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Percus-Yevick structure factors made simple

Measuring the structure factor, S(q), of a dispersion of particles by Small-Angle Xray Scattering provides a unique method to investigate the spatial arrangement of colloidal particles. However, it is impossible to find the exact location of the particles from S(q) because some information is inherently lacking in the measured signal. The two standard ways to analyse an experimental S(q) are then to compare it either to structure factors computed from simulated systems, or to analytical ones calculated from approximated systems. However, such approaches may prove inadequate for dispersions of variously polydisperse particles. While Vrij, Bloom and Stell established a mean-field approach that could yield fairly accurate approximations for experimental S(q), this solution has remained underused because of its mathematical complexity.

In the present work, we derive and report the complete Percus-Yevick solution for general polydisperse hard-spheres systems in a concise form that is straightforward to use. The form of the solution has been simplified enough to provide experimentalists
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A Journal of the International Union of Crystallography with ready solutions of several commonly encountered particle-radius distributions in real systems (Schulz, truncated normal and inverse Gaussian). We also illustrate our approach with a case study of exponential radius distribution. Finally, we discuss in detail the application of our proposed solution to the power-law radius distribution by comparing our calculations to experimentally measured S(q) for an Apollonian packing of spherical droplets recently reported in high internal-phase-ratio emulsions.

Introduction

Small-Angle Scattering (SAXS for X-rays, SANS for neutrons) [START_REF] Fejgin | Structure analysis by small-angle X-ray and neutron scattering[END_REF]) is a powerful method to deduce structural information of materials (liquid or solid) in the range of distances 10-1000 Å (Guinier, 1939). The spectra measured is given by the intensity of incident beam scattered by the materials as a function of the magnitude of the scattering vector, q, in the reciprocal space, namely: q = 4π sin(θ/2)/λ, in which λ is the wavelength of the incident beam and θ the angle between the incident beam and the detector measuring the scattered intensity. This makes it a unique tool to study spatial organization of matter prepared for example, by dispersing fine particles (nano-or micrometer sized) in a liquid (Porod, 1951).

In order to determine the particles' arrangement in such a material, we need to know all the partial pair-distribution functions, g i,j , that is the distribution of distances between pairs of particles of radii (a i , a j ), per unit volume (Donkersloot, 1978). This is generally a formidable problem, because the particles are not all identical, and also because intra-particle and inter-particle distances are confounded. As a result, the amount of information required to describe precisely the spatial structure far exceeds that available in the experimental data. There are several ways to deal with this problem:

• change the contrasts of the particles without changing their positions, e.g. substituting H atoms with D atoms in SANS [START_REF] Williams | [END_REF][START_REF] Williams | Neutron, X-Ray and Light Scattering[END_REF], or varying the wavelength of X-rays near the absorption edge of suitable atoms in SAXS (Stuhrmann, 1985). These contrast variation techniques can provide a rigorous separation of intra-particle and inter-particle distances, but are infrequently practised due to the experimental difficulty in ensuring structurally identical samples which scatter differently.

• create a model that takes into account the distribution of particle sizes and IUCr macros version 2.1.11: 2020/04/29 shapes and use this model to predict the pair-distribution functions at equilibrium (e.g. the package GNOM from ATSAS software [START_REF] Franke | [END_REF]). This approach is feasible in cases where a sample is infinitely dilute, or if the particles are identical. However this is not generally the case because of the unknown interactions between particles of different sizes and shapes.

To determine the radial pair-distribution functions of a mixture of hard-sphere species, the corresponding Ornstein-Zernicke equation [START_REF] Frisch | The Equilibrium Theory of Classical Fluids[END_REF] was solved by Baxter (Baxter, 1968 ;Baxter, 1970) using the Percus-Yevick closure relationship (Percus & Yevick, 1958). Baxter's technique was applied to a system made of uncharged polydispersed hard spheres (Vrij, 1979 ;Blum & Stell, 1979), and in particular for a distribution of diameters that matched the Schulz distribution (definition of the Schulz distribution in emulsion made of polydisperse droplets can be found for example in (Kotlarchyk et al, 1988)). This provides a complete mean-field solution for the structural problem at least for this particular case of a population of uncharged hard spheres (van Beurten & Vrij, 1981 ;Griffith et al, 1986 ;Griffith et al, 1987).

Several authors have since extended Vrij's solution to similar cases where a mean-field solution can be postulated (e.g. soft spheres (Blum & Stell, 1979) or adhesive hard spheres (Robertus et al, 1989). All these solutions to the decomposition problem can be expected to be as good as the mean-field descriptions of phase transitions, which appear to be rather apt descriptors. Nevertheless, users of small-angle scattering may be deterred by the complexity of the Vrij solution, and prefer to use an oversimplified solution such as assuming an infinitely dilute sample; an assumption that can turn out to be a strong source of errors in for all but the most dilute colloidal dispersions.

Similarly, when analyzing scattering spectra, users may be tempted to approximate their actual experimental size distributions of samples to distributions more typically encountered and explored in literature (e.g. Gaussian, Schulz, bimodal etc.), running IUCr macros version 2.1.11: 2020/04/29 the risk of belittling the effects of polydispersity particularly in systems that show fractionated crystallization [START_REF] Cabane | [END_REF].

We first show that the Vrij solution can be expressed in a form which is mathematically simpler than the expressions known to date. We provide a few examples for the effects of intra-and interparticle interferences on the scattering patterns of moderately dilute dispersions, and compare these effects with those predicted according to other approximations. Finally we show that the intra-and interparticle correlations of very polydisperse hard-sphere systems can be predicted with great accuracy thanks to the use of Babinet's principle.

From these examples, it becomes clear that the effects of polydispersity (size or interaction) are extremely important in systems where packing tends to be a serious constraint, for instance, in highly concentrated emulsions. We believe that our simplified solution will greatly assist other researchers in deriving a much easier spatial interpretation of complicated real-life systems from their convoluted scattering data measured in the reciprocal space.

Simple form of S(q) for polydisperse system within the PY approximation

Let us consider a polydisperse dispersion of neutral spherical particles. Each particle size is characterized by its radius a, and n(a) is the particle-radius distribution. Polydispersity of the ensemble of particles is measured by the parameter p defined as the relative variance, σ 2 , of the radii, that is:

p = σ 2 ⟨ a ⟩ 2 (1)
The quantity p is named polydispersity index of the radius distribution (Stetefeld et al, 2016).
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According to Vrij's work (Vrij, 1979 ;van Beurten & Vrij, 1981), the structure factor S(q) of such a polydisperse dispersion can be calculated within the PY hardsphere theory and expressed as a combination of a finite set of functions averaged over the distribution of radii. However, the formalism through which these functions are expressed is quite complicated, and this has strongly limited its usage.

In the present Section, we propose much simpler formulae in a concise form. The details of the mathematical calculations bridging the present results to previous works are found in Supplementary Information.

Full expression of S(q) for any dispersion of spheres

The system being polydisperse, one has first to introduce the averaging process, 

⟨ F (qa) ⟩ ≡ ∫ ∞ 0 F (qa) n(a)da , ( 2 
) ⟨ F (qa) ⟩ ≡ ∑ α F (qa α ) n(a α ) . ( 3 
)
Within the PY approximation, the structure factor of a dispersion of hard spheres with the particle volume fraction, φ, is written under the form (full details in Appendix A):

S(q) = Y /c X 2 + Y 2 , (4)
with the expressions for X and Y :

X = 1 + b + 2ef g + d(f 2 -g 2 ) d 2 + e 2 , ( 5 
) Y = c + 2df g -e(f 2 -g 2 ) d 2 + e 2 , ( 6 
)
and the auxiliary quantities:

ψ = 3φ 1 -φ (7) b = ψ ⟨ (cos(qa) + qa sin(qa))(sin(qa) -qa cos(qa)) ⟩ ⟨ (qa) 3 ⟩ , ( 8 
) c = ψ ⟨ (sin(qa) -qa cos(qa)) 2 ⟩ ⟨ (qa) 3 ⟩ , ( 9 
)
d = 1 + ψ ⟨ (qa) 2 sin(qa) cos(qa) ⟩ ⟨ (qa) 3 ⟩ , ( 10 
) e = ψ ⟨ (qa) 2 sin 2 (qa) ⟩ ⟨ (qa) 3 ⟩ , ( 11 
) f = ψ ⟨ qa sin(qa)(sin(qa) -qa cos(qa)) ⟩ ⟨ (qa) 3 ⟩ , ( 12 
) g = -ψ ⟨ qa cos(qa)(sin(qa) -qa cos(qa)) ⟩ ⟨ (qa) 3 ⟩ . ( 13 
)
In the equations above, the radius distribution n(a) does not need to be normalized since S(q) finally depends on ratios of average functions of qa. The only mathematical condition allowing the solution's expression under the form of (4)-( 13) is the finiteness of the moments ⟨ a k ⟩ for k = 0, 1, 2, 3 (a condition that we henceforth suppose fulfilled).

An equivalent form -of easier use in some cases -involving functions of complex variables for the calculation of S(q) is given in Appendix A, formulae ( 92)-(100).

Practically, to calculate the value of the structure factor S(q), one starts by calculating the seven averaged expressions required to compute the functions b, c, d, e, f, g of qa, that is: functions in ( 5)-( 6) to write the auxiliary functions X and Y , and includes them at last in the expression (4) of the structure factor.

An advantage of the expressions written above to calculate S(q) is that all the averages are linear functions of the radius distribution. Therefore, if the studied distribution is (e.g.) bimodal and represented by the sum of two known unimodal distributions, n(a) = n 1 (a) + n 2 (a), any average parameter is the corresponding sums of the averages for each distribution n 1 and n 2 .

In the following sections where we will examine various commonly-encountered distributions, we have taken the liberty of using the same notations for the auxiliary functions b to g defined in the general case in (8) to (13), in an effort not to encumber equations with unnecessary subscripts. We kindly remind readers to take extra precaution when referencing these equations for their distribution of interest, to avoid any errors or confusion.

Before delving into the discussion of any particular case, let us mention here that the complete analytical forms of the auxiliary quantities (8)-( 13) are given explicitly below:

• the exponential distribution is found in Section 3

• the Schulz distribution is in Section 4.1

• the truncated Gaussian distribution is in Section 4.2

• the inverse Gaussian distribution is in Section 4.3

• the power-law distribution is in Section 5.

Other radius distributions lead to analytical expressions of b, c, d, e, f, g, then of S(q). We leave it to the interested reader to calculate these expressions for other cases (e.g. the uniform distribution).
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Comments about the general form of S(q)

The expressions (4)-( 6) for the structure factor, and the relations giving the auxiliary functions b, c, d, e, f and g, are valid for any system of non-overlapping spheres within the PY hard-sphere model. Several comments about the formulae are noteworthy at this stage.

monodisperse case.

It is a simple exercise to rediscover the standard Percus-Yevick formula for the monodisperse case (Kinning & Thomas, 1984) after removing the average symbols

⟨ • • • ⟩
in the formulae above. In this sense, the equations ( 4)-( 13) are nothing but a complicated way to write the popular monodisperse hard-sphere Percus-Yevick solution in terms of trigonometric functions and powers of qa.

Porod domain.

For any volume fraction φ in the range ]0, 1[, the auxiliary parameters for q → ∞ are such that: d ≃ 1, c, e, g ∼ 1/q and b, f behave as ∼ 1/q 2 , hence the known result: lim q→∞ S(q) = 1. We can be more precise about that limit.

Using the asymptotic expansions of ∫ ∞ 0 cos(qa)n(a)da and of ∫ ∞ 0 sin(qa)n(a)da found by Olver [START_REF] Olver | [END_REF], one finds from the above relations:

S(q) ∼ 1 + K q 2 , for q → ∞ , ( 14 
) K = ψ ⟨ a ⟩ 3 ⟨ a 3 ⟩   1 + ψ 2 ⟨ a 2 ⟩ 2 ⟨ a ⟩⟨ a 3 ⟩    . ( 15 
)
In particular we deduce from (14) that the limit value 1 is always approached from above (since K > 0), with behaviour ∼ 1/q 2 whatever the radius distribution. When the Percus-Yevick approximation is valid in a certain experimental situation, the relations ( 14)-( 15) can then be used as the best fit of the corresponding experimental S(q)

IUCr macros version 2.1.11: 2020/04/29 profile at large q, and find at the same time an estimation of the combination (15) of moments of the radius distribution.

2.2.3. diluted systems. For any radius distribution, one recovers the trivial result lim φ→0 S(q) = 1 (the case of no scattering). More precisely, the structure factor approximates at the first order in φ, as:

S(q) ≃ 1 1 + 2(b -f g/c) , for φ ≪ 1 . ( 16 
)
An explicit example is discussed in the following Section 3.

A basic example: dispersion of spheres with exponential radius distribution

To exemplify the formulae above, we discuss in this Section a simple, though nontrivial, radius distribution of spheres, namely the exponential distribution:

n exponential (a) ∝ e -a/ ⟨ a ⟩ , ( 17 
)
of average radius

⟨ a ⟩ .
The distribution n exponential (a) is a decreasing function of the radius a over the entire range 0 < a < ∞, and its polydispersity is: p = 1, that is quite a wide distribution.

Its value for a → 0 is finite, while its tail (for a → ∞) is exponential.

The exponential distribution ( 17) is mathematically simple and is particularly relevant in a number of applications, e.g. colloidal aggregates in a viscous fluid (Bastea, 2006).
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Analytical PY expression of S(q) for the exponential radius distribution

We use below the solution involving real-valued functions as written in the Section 2. Using the scaled variable

x ≡ 2q ⟨ a ⟩ , ( 18 
)
the six auxiliary functions b, c, d, e, f, g, corresponding to ( 8)-( 13), are as follows:

b = φ 1 -φ 1 + 5x 2 (1 + x 2 ) 3 , ( 19 
) c = φ 1 -φ x 3 5 + x 2 (1 + x 2 ) 3 , ( 20 
)
d = 1 + φ 1 -φ 3 -x 2 (1 + x 2 ) 3 , ( 21 
) e = φ 1 -φ x 6 + 3x 2 + x 4 (1 + x 2 ) 3 , ( 22 
) f = φ 1 -φ x 2 5 + x 2 (1 + x 2 ) 3 , ( 23 
) g = φ 1 -φ x -2 + 3x 2 + x 4 (1 + x 2 ) 3 , ( 24 
)
and they are all ratio of simple polynomials in x. The relations ( 5)-( 6) and consequently (4) being rational functions of b, c, d, e, f, g, we obtain a simple formula for the structure factor, S exponential (q), namely:

S exponential (q) =(1 -φ) 2 (1 + x 2 ) 3 5 + x 2 P 2 (x 2 ) Q 4 (x 2 ) , ( 25 
)
in which P 2 is a quadratic polynomial of its argument, Z ≡ x 2 , and Q 4 a quartic polynomial, both with coefficients depending only on the value of φ namely:

P 2 (Z) = 5 + 4φ 2 + 2(3 -5φ + 3φ 2 )Z + (1 -φ) 2 Z 2 , ( 26 
) Q 4 (Z) = (1 + 2φ) 2 + 4(1 + 5φ 2 )Z+ +2(3 -8φ + 9φ 2 -2φ 3 )Z 2 + +4(1 -φ) 4 Z 3 + (1 -φ) 4 Z 4 . ( 27 
)
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All the coefficients of P 2 and Q 4 are positive for any value of the volume fraction, 0 ≤ φ ≤ 1. The asymptotic behaviour of S exponential (q) given by ( 25)-( 27) for the large values of x is consistent with the formulae ( 14)-( 15), that is:

(q ⟨ a ⟩ ) 2 (S exponential (q) -1) ≃ φ 2(1 -φ) 2 , for x → ∞ (28)
with the constant in the right-hand side of ( 28) related to moments of the radius distribution through the expression (15).

Although we are mainly interested in the present work in dense polydisperse systems, we note here the particular case of small values of φ for which the PY approximation is expected to be correct. One finds from (25), or using the approximation ( 16):

S exponential (q) ≃ 1 1 + 2φ 3 -x 2 (1 + x 2 ) 2 , when φ ≪ 1 , ( 29 
)
which ensures that S exponential (q) ≡ 1 for φ = 0, as it must be. The difference between the approximation (29) and the formula ( 25) is less than 5% when φ < 0.1. An interesting behaviour of ( 29) is that, for this exponential radius distribution, the peak of S exponential (q) is asymptotically located at q ⟨ a ⟩ = √ 7/2 ≃ 1.32 for φ → 0, while the corresponding peak height behaves as:

max{S exponential } = 1 + φ/8.
This behaviour and these values can be compared to what happens to a system of monodisperse hard spheres of common radius

⟨ a ⟩
, at small volume fraction φ, in the PY approximation. Indeed, in the monodisperse case, the location of the first peak of the structure factor is such that:

q ⟨ a ⟩ ≃ 2.882 (that is the smallest positive root of the equation tan(2x) = 6x/(3 -4x 2 ))
, when φ → 0, while the corresponding peak height is: max{S monodisperse } ≃ 1 + φ/1.45, that is much larger than the polydisperse case.

Incidentally, this is a sign that spatial correlations are stronger in the monodisperse than in the polydisperse case, even in the low-φ domain.
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Comparison of the PY solution with numerical simulations of systems of spheres with exponential radius distribution

In this Section, we compare the PY polydisperse structure factor with exact structure factors obtained from simulated systems in order to specify the range of practical use of the approximation.

The PY approximation supposes the same local radius distribution around each particle regardless of its size [START_REF] Greene | [END_REF]. This is a mean-field approximation. Sticking to this constraint, we used Monte-Carlo simulation in the semi-grand canonical ensemble (Briano & Glandt, 1984), putting randomly, in a cubic box with periodic boundary conditions, N non-overlapping spheres selected with radii following the exponential distribution (17). That way, we enforce particle size and position to be essentially uncorrelated (except volume exclusion), since the next particle to add is sensitive to the remaining void geometries and not directly to the particles surrounding the voids. Using these rules, we generated a number of independent systems comprising N = 25 000 exponentially distributed spheres at controlled volume fraction φ. Using this algorithm, the maximum attainable volume fraction is ≃ 0.69.

An example of such a system with exponential distribution of the sphere radii, is presented in FIG. 1 In FIG. 2, we show the structure factors, both numerical (red circles) and analytical (black continuous curves), in the cases: φ = 0.25, φ = 0.50 and φ = 0.69.

Agreement between the structure factor functions from the simulated systems and the corresponding analytical solutions from the PY approach is almost perfect up to φ = 0.5. Beyond this value, the numerical peak height decreases with the volume fraction, while the analytical peak continues to grow. This discrepancy beyond φ ≃ 0.5 may be interpreted as specific spatial correlations and sizes correlations which are presumed in the PY approximation, whereas these presumptions are not present in the random-addition numerical simulations.

The Complementary Percus-Yevick hard-sphere approach for dense sphere packings

The discrepancy between the numerical structure factor and its analytical form using PY approximation, can be roughly explained by the swapping of roles between matter and voids: when φ > 0.50, the dense system of packed spheres may be considered as a population of voids inside a homogeneous medium. A pore is here defined as an interstice between neighbouring spheres. Each pore is an assembly of spherical triangles, possibly connected to other pores by necks not wider than a threshold (e.g. the minimal sphere radius). Because of Babinet's principle, the definite structure factor is reduced to the X-ray scattering by an ensemble of small void domains in homogeneous matter [START_REF] Guinier | Small Angle Scattering of X-Rays M[END_REF].

To be more precise, although the shapes of the voids are generally complicated, we know exactly the average size of the voids. Indeed, if v and s denote respectively the volume and the surface of a given void, the following general (i.e. valid for any radius distribution) equations relate the total surface, A, of the interface between void and matter, and the volume fraction, φ, of matter: between the typical sizes of the voids and the typical sizes of the spheres:

1 -φ = N v V ⟨ v ⟩ v ; φ = N s V 4π 3 ⟨ a 3 ⟩ , ( 30 
) A V = N v V ⟨ s ⟩ v ; A V = N s V 4π ⟨ a 2 ⟩ , ( 31 
⟨ v ⟩ v ⟨ s ⟩ v = 1 ψ ⟨ a 3 ⟩ ⟨ a 2 ⟩ . ( 32 
)
Let us define the effective radius, a eff , of the void of volume v, by the relation: v = 4πa 3 eff /3 (this means that the form factor of the void is replaced by the form factor of a sphere of same volume). The probability distribution of the a eff is not known, but the voids are essentially uncorrelated [START_REF] Brownlee | Statistical Theory and Methodology[END_REF], then we can invoke a theorem stating that the maximum entropy probability distribution for a positive random variate with fixed average value is the exponential distribution [START_REF] Park | [END_REF].

Then, we assume that the void effective radii are distributed exponentially, with:

⟨ a eff ⟩ v = 1 -φ φ ⟨ a 3 ⟩ ⟨ a 2 ⟩ . ( 33 
)
The last step is to suppose that the Percus-Yevick theory is valid for the ensemble of the voids, that is to say: the voids behave as an ideal gas with a pair distribution function which vanishes for distance < a eff . Then, we can use the formula (25) to obtain the structure factor of the system, in which one replaces the matter volume fraction φ by the complementary void volume fraction 1 -φ. We call this method the Complementary Percus-Yevick hard-sphere approach.

This approximation results in the structure factor shown as the dashed blue curve in FIG. 2 for the case of φ = 0.69. This structure factor, obtained from X-ray scattering by a dilute population of voids with an exponential distribution of their effective radius, is much closer to the structure factor obtained from the simulated systems than the Percus-Yevick solution for scattering by φ = 0.69 of matter.

The complementary PY approach is expected to be general for dense dispersions of uncharged hard spheres, leading to accurate estimations of the analytical structure
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Using such an approach, the agreement between the simulated and analytical data is much better (quantitatively better than 3%), as seen in FIG. 3.

Analytical structure factors for three general unimodal radius distributions within the PY approximation

S(q)'s calculation is essentially reduced to determining the averaged auxiliary functions b, c, d, e, f, g defined after ( 4)-( 6). Then, the expression of the structure factor in the PY approximation is analytical as soon as the averages

⟨ a k e iqa ⟩
of the radius distribution n(a) are known in closed forms for k = 0, 1, 2, 3. Hereafter is a limited list of standard (and useful) 2-parameters continuous distributions for which the structure factor is calculated exactly. These full formulae can be used, for example, to fit shapes of experimental structure factors resulting from SAXS analysis of polydisperse sphere dispersions.

Schulz distribution

The Schulz distribution is defined as:

n Schulz (a) ∝ a s-1 e -s a/⟨a⟩ , ( 34 
)
with s > 0, ⟨ a ⟩ > 0, and the radius, a, takes real positive values. The S Schulz (q) for this distribution was already given in (van Beurten & Vrij, 1981 ;Griffith et al, 1986 ;Griffith et al, 1987), and we present a much simpler form below.

The parameter s is the inverse of the polydispersity of the distribution, p:

p = 1 s . ( 35 
)
The behaviour of the distribution near a → 0 is a power law, either decreasing (∼ 1/a 1-s ) when s < 1, or increasing (∼ a s-1 ) when s > 1. The Schulz distribution
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The pure exponential distribution detailed in the previous section represents the case where s = 1.

The structure factor S Schulz (q) can be written explicitly in terms of functions of the reduced variable:

x ≡ 2q ⟨ a ⟩ s . ( 36 
)
Some combinations of variables appear naturally in the final expressions of S Schulz (q) in this case. These are the two trigonometric quantities:

R ≡ cos((s + 2) arctan(x)) (1 + x 2 ) 1+s/2 , ( 37 
)
I ≡ sin((s + 2) arctan(x)) (1 + x 2 ) 1+s/2 , ( 38) 
(here and below, the notations R and I are chosen to remind that the corresponding functions are related to the real part and imaginary part respectively of a complexvalued quantity appearing in the derivation using complex-valued functions in Appendix A), and the three simpler quantities:

g 1 ≡ ψ (s + 2)x , ( 39 
)
g 2 ≡ 2ψ (s + 1)(s + 2)x 2 , ( 40 
)
g 3 ≡ 4ψ s(s + 1)(s + 2)x 3 , ( 41 
)
with the parameter ψ given by ( 7). Using R, I, g 1 , g 2 , g 3 , the auxiliary quantities
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b = ( g 3 - s + 4 s g 1 ) I -2 s + 2 s g 2 R , ( 42 
) c = g 1 + g 3 - ( g 3 - s + 4 s g 1 ) R -2 s + 2 s g 2 I , ( 43 
) d = 1 + g 1 I , ( 44 
) e = g 1 -g 1 R , ( 45 
) f = g 2 -g 2 R - s + 3 s + 1 g 1 I , ( 46 
) g = g 1 -g 2 I + s + 3 s + 1 g 1 R . ( 47 
)
The corresponding structure factor S Schulz (q) for the Schulz distribution is calculated using ( 5)-( 6) then (4).

Note: when s is an integer number, R and I are ratios of polynomials in x. Because of ( 4)-( 6), the structure factor expresses in this case as the ratio of two polynomials of degree 2 + 3s in x 2 .

Truncated normal distribution

The truncated normal distribution is defined as: The value of the distribution near a = 0 is finite positive, while the tail is Gaussian:

n normal (a) ∝ e - (a -⟨a⟩) 2 2p⟨a⟩ 2 , ( 48 
∼ exp(-a 2 ).

Analytical calculation of the auxiliary quantities b, c, d, e, f, g, requires consideration

of unphysical negative values of particle radii a. The relative amount of these radii is the complementary error function Erfc(1/ √ 2p)/2 that we have to add to the truncated probability distribution. A rough estimation of the accuracy of the expressions below is given by the argument that for p < 18%, Erfc( ) amounts to less than 1%. This will be also the precision for S normal (q) calculated by the current approach, provided the polydispersity p is restricted to: 0 < p < 0.18. Within these conditions and using the scaled variable:

x ≡ 2q ⟨ a ⟩ , (49) 
we define the auxiliary functions R and I as:

R ≡ 3φ (1 + 3p)(1 -φ)x 3 e -px 2 /2 cos x , ( 50 
)
I ≡ 3φ (1 + 3p)(1 -φ)x 3 e -px 2 /2 sin x , ( 51 
)
and the three simpler quantities:

g 1 ≡ (1 + p)ψ (1 + 3p)x , ( 52 
)
g 2 ≡ 2ψ (1 + 3p)x 2 , ( 53 
)
g 3 ≡ 4ψ (1 + 3p)x 3 . ( 54 
)
Using R, I, g 1 , g 2 , g 3 , the auxiliary quantities b, c, d, e, f and g write:

b = ((2 + p x 2 ) 2 -x 2 (1 + p))I -2x(2 + p x 2 )R , ( 55 
) c = g 1 + g 3 -2x(2 + p x 2 )I -((2 + p x 2 ) 2 -x 2 (1 + p))R , ( 56 
) d = 1 + x 2 (1 + p -p 2 x 2 )I + 2px 3 R , ( 57 
) e = g 1 + 2p x 3 I -(1 + p -p 2 x 2 )x 2 R , ( 58 
) f = g 2 -2x(1 + p x 2 )R -x 2 (1 -p -p 2 x 2 )I , ( 59 
) g = g 1 + x 2 (1 -p -p 2 x 2 )R -2x(1 + p x 2 )I . ( 60 
)
As usual, the corresponding structure factor S normal (q) for the truncated normal distribution is calculated using (4)-( 6).

In the case where the polydispersity p > 18% (that is the case where integration over positive radius should not be replaced by integration over the whole real axis), the respective formulas are more complicated, though still analytical, provided that the auxiliary quantities R and I are expressed in terms of the two complementary error

functions Erfc[(1/ √ p ± i √ p x)/ √ 2].
The full analytical expressions are not given here and we invite the reader to use a data-processing software to calculate the average values of interest specific to their experimental systems.

Inverse Gaussian distribution

The inverse Gaussian distribution is defined as: The distribution belongs to the exponential family, and it goes sharply to 0 (∼ exp(-1/a)) for a → 0. In the context of the colloids, it is not as well-known as the Schulz and the normal distributions, though one can foresee generic conditions where the inverse Gaussian distribution may appear. Indeed, from the works of Schrödinger and Smoluchowski (Schrödinger, 1915 ;von Smoluchowski, 1915), we know that this distribution characterizes the time for a particle undergoing Brownian motion with a drift, to cover a given distance along a line. One has then to think of a population of such particles growing at a constant rate in a limited space domain, to obtain an inverse Gaussian size distribution. For example, it could be the case of micrometric particles sedimenting in a dispersion of tiny nanometric particles and accreting them (Alexandrov & Lacis, 2000). In a different context, the inverse Gaussian distribution has been used to describe the cell size distribution of phytoplankton population (Bernard et al, 2007).

n inverse (a) ∝ 1 a 3/2 e - (a -⟨a⟩) 2 2p⟨a⟩ a , (61) with 
The exact solution, in this case, is much simpler when expressed in terms of functions of complex-valued variables, rather than using the real-valued quantities b, c, d, e, f, g.

We use the formulae written in ( 93)-(96) (in Appendix 1) to calculate the expressions for µ 1 , µ 2 , µ 3 defined below.

Firstly, we introduce the auxiliary quantity µ 0 :

µ 0 = 1 1 -4ixp e (1- √ 1-4ixp)/p , ( 62 
)
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x ≡ q ⟨ a ⟩ . ( 63 
)
One then obtains:

µ 1 = i 2 [ 1 + (1 + p) x 2 - ( 64 
) -µ 0 ( 1 -4ixp -x 2 -ix 2 -9ixp √ 1 -4ixp ) ] , ( 65 
)
µ 2 = ix 2 2 ( 1 + p -µ 0 ( 1 + p √ 1 -4ixp ))
, (66)

µ 3 = x 2 ( 1 + ix(1 + p) + µ 0 (ix - 1 -5ixp √ 1 -4ixp ) ) , ( 67 
)
while the moment

ν 3 ≡ ⟨ (qa) 3
⟩ is:

ν 3 = ( 1 + 3p + 3p 2 ) x 3 . ( 68 
)
Then, the relations ( 97)-( 99) allows the calculation of the expressions of f 11 , f 12 , f 22 , and the static structure factor S inverse (q) of the inverse Gaussian distribution population of spherical particles is obtainable from (100).

Comparison of PY structure factors for various unimodal distributions

Numerical systems made of N = 10 6 particles at φ = 0.50 were built using the random sequential addition (RSA) algorithm (Widom, 1966). Indeed, RSA is probably the simplest process to obtain disordered packings of spheres (Torquato, 2018), and the selected volume fraction, φ = 0.50, was below the maximal saturation packing fraction for the three distributions reported in Fig. 4 top. The distributions were all unimodal with same mode (m = 1, that defines the length unit in the numerical system), and the same standard deviation (σ = 1/2).

On give about the same max{S} (≃ 1.20 in this case), while the peak is slightly higher (≃ 1.24) for the inverse Gaussian distribution as a result of its sharper small-x cutoff ; 2) the shape of the structure factor after the main peak decreases more slowly for the truncated normal distribution (Gaussian large-x tail) than for the two other distributions (exponential large-x tails).

On the same Fig. 4 bottom, the structure factors of the three corresponding numerical models are shown for comparison. Their shapes are very similar to their respective analytical PY solutions, except that the PY-approximation overestimates the numerical data by a few percent. The overestimation is similarly present and well-documented for monodisperse hard-sphere systems at high concentrations (Frenkel et al, 1986 ;[START_REF] Hansen | The Theory of Simple Liquids[END_REF].

Analytical PY structure factor for an Apollonian packing of spheres

A very different kind of radius distribution appears in the problem of filling space totally with non-overlapping spherical particles. Such a packing requires using a population of spheres with power-law radius distribution (Stumpf & Mason, 2012):

n power-law (a) = 1/a d f +1 , ( 69 
)
with the exponent: 2 < d f < 3 (Kinzel & Reents, 1998). The most popular example of the distribution ( 69) is the Apollonian packing [START_REF] Mandelbrot | The Fractal Geometry of Nature W[END_REF]) (for which d f ≃ 2.47 (Borkovec et al, 1994), an iterative process in which the largest possible sphere is (Lieb & Lebowitz, 1972). The distribution ( 69) is also found in other contexts, for example, the size distribution of natural aerosols, and the distribution is then often called the Junge distribution [START_REF] Junge | [END_REF].

In all practical applications -experimental or numerical -the values of the particle radius are confined between two limits (Varrato & Foffi, 2011), a min and a max . Mathematically, these two limits ensure that the moments of orders 0, • • • , 3 of n power-law (a)

exist and are finite. Experimentally, these two limits depend on the conditions in which the system is constructed. The non-dimensional parameter ρ ≡ a min /a max plays a central role in the theory. In particular, the smaller the value of ρ, the denser the sphere packing. This relation can be formalized via the asymptotic (ρ ≪ 1) expression of the porosity (Varrato & Foffi, 2011):

1 -φ = C ρ 3-d f , ( 70 
)
in which φ is the actual volume fraction of the packing, and d f the exponent of the power law (69). The positive coefficient C may depend on the value of d f . The value C ≃ 0.85 holds for a random Apollonian packing.

Distribution ( 69) is written here under an unnormalized form, and we shall use this form in the following demonstrations. Indeed, as explained in the Section 2, the average quantities appearing in the definitions of the auxiliary functions b, c, d, e, f, g, do not require normalization of the radius distribution.

Analytical PY expression of the structure factor for the power-law distribution

The expressions (8)-( 13) to calculate the auxiliary quantities b, c, d, e, f, g all depend on the quantity 3φ/((1 -φ) present case. Indeed, using the power-law distribution (69), one obtains the relation:

⟨ a 3 ⟩ = d f 3 -d f a 3 max ρ d f ( 1 -ρ 3-d f 1 -ρ d f ) , ( 71 
)
in which the quantity in parenthesis is very close to 1 when ρ ≪ 1 since d f < 3. Using ( 70) and ( 71) one deduces that:

3φ 1 -φ (qa min ) 3 ⟨ (qa) 3 ⟩ ≃ 3 -d f d f 3φ C , ( 72 
)
which is a positive constant (≃ 0.75 for the random Apollonian packing) independent of q.

For the general power-law distribution, we use below the reduced variable:

x ≡ 2qa min ≃ 2(d f -1) d f q ⟨ a ⟩ , (73) 
and consider the situation where ρ ≪ 1.

The functions b, c, d, e, f, g express in terms of the two auxiliary functions R and I defined as:

R ≡ 1 (d f -2)x d f -2 -ci(2 -d f , x) , ( 74 
)
I ≡ si(2 -d f , x) , (75) 
in which the two generalized sine and cosine integrals ci and si are (Olver et al, 2010):

ci(λ, x) ≡ ∫ ∞ x t λ-1 cos tdt ; si(λ, x) ≡ ∫ ∞ x t λ-1 sin tdt , (76) 
defined for any λ < 1, and x > 0. We find:

b = αφ d f ( 4 sin x -x cos x x d f + (4 -d f )I ) , ( 77 
) c = αφ d f ( 4 1 + x 2 /2 -cos x -x sin x x d f + (4 -d f )R ) , ( 78 
) d = 1 + αφ I , ( 79 
) e = αφ R , ( 80 
) f = αφ d f -1 ( 2 1 -cos x x d f -1 + (3 -d f )I ) , ( 81 
)
g = αφ d f -1 ( 2 x -sin x x d f -1 + (3 -d f )R ) , (82) 
with

α = 3 3 -d f C , (83) 
the value of which is typically in the range of 1 -3.

As usual, the structure factor, S power-law (q) is obtained analyticall, using formulae (4)-( 6), with functions b, c, d, e, f and g given by the expressions stated in (77)-( 82).

One can remark that the PY approximation leads here to a structure factor which has a definite non-trivial limit function for the densest system φ = 1 (that is one can safely replace φ by the value 1 in ( 77)-( 82)). This is because even if space is entirely filled with material spheres, X-Ray scattering takes place at the fractal interface between the spheres.

The Complementary Percus-Yevick approach discussed in the Section 3.3 cannot apply in this case because the interface matter/void is strongly correlated (it is a fractal surface of fractal dimension d f ).
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Comparison with the experimental structure factor of an extremely dense Apollonian emulsion

We will compare this analytical form to structure factors obtained from numerical experiments and from recent empirical experiments on extremely dense emulsions made of polydisperse spherical droplets.

Application of our approach is shown in FIG. 5 where the blue dots correspond to the experimental structure factor, S exp (q), obtained from a high internal-phase ratio emulsion (φ = 0.95) of oil in water in the presence of a small amount of C12E6

surfactant. The initial stirring speed was 250 rpm and the system was analysed after one month's evolution at rest. The full details of the experimental conditions and results of the Small-Angle X-ray Scattering data are given in (Kwok et al, 2020). For comparison, the black curve in FIG. 5 is the asymptotic solution ( 77)-( 82) for φ → 1 in the Apollonian packing case, that is: d f = 2.47 and α = 1.9 (α is the parameter defined in ( 83)). The experimental value of As usual with the PY approximation, one can notice systematic overestimation of the analytical values of the structure factor compared with the experimental data.

It is worth noting that in this case, we did not use the Complementary Percus-Yevick hard-sphere argument as discussed in Section 3.3 above. Indeed, that approach requires the voids of the dense packing to be represented as small isolated and uncorrelated scattering domains randomly dispersed in homogeneous matter. Quite the contrary, in the case of Apollonian packing, we know that void locations are strongly correlated
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since the resulting interface is a fractal (of fractal dimension d f [START_REF] Mandelbrot | Fractals: Form, Chance and Dimension W[END_REF]).

Presently, we have no explanation why the Percus-Yevick approximation generates, for the Apollonian radius distribution, a structure factor so similar to the experimental one at φ ≃ 1. It means that that approximation is able to reproduce the leading fractal spatial correlations of the voids. More work has to be done to understand this point.

Extension of the methodology to polydisperse Yukawa particles

We address now the question of dispersions of charged spheres interacting under a Yukawa potential. The range of the interaction is measured by the Debye length, 1/κ.

As a standard approximation, the spatial structure of the system behaves as if each radius a was replaced by its effective particle radius: a + 1/κ. The parameter ψ, as defined in ( 7) by: ψ = 3φ/(1 -φ), must then be modified by changing the actual 

φ Y = 1 1 + (1 + 3κ ⟨ a ⟩ )s 2 + 3(s + 1)(κ ⟨ a ⟩ ) 2 (s + 1)(s + 2)(κ ⟨ a ⟩ ) 3
(85)

• truncated normal distribution (48) of parameters p and

⟨ a ⟩ : φ Y = κ ⟨ a ⟩ 1 + κ ⟨ a ⟩ 1 1 + 1 + 2κ ⟨ a ⟩ (1 + 3p)(κ ⟨ a ⟩ ) 2 (86) 
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• inversed Gaussian distribution (61) of parameters p and ⟨ a ⟩ :

φ Y = 1 1 + 1 + 3κ ⟨ a ⟩ + 3(1 + p)(κ ⟨ a ⟩ ) 2 (1 + 3p + 3p 2 )(κ ⟨ a ⟩ ) 3
(87)

• power-law distribution (69):

φ Y ≃ 1 1 + 3 -d f (κa max ) 3 ( a max a min ) d f (88)
Note that the value of φ Y for any radius distribution simplifies to φ Y = 1 when the Debye length vanishes (κ → ∞), that is, the uncharged particle case.

As a result of the form of ( 84), φ Y represents the larger volume fraction of the system for which the present approach can be used. Subsequently, the power-law radius distribution may be problematic when large volume fractions are involved. Indeed, a min tends to 0 as the volume fraction goes to 1. The expression (88) shows that in this case, φ Y may become much smaller than 1 when a min /a max < 1/(κa max ) 3/d f . This condition must then be checked before applying the PY approximation for such a population of charged spheres. We give now an example of possible application of these formulae. Let us consider the data and results published in [START_REF] Cabane | [END_REF] 87). This means in particular that our approach can be used in the limited range of 0 < φ < 0.271 (consistent with the experimental investigation range 0.038 ≤ φ ≤ 0.24).

On Fig. 6, the structure factor S normal (q) is plotted for the truncated normal distribution (48), and five values of the volume fraction, φ = 0.09, 0.13, 0.16, 0.19, 0.21. The height max{S normal } of the first peak reflects the spatial order of the particles in the system. As the volume fraction is increased, the short-range order becomes stronger, and max{S normal } becomes higher. This occurs until the value of max{S normal } rises up to the threshold 2.85: this is the Hansen-Verlet criterion for the onset of crystallization (Baus, 1983). Beyond this threshold, the rapid decrease of short-range order reveals jamming or clustering (limited aggregation) of the particles. Examining the behaviour of the structure factor as calculated from our PY approach, one can expect crystallization to occur at φ ≃ 0.173 which agrees perfectly with the experimental results (see Fig. 1a of [START_REF] Cabane | [END_REF]).

The case study here explored clearly demonstrates the great aptitude of of Vrij's PY solution to predict the liquid-solid transition in a system made of (possibly charged) polydisperse spheres.

Conclusion

Experimental structure factors measured by Small-Angle Scattering is a very powerful tool for obtaining information about the spatial distribution of colloidal particles in a dispersion. However, the interpretation of acquired spectra requires that one has definite models available for comparison. In this work, we have outlined a systematic and generalizable protocol for calculating the structure factor of any population of hard spheres at a given volume fraction and a given radius distribution (defined over any number of bins). In particular, we have derived and provided the pertinent analytical equations for several commonly encountered distributions in the domain

IUCr macros version 2.1.11: 2020/04/29 of colloidal sciences (e.g. exponential, Schulz, normal, inverted Gaussian and power law). We further demonstrated our Complementary Percus-Yevick approach applicable to situations in which existing models fall short at very high volume fractions made possible by extreme polydispersities. It is thus our hope that our work may aide experimentalists in their Small-Angle Scattering data analysis through the adhoc creation of specifically useful comparison models that may not readily be available in literature.

The auxiliary parameter µ 1 plays another role in the context of scattering intensity.

Indeed, the diluted scattering intensity of the polydisperse system, is:

I 0 ∝ Re{µ 1 } q 6 . ( 101 
)
in which the proportionality constant is independent of q for a constant wavelength. The PY appears to be an excellent approximation in all these cases, except a slight overestimation of the peaks. The horizontal lines S(q) = 1 and S(q) = 1.2 are drawn as guides. 4)-( 6), with the standard Apollonian-packing parameters: d f = 2.47, α = 1.9, at φ = 1. The shapes and magnitudes look similar in both cases.

The only noticeable difference is that the PY approximation leads to peaks slightly higher than the experimental ones, that is the PY approach somewhat overestimates the spatial correlations in the system. Beyond this value, the peak height reduction demonstrates the decrease of the spatial short-range order in the particle positions. All these results compare perfectly with the experimental data shown in [START_REF] Cabane | [END_REF]. In this example, the Vrij's solution predicts quantitatively the volume fraction threshold where crystallization starts to occur in the system.

Synopsis

A simple formulation of structure factor for dispersion of polydisperse spheres in the Percus-Yevick approximation is presented. Full analytical expressions for standard radius distributions are obtained (Schulz, Normal, inverse Gaussian). Recent experimental structure factors from Apollonian emulsions and from dense systems of repulsive polydisperse silica spheres are discussed.

  particle radius distribution n(a). There are various possible definitions, and we consider in the present work the conventional notation (written respectively for a continuous and for a discrete radius distribution function, named generically F in the following):

⟩

  for k = 0, 1, 2. These averaged functions can be written in closed form in a number of cases. Then, one uses these IUCr macros version 2.1.11: 2020/04/29

  ) in which N v (resp. N s ) is the total number of voids (resp. spheres) in the volume V , and ⟨ • • • ⟩ v denotes the average value for the ensemble of the voids. One can then eliminate N v , N s and the volume V from the equations above to deduce the relation IUCr macros version 2.1.11: 2020/04/29

  and p is the polydispersity of the normal distribution. The values of the radius a must be restricted to the positive axis (hence the "truncation" of the full distribution).

  and p is the polydispersity of the distribution. The radius a takes real positive values.

  Fig. 4 bottom, we present the PY structure factors at the volume fraction φ = 0.5 for the three distributions above, in function of the scaled variable q m (on IUCr macros version 2.1.11: 2020/04/29the figure, the structure factors were shifted to the right by a constant value 1 of the abscissa q m, in order to compare them to the respective structure factors calculated from the simulated systems. Although the three analytical structure factors behave in a very similar way because of their common mode and standard deviation, one can nonetheless notice minute differences: 1) Schulz and truncated normal distributions

⟨ (qa) 3 ⟩)

 3 which deserves some preliminary attention in the IUCr macros version 2.1.11: 2020/04/29

  07µm, comparable to the value deduced from the experimental radius distribution, namely: 1.30µm. Moreover, the overall shapes of both S exp (q) and S power-law (q) functions show clear resemblance with two peaks at about the same locations, namely q

.

  It results in the following new definition of this parameter, which is named in this context: ψ Y . One has: not on the volume fraction. Thus, it follows for: • Schulz distribution (34) of parameters s and ⟨ a ⟩ :

  on aqueous dispersions of spherical silica particles with a broad monomodal radius distribution: these experimental parameters, the value of φ Y ≃ 0.271 in the three cases above (85)-(

Fig. 1 .

 1 Fig. 1. (left, colours on line): sketch of a 3D system of N = 25 000 spheres with radii exponentially distributed, with average radius ⟨ a ⟩ , packed at volume fraction φ = 0.69 in a cubic box with periodic boundary conditions. This is approximately the maximum volume fraction possible with the algorithm used (see text). Colours represent spheres of different radii ; (right): a cross-section of thickness ⟨ a ⟩ through the 3D system.

Fig. 2 .

 2 Fig. 2. Structure factors (circles) of simulated systems constituting N = 25 000 nonoverlapping spheres in a cubic box with periodic boundary conditions. The radii of the spheres are distributed according to the exponential function (17), and the volume fractions are (from left to right): φ = 0.25 (black circles), φ = 0.50 (red circles) and φ = 0.69 (blue circles). The results here shown are the average values taken over 11 independent samples for each volume fraction. The numerical data are compared with the respective PY solutions (the formula (25)) for the exponential radius distribution and same volume fractions (the continuous curves, respectively black, red and blue). Agreement between the PY solution and the numerical data is excellent up to φ = 0.50. For φ > 0.50, the numerical peak is significantly flattened compared to the analytical data. The dashed blue curve is the analytical structure factor based on Babinet's principle (see text) of a population of voids at volume fraction 1 -φ = 0.31, with void sizes exponentially distributed.

Fig

  Fig. 4. (top) Three different kinds of radius-distribution with same mode m and same standard deviation m/2. The black continuous curve is Schulz distribution, the red dashed curve is truncated normal, and the blue dotted curve is inverse Gaussian distribution; (bottom) respective PY structure factor functions at φ = 0.5 in the scaled variable q m, for the three radius distributions shown above (same colour conventions as top figure). The three curves have been horizontally shifted to the right-hand side by 1 to make the figure clear. For comparison, we plotted on this same figure the structure factor functions for numerical systems made of N = 10 6 non-overlapping spheres with radii distributed according to Schulz, truncated normal and inverse Gaussian distributions (same colour conventions as top figure), at the same volume fraction φ = 0.5. Each curve is averaged over two independent samples. The three numerical curves (on the left) can then be directly compared with the three PY analytical results (on the right).The PY appears to be an excellent approximation in all these cases, except a slight overestimation of the peaks. The horizontal lines S(q) = 1 and S(q) = 1.2 are drawn as guides.

Fig. 5 .

 5 Fig. 5. Example of measurable structure factor (blue squares) obtained by Small-Angle X-ray Scattering of an Apollonian High Internal-Phase-ratio Emulsion made of spherical oil droplets packed at φ = 0.95 in water containing a limited amount of surfactant C12E6 (full details in the reference (Kwok et al, 2020)). The error bars are estimated using various background substraction procedures. The experimental data are compared to the PY mathematical solution (black thick line) obtained from (77)-(82) and formulae (4)-(6), with the standard Apollonian-packing parameters: d f = 2.47, α = 1.9, at φ = 1. The shapes and magnitudes look similar in both cases.The only noticeable difference is that the PY approximation leads to peaks slightly higher than the experimental ones, that is the PY approach somewhat overestimates the spatial correlations in the system.

Fig. 6 .

 6 Fig. 6. Percus-Yevick structure factors for the truncated normal radius-distribution of charged spheres with parameters (89)-(91) and five values of the volume fraction, φ = 0.09, 0.13, 0.16, 0.19, 0.21. The height of the first peak increases regularly with φ up to the value of the Hansen-Verlet (HV) threshold 2.85. This is the expected sign for onset of crystallization. For the present parameters, it occurs near φ = 0.16 (blue continuous line).Beyond this value, the peak height reduction demonstrates the decrease of the spatial short-range order in the particle positions. All these results compare perfectly with the experimental data shown in[START_REF] Cabane | [END_REF]. In this example, the Vrij's solution predicts quantitatively the volume fraction threshold where crystallization starts to occur in the system.

  placed into the largest void left in the packing. Other space-filling sphere packings are known with larger values of d f
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Appendix A Reformulation of the Vrij solution for the structure factor of an assembly of hard spheres

Starting from the derivation initiated in (Baxter, 1968 ;Baxter, 1970), Vrij showed in (Vrij, 1979) that the static structure factor in the Percus-Yevick approximation of a dispersion of polydisperse neutral spheres at volume fraction φ, could be expressed analytically in terms of a finite number of averaged functions. It was a big step to interpret a number of experimental dispersions, but the complexity of the solution limited drastically its application.

We found that the very intricate formulae from Vrij, could be written in a relatively simple form using three auxiliary complex-valued functions. The full derivation starting from Vrij's solution and leading to the new form, is detailed in the Supplementary Information. Here, let us give only the final expression in the form of a recipe.

Let us suppose that we know the radius distribution n(a) and the particle volume fraction φ.
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• calculate the parameter from the value of φ:

• calculate the four averaged functions using the distribution n(a):

in which the averages are defined by:

Note that the functions µ 1 , µ 2 , µ 3 do not depend on the volume fraction φ of the scattering matter. For a number of radius distributions, these auxiliary functions are analytical in the variable q

• calculate the three auxiliary functions from the quantities above:

• then the static structure factor function, S(q), is given by: