuclear plants and
automated industrial processes. The evolution of such
complex systems requires the implementation and the
development of new control technologies that maintain
system stability and performance specifications, and also
address incipient fault and graceful performance degrada-
tion.

Recent approaches have applied modern control techniques
such as adaptive or robust control to address situations
where the degree of failure may be unknown. In (Bole et al.
(2010)), a fault adaptive control is proposed for incipient
fault modes growing to catastrophic failure conditions.
The methodology is developed for a finite constrained
optimization problem where the model of the system and
the degradation is supposed to be known. Moreover, fault
tolerant control design (Noura et al. (2009)), (Blanke et al.
(2006)) has been developed for various industrial, mission
critical and safety critical systems that operate in closed
loop, in order to compensate for fault occurrence. More
recently new methods are expanded such that useful life

of critical systems can be extended. In this context, health
aware control has recently become one of the domains
where control is being designed, based upon the state of
health (SoH) and/or Remaining Useful Life (RUL) prog-
nostics of critical components. Some prominent works have
proposed methods to develop control laws that attempt
to extend the RUL of component/system such as (Pour
et al. (2021), Salazar et al. (2017)). Also, in the framework
of model predictive control (MPC), several works were
adopted to produce a controller that ensures robustness
to particular failures, thus reducing their impact on the
system (Brown et al. (2010), Brown et al. (2021)). How-
ever, one of the limitations of previous approaches is that
it requires a known dynamic of the system. Reinforcement
learning has achieved remarkable success for complex sys-
tems with unknown dynamics (Lewis and Liu (2012)).

Reinforcement learning refers to agent or actor interacting
with its environment and modifying its actions or control
policies, based on stimuli received in response to its actions
(Buşoniu et al. (2018)). RL theory is well founded on
the principles of optimal control theory based on Dy-
namic Programming (DP). It allows to solve optimization
problems using the principle of optimality from DP that
provides an essential foundation for understanding RL
(Lewis and Vrabie (2009)). In particular, RL can handle
optimal control problems for unknown nonlinear systems.
Most of the RL methods attempt to achieve the same goal
as DP, with less computation and without knowing the
model of the environment. The combination of DP and



neural networks (NN) as approximators leads to adaptive
dynamic programming (ADP) approaches, introduced by
Paul Werbos in 1977 (Werbos (1997)).
In the framework of health aware control design based on
RL, very few works have been proposed. (Jha et al. (2019))
presents a RL based approach that is employed to learn an
optimal control policy in face of component degradation by
using global system transition data and RUL predictions.
(Yousefi et al. (2020)) develops a dynamic optimal policy
for multi-component systems with individually repairable
components using a Q-learning algorithm. To fill in this
scientific gap, this paper proposes a learning strategy for
degradation tolerant optimal control of nonlinear unstable
systems.

In the previous work (Kanso et al. (2023)), a linear
quadratic regulator (LQR) and tracker (LQT) was de-
signed, over finite and infinite time horizon, for a discrete-
time linear system in the presence of a linear degradation.
This paper aims to address nonlinear cases. The main con-
tribution of the paper is to learn a control law that decel-
erates the speed of degradation while maintaining optimal
performance and stability of a nonlinear system. This work
examines a degradation tolerant approach for discrete-
time nonlinear systems, where the states of the system are
considered to be affected by a nonlinear degradation. The
approach is developed in the framework of model-based
RL, by building a quadratic cost function that includes
the speed of degradation and by implementing the Actor-
Critic structure. The optimal policy and value function
are learned offline using Value Iteration (VI) algorithm
and the model of the system, then the trained NNs are
implemented in real time.

This paper is arranged as follows. Section 2 introduces
the problem statement and the issue addressed. Section 3
presents the proposed methodology where the problem is
solved in the framework of RL. Section 4 examines the
feasibility of the proposed approach using an academic
example. And finally, the conclusion summarizes the sig-
nificant advances and includes plans for future work.

2. PROBLEM FORMULATION

The degradation of a system components affects the per-
formance and the stability of the system. The state of
degradation or deterioration, considered as a health in-
dicator, as well affects directly the remaining useful life
of the active system, consequently reducing the usability
and the productivity of the system. Moreover, the state of
health (SoH) is stimulated by the states of the system,
and implicitly affected by the action of the controller.
Hence the importance of developing an optimal approach
for performing a control action that takes into account the
performance requirements, the stability and also the SoH
of the system.

This paper focuses on discrete-time nonlinear systems
affine in control as:

xk+1 = f(xk, dk) + g(xk, dk)uk (1)

where xk ∈ Rn is the state vector at time k, uk ∈ Rm

is the vector of control input, and dk ∈ Rl is the vector
of degradation’s state. f(., .) ∈ Rn and g(., .) ∈ Rn×m are

differentiable and f(0, .) = 0. The degradation is described
by:

dk+1 = z(xk, dk) (2)
where dk ∈ Rl is the vector of degradation’s state and
z(., .) ∈ Rl is a differentiable function. The evolution of the
degradation is implicitly controlled by the input since it is
sensitive to the system’s states. Some practical examples
of the presented formulation are the degradation of the
damping coefficient in electromechanical actuator due to
bearing wear (Fu et al. (2017)) and the breakdown of
the winding insulation caused by the rise of the winding
temperature (Brown et al. (2021)).

First, one defines the augmented states vector Xk =
[xk, dk]

T ∈ R(n+l) and condenses the evolution equation
into:

Xk+1 =

[
f(Xk)
z(Xk)

]
+

[
g(Xk)

0

]
uk = F (Xk) +G(Xk)uk (3)

In this work, the control policy is defined as a feedback
controller of the system’s and degradation’s states:

uk = h(xk, dk) = h(Xk) (4)

In order to maintain the performance of the system while
minimizing the energy and the speed of evolution of
degradation, a quadratic utility function is defined by:

r(xk, uk,∆dk) = xT
kQxk +∆dTkQ1∆dk + uT

kRuk (5)

where ∆dk = dk+1 − dk is the rate of evolution of
degradation. Q, Q1 and R are symmetric positive definite
weighting matrices and |R|≠ 0. Thus, the reward can be
written as:

r(Xk, uk) = XT
k

[
Q 0
0 0

]
Xk

+ [z(Xk)− [0 1]Xk]
TQ1[z(Xk)− [0 1]Xk]

+ uT
kRuk

(6)

The matrix Q1 determines the relative importance or cost
associated with the degradation rate term in the overall
cost function. By changing the values of Q1, the weight
of ∆dk can be adjust. Thus, higher values of Q1 would
indicate a higher cost or penalty on the degradation speed.

The notion of optimal behavior is captured by defining
a performance index known also as cost function:

Vh(Xk) =

∞∑
i=k

γi−kr(Xi, ui) (7)

with 0 < γ ≤ 1 a discount factor that reduces the weight
of costs occurring in the future. Note that it is essential
to use a discounted performance function for the proposed
formulation. This is because if the rate of degradation does
not go to zero, then the performance function (7) becomes
infinite without the discount factor.
Assumption 1 The dynamical system (1) is controllable
on some set Ω ⊂ Rn which implies that there exists a
control law that asymptotically stabilizes the system on
Ω.
Assumption 2 The degradation variable dk has a maxi-
mum value dmax, such that if the degradation level at any
time k is less than dmax, the system remains stable and
can be asymptotically stabilized on the set Ω.



Remark 1. It is noted that rate of degradation is not
treated like other state variables of the system owing to the
fact the degradation mechanism is irreversible in nature.
Moreover, the goal is to slow down the degradation and
not to eliminate its speed or stabilise it. As such, the aug-
mented systems does not include the rate of degradation
as one of the states to avoid stabilisation of the former to
an undesired values including negative ones.

Remark 2. Assumption 2 is based on the premise that the
effect of degradation on the system dynamics is sufficiently
small and it allows us to design a control strategy that
guarantees stability and performance for the system under
degradation.

To this end, the objective is to find an optimal control
input that minimizes the speed of irreversible degradation
and extends the operational residual life of the system,
while taking into account various factors such as system
dynamics and performance criteria.

3. PROPOSED METHODOLOGY

DP approach determines optimal control solutions using
Bellman’s principle backward-in-time from some desired
goal states. This yields offline solution algorithms which
are stored and then implemented online, forward-in-time.
Using RL, the solution of Hamilton-Jacobi-Bellman equa-
tion can be solved-for online in real time. This section
presents a novel algorithm based on RL under model based
framework, leading to the design of degradation tolerant
optimal control.

3.1 Formulation of optimal control problem

The objective of optimal control theory is to find the policy
that minimizes the cost function leading to the optimal
value:

V ∗(Xk) = min
h(.)

∞∑
i=k

γi−kr(Xi, h(Xi)) (8)

Then, the optimal control policy is defined by:

h∗(Xk) = argmin
h(.)

∞∑
i=k

γi−kr(Xi, h(Xi)) (9)

By writing (7) as:

Vh(Xk) = r(Xk, uk) + γ

∞∑
i=k+1

r(Xi, h(Xi)) (10)

It yields to the Bellman equation:

Vh(Xk) = r(Xk, uk) + γVh(Xk+1) (11)

According to Bellman’s principle of optimality for discrete-
time systems, the following Hamilton-Jacobi-Bellman (HJB)
is obtained:

V ∗
h (Xk) = min

h(.)
(r(Xk, uk) + γV ∗

h (Xk+1)) (12)

with the optimal policy as:

h∗(Xk) = argmin
h(.)

(r(Xk, uk) + γV ∗
h (Xk+1)) (13)

Since the optimal policy at time k is determined by using
the optimal policy at time k + 1, Bellman’s Principle
solves the optimal control problem backwards-in-time. It
is the basis for Dynamic Programming (DP) algorithms.

The optimal control problem is solved by finding the
solution of HJB equation (12) for the value function.
Then, by substituting the solution in (13) the optimal
control is obtained. Due to the nonlinear nature of the
HJB equation, it is generally difficult or impossible to find
its solution.

3.2 Solving Optimal Control Problem using RL

As referred previously solving the HJB equation is a
challenging problem in optimal control and dynamic pro-
gramming, moreover it can be computationally expensive.
To this end, RL has proven to be powerful and effective
machine learning technique that allows to handle optimal
control problems for nonlinear systems where iterative
methods are often used to obtain the solution of Bellman
equation indirectly. These methods are classified into two
main schemes, namely policy iteration (PI) and value
iteration (VI). This paper only focuses on the VI algorithm
among others, as dedicated in Algorithm 1 (Lewis and
Vrabie (2009)).

Definition 1 A control policy is defined as admissible with
respect to (1) on Ω, if it stabilizes (1) on Ω, and yields to
a finite cost function.

Algorithm 1 Value Iteration Algorithm

Initialization. Initialize the value function V0 using (14)
and h0(Xk) with any control policy, not necessarily admis-
sible (see Definition 1).

V0 = XT
0 P0X0 (14)

where P0 is a positive-definite matrix.
Value Update. Update the value using:

Vj+1(Xk) = r(Xk, hj(Xk)) + γVj(Xk+1) (15)

Policy Improvement. The control policy is improved by:

hj+1(Xk) = argmin
h(.)

(r(Xk, h(Xk)) + γVj+1(Xk+1)) (16)

VI does not find the value corresponding to the current
policy, but simply performs a single iteration to that value
using (15) with j the step index of VI. The proof of
convergence of the VI algorithm in the general nonlinear
DT setting was presented in (Al-Tamimi et al. (2008)).
It is difficult to solve equations (15) and (16) for nonlinear
systems. Fortunately, NN can be used to approximate Vj

and hj at each iteration. In the following, NN based actor-
critic structure is used to implement the VI algorithm, as
presented in the next section.

3.3 Actor Critic based implementation

VI algorithm can be implemented using actor-critic struc-
ture, where an actor component applies an action or con-
trol policy to the system, and a critic component assesses
the value of that action and the state resulting from it.
The learning mechanism maintained by the Actor-Critic
structure (Sutton and Barto (2018)) has two steps:

• policy evaluation, executed by the critic and per-
formed by observing the results of applying current
control policy on the environment;

• policy improvement, performed by the actor.



The combination of DP, NN, and actor-critic structure
results in the ADP algorithms. This latter includes three
NNs: two critics NNs and one actor NN. The structural
diagram of the ADP algorithm is shown in Fig. 1.

Fig. 1. The structural diagram of ADP algorithm

The first critic NN approximates the relationship between
the value function V̂j+1(Xk) and the states vector Xk.
While, the second critic NN approximates the relation
between the value function V̂j(Xk+1), at the previous
iteration j, and the states Xk+1 at instant k + 1. The
actor NN approximates the relationship between control

vector ĥj(Xk) and the states vector Xk. In this paper,
the model of the system and the model of the degradation
are assumed to be available. Otherwise, the dynamics can
be approximated by using available input–output data to
train a NN (Liu et al. (2017)).

The output of the critic and actor two-layer networks is
described by:

V̂j(Xk) = W (j)T
c Φ(Y (j)T

c Xk) (17)

ĥj(Xk) = W (j)T
a σ(Y (j)T

a Xk) (18)

where Φ = [Φ1, ...,ΦNc
] is the vector of hidden-layer acti-

vation functions of the critic with Φ(.) = sigmoid(.) and
Nc is the number of hidden-layer neurons. σ = [σ1, ..., σNa

]
is the vector of hidden-layer activation functions of the
actor with σ(.) = tanh(.) and Na is the number of hidden-

layer neurons. W
(j)
c and Y

(j)
c are the critic NN weights,

and W
(j)
a and Y

(j)
a are the actor NN weights. The weights

of the critic are obtained from NN training during the j-th
iteration, and the weights of the actor are trained only at
the final iteration. The Gradient Descent algorithm is used
to tune the weights of NNs.
A summary of the VI-based ADP algorithm for optimal
control is provided in Algorithm 2.

The developed method has been extended in a tracking
control framework also. In the following section, a tracking
control design is presented where the dynamics of the
system are required.

3.4 Optimal Tracking Control Using ADP

The above VI-based ADP approach can be applied to
solve infinite horizon optimal tracking control problem.
The objective is to find an optimal control policy h∗(.) that
regulates the state xk to follow a specified trajectory refk

Algorithm 2 Value Iteration ADP algorithm

Step 1. Initialize the weights of critic and actor neural
networks, and the parameters iamax, i

c
max, ϵa, ϵc, jmax,

ξc, ξa, Q, Q1, R. (ξa > ξc)
Step 2. Set the iteration index j = 0 and P0 = βIn = 0.
Step 3. Choose randomly an array of p state vector

{x1
k , x2

k, ..., x
p
k}, and p degradation’s state vector

{d1k , d2k, ..., d
p
k} to obtain an array of dimension p ×

(n + l) . Initialize V0 using (14). Train the critic
network using the data until the given accuracy ϵc, or
the maximum number of iterations icmax is reached.

Step 4. If j = 0, Initialise randomly the vector of initial

policy {ĥ0(X
1
k), ĥ0(X

2
k), ...ĥ0(X

p
k)} otherwise go to

Step.5.
Step 5. Using {hj(X

1
k), hj(X

2
k), ..., hj(X

p
k)}, compute the

output of the system {x1
k+1, x

2
k+1, ..., x

p
k+1} and

{d1k+1, d
2
k+1, ..., d

p
k+1}.

Step 6. Compute the output of the critic network
{V̂j(X

1
k+1), V̂j(X

2
k+1), ..., V̂j(X

p
k+1)}.

Step 7. Compute the target of the critic network training
{Vj+1(X

1
k), Vj+1(X

2
k), ..., Vj+1(X

p
k)} by (15). Train

the critic network until the given accuracy ϵc, or the
maximum number of iterations icmax is reached.

Step 8. Compute the target of action network
{hj+1(X

1
k), hj+1(X

2
k), ..., hj+1(X

p
k)} by using:

hj+1(Xk) = −γ

2
R−1GT ∂V̂j+1(Xk+1)

∂Xk+1

= −γ

2
R−1gT

∂V̂j+1(Xk+1)

∂xk+1

(19)

Step 9. If j = jmax or |Vj+1(X
s
k) − Vj(X

s
k)|≤ ξa with

s = {1, 2, ..., p}, train the actor NN until the given
accuracy ϵa, or the maximum number of iterations
iamax is reached; otherwise go to Step 10.

Step 10. Set the iteration index j = j + 1. If j > jmax

or |Vj+1(X
s
k)−Vj(X

s
k)|≤ ξc, go to Step 11; otherwise,

go to Step 5.
Step 11. Compute the output of the actor NN

{ĥj(X
1
k), ĥj(X

2
k), ..., ĥj(X

p
k)}. Obtain the final near

optimal control law u∗(.) = ĥj(.), and stop the algo-
rithm.

∈ Rn. Consider that there exists a feedback control ub,k ,
known by desired control (Liu et al. (2017)), satisfying the
following equation :

ub,k = g+(refk)[refk+1 − f(refk)] (20)

where g+(refk) = (g(refk)
T g(refk))

−1g(refk)
T is the

generalized inverse of g(refk) with g(refk)
+g(refk) = I.

By posing ϵk = xk − refk and µk = uk − ub,k, the utility
function becomes:

r(ϵk, µk,∆dk) = ϵTkQϵk + µT
kRµk +∆dTkQ1∆dk (21)

And the objective becomes to find µk that minimizes the
cost function leading to the optimal value:

V ∗(ϵk, dk) = min
µk

∞∑
i=k

γi−kr(ϵi, µi,∆di) (22)

To find the solution of the above equation, the iterative
ADP algorithm will iterate between value function update
(23) and the policy improvement (24):

Vj+1(ϵk, dk) = r(ϵk, hj(ϵk, dk),∆dk) + γVj(ϵk+1, dk+1)
(23)



hj+1(ϵk, dk) = argmin
µk

(r(ϵk, µk,∆dk)+γVj+1(ϵk+1, dk+1))

(24)
The ADP algorithm described above in equations (22-24)
is essentially the same as in Algorithm 2.
In the following, the NNs trained for regulation are used
for tracking but the main difference is that the inputs of
NNs (xk, dk) are replaced by (ϵk, dk) and the output of
the actor becomes µk. To verify the effectiveness of the
developed control schemes, an infinite horizon tracker is
implemented on an academic example in the next section.

4. SIMULATION RESULTS AND DISCUSSION

Consider the following unstable nonlinear system with
affine form:

xk+1 =

[
0.4x2,k

0.3x1,k + x2,k + 0.1dkx2,k

]
+

[
0 1
1 0

]
uk

The dynamic of evolution of degradation is described by
the following equation:

dk+1 = 0.01x2
2,k|dk|+dk

The prior knowledge of system dynamics is assumed to be
available. The weighting matrices are chosen as:

Q =

[
0.1 0
0 0.1

]
and R =

[
2 0
0 2

]
The three-layers NNs has been chosen as critic network
and actor network with the structures of 3–10–1 and
3–10–2 respectively, and γ = 0.98. The initial weights of
NNs are initialized to zero. A random array of data has
been generated to train the NNs, the state variables are
generated in the range of [-0.7, 0.7] and the degradation
state in the range of [0.1, 0.43]. The number of data
generated is p = 2000. For each iteration j, the critic
NN is trained for icmax = 4000 steps under the learning
rate 1 × 10−4 so that the approximation error limit 10−6

is reached. The actor NN is trained for iamax = 6000
steps under the learning rate 1 × 10−5, only at the final
iteration jmax or when the value function converges to the
optimal value. After implementing the outer-loop iteration
for jmax = 20 times, the convergence of the value function
is observed. If V0(xk) ≤ V1(xk) holds for all xk, the
value function sequence Vj is a monotonically increasing
sequence, Vj+1(xk) ≥ Vj(xk), ∀xk, ∀j ≥ 0 (Liu et al.
(2017)). In our case, V0(xk) is fixed to zero. The 3-D plot of
approximate value function at j = [1, 3, 20] is given in Fig.
2, this latter shows that V20 > V3 > V1. The convergence
process of the value function is given in Fig. 3 which also
affirms the monotonic behaviour of Vj .
For x0 = [0, 0] and d0 = 1× 10−1, the corresponding state
trajectories are displayed in Fig. 4. The curve in green
represent the trajectory of the states without taking into
consideration the rate of evolution of degradation in the
reward function, and the NNs are with the structures of
2–10–1 and 2–10–2, i.e., only the states of the system are
used to train the NNs. In this case, the states track the
reference with a null steady state error, and the value of
the degradation at the final instant of time is equal to
0.4208 (Fig. 5). In order to decelerate the speed and the
final value of degradation, ∆dk is integrated in the cost
function, and the state of degradation dk is considered as
one of the NNs inputs, in addition to the states of the

j=20

j=1

j=3

Fig. 2. 3-D plot of approximate value function (17) at
j = [1, 3, 20] for Q1 = 2× 104
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Fig. 3. Convergence of the value function for Q1 = 2× 104

at x = [0.6605, 0.5784]T and d = 0.1036

system. For Q1 = 2× 104 and Q1 = 2.6× 104, the red and
blue curves are respectively obtained. From Fig. 4, it can
be seen that by including ∆dk and dk in the learning and
the structure of the NNs, the steady state error increases
progressively by raising the value ofQ1 in order to decrease
the speed of degradation.
Table 1 presents the mean square error (MSE) between
the x1 and the reference for the three cases (No delta,
Q1 = 2 × 104 and Q1 = 2.6 × 104) where each period is
100 time steps.:

MSE =
1

N

N∑
k=1

||xk − refk||2

The Table 1 shows that for Case 1, MSE decreases pro-
gressively with respect to time which implies that the
controller is focusing only on the performance of the
systems ignoring the degradation. While in Case 2 and
3, the MSE increases progressively with respect to time,
which confirms the results obtained in Fig. 4 and shows
that the controller is trying to compromise between the
performance and the speed of degradation. By increasing
the value of Q1, the controller will prioritize reducing the
rate of evolution of degradation over the performance of
the system (21).
Fig. 5 shows the evolution of degradation for the different
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Fig. 5. Variation of degradation with respect to time

No delta Q1 = 2× 104 Q1 = 2.6× 104

N1 0.0054 0.0056 0.0054

N2 1.5134× 10−9 2.3758× 10−6 6.7253× 10−5

N3 1.0128× 10−9 1.0256× 10−5 8.2514× 10−5

N4 7.1224× 10−10 2.7914× 10−5 1.042× 10−4

N5 3.1450× 10−10 6.1742× 10−5 1.3519× 10−4

N6 4.9005× 10−11 1.2128× 10−4 1.7958× 10−4

Table 1. Mean Squared Error between x1 and
refk per period N

cases. At k = 600, the value of degradation forQ1 = 2×104

is higher than for Q1 = 2.6× 104, and both values are less
than the value obtained when the degradation was not
considered in the cost function and the learning.

5. CONCLUSION

This paper proposes a learning approach towards the de-
sign of degradation tolerant control, for nonlinear discrete
time systems affine in control. The problem is formulated
over an infinite horizon in the framework of reinforcement
learning. The proposed methodology is effective in learning
control law that leads to reduction in degradation rate
of the system whilst maintaining the closed loop stability
under the assumptions of admissibility. The approach was
examined for three cases. The first case is when the rate
of evolution of degradation is not included in the reward
function and also the degradation data are not considered
as input of neural networks. In the second and third cases,
the degradation is integrated in the cost function and also
supposed as one of the NN’s inputs in addition to the
state of the system. By tuning the weighting coefficient
matrix Q1, the rate of evolution of degradation can be
decreased thus preventing the system’s breakdown. Future
works will focus on implementing the developed algorithm
in real time, so the NNs are trained online based on the
outputs of the systems without need of the system’s model.
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Fu, J., Maré, J.C., and Fu, Y. (2017). Modelling and simulation
of flight control electromechanical actuators with special focus
on model architecting, multidisciplinary effects and power flows.
Chinese Journal of Aeronautics, 30(1), 47–65.

Jha, M.S., Weber, P., Theilliol, D., Ponsart, J.C., and Maquin,
D. (2019). A reinforcement learning approach to health aware
control strategy. 27th Mediterranean Conference on Control and
Automation (MED), 171–176. URL 10.1109/MED.2019.8798548.

Kanso, S., Jha, M.S., and Theilliol, D. (2023). Degradation tolerant
optimal control design for linear discrete-times systems. In In-
ternational Conference on Diagnostics of Processes and Systems,
398–409. Springer.

Knight, J.C. (2002). Safety critical systems: challenges and direc-
tions. In Proceedings of the 24th international conference on
software engineering, 547–550.

Lewis, F.L. and Liu, D. (2012). Reinforcement learning and approx-
imate dynamic programming for feedback control.

Lewis, F.L. and Vrabie, D. (2009). Reinforcement learn-
ing and adaptive dynamic programming for feedback con-
trol. IEEE Circuits and Systems Magazine, 9, 32–50. doi:
10.1109/MCAS.2009.933854.

Liu, D., Wei, Q., Wang, D., Yang, X., and Li, H. (2017). Adaptive
dynamic programming with applications in optimal control. URL
http://www.springer.com/series/1412.

Noura, H., Theilliol, D., Ponsart, J.C., and Chamseddine, A. (2009).
Fault-tolerant control systems: Design and practical applications.
Springer Science & Business Media.

Pour, F.K., Theilliol, D., Puig, V., and Cembrano, G. (2021). Health-
aware control design based on remaining useful life estimation for
autonomous racing vehicle. ISA Transactions, 113, 196–209. doi:
10.1016/j.isatra.2020.03.032.

Salazar, J.C., Weber, P., Nejjari, F., Sarrate, R., and Theilliol,
D. (2017). System reliability aware model predictive control
framework. Reliability Engineering and System Safety, 167, 663–
672. doi:10.1016/j.ress.2017.04.012.

Stengel, R.F. (1994). Optimal control and estimation. Courier
Corporation.

Sutton, R.S. and Barto, A.G. (2018). Reinforcement Learning: An
Introduction.

Werbos, P.J. (1997). Advanced forecasting methods for global crisis
warning and models of intelligence.

Yousefi, N., Tsianikas, S., and Coit, D.W. (2020). Reinforcement
learning for dynamic condition-based maintenance of a system
with individually repairable components. Quality Engineering,
32(3), 388–408.


