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Nicolas Juillet (∗∗∗)

Abstract – The Hexachordal Theorem is an intriguing combinatorial property of the

sets in Z/12Z discovered and popularized by the musicologist Milton Babbitt (1916-

2011). It has been given several explanations and partial generalizations. Here we

enhance how this phenomenon can be understood by giving both a geometrical

and a probabilistic perspective.
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1. Introduction

We first state the original hexachordal theorem. This theorem finds its ori-

gin in an observation [4] made by the American composer and musicologist

Milton Babbitt about the musical intervals appearing in a set of six differ-

ent notes –called hexachord– and the ones in the complementary set with

respect to the twelve-tone scale.
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Theorem 1.1 (Babbitt’s Hexachordal Theorem). Let A be a subset of

Z/12Z of cardinal 6 and let Ac = (Z/12Z)\A denotes its complementary set.

Then for every k ∈ Z/12Z, the sets

{(x, y) ∈ A×A : y − x = k} and {(x, y) ∈ Ac ×Ac : y − x = k}

have the same cardinal.

In the present paper we introduce a natural probabilistic setting in which

we generalize this result to metric spaces. We dare to believe that, as referee

wrote, we found the correct setting for a “clear and neat final result” that

“permits to derive most (if not all) the previous results”. Hereafter, (X, d) is

a separable metric space and µ a Borel σ-finite measure on it. We will refer

of such triples (X, d, µ) as metric measure spaces and metric probability spaces

if µ is a probability measure. Metric measure spaces is a popular setting

in geometric analysis at least since Gromov’s famous Chapter 3½ [8]. For

recent contributions see [13] and references therein.

We introduce the constant volume condition on (X, d, µ) which provides

a sufficient condition for the main result of this paper.

Definition 1.2 (Constant volume condition). A metric measure space

(X, d, µ) is said to satisfy the constant volume condition if there exists a

function ρ on [0,∞) such that for any center x ∈ X and radius r ∈ [0,∞)

the ball B(x, r) = {y ∈ X : d(x, y) ≤ r} has measure ρ(r). This also writes:

∀x, y ∈ X, ∀r ≥ 0, µ(B(x, r)) = µ(B(y, r)).(CVC)

For future development we introduce ρx : r 7→ µ(B(x, r)) the volume

function of center x and ρ̄ := µ(X)−1
∫
ρx dµ(x) the mean volume function.

We can now state our hexachordal theorem for metric probability spaces.

Theorem 1.3 (Hexachordal theorem for metric probability spaces). Let

(X, d, µ) be a metric probability space. Assume that it satisfies the constant

volume condition. Then for every Borel set A of µ-measure 1/2, with notation

Ac = X \A one has

µ2
{

(x, y) ∈ A2 : d(x, y) ∈ E
}

= µ2
{

(x, y) ∈ (Ac)2 : d(x, y) ∈ E
}
.(Hex)

for every open subset E ⊂ [0,∞), where µ2 is the product measure µ× µ.
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Let us show how this theorem specializes to Babbitt’s theorem. On the

cyclic group Z/12Z we consider the distance defined by

d(x, y) = min
k∈Z
|x− y + 12k|.

Since this formula corresponds to the minimum number of steps ±1 in

Z/12Z necessary to move from x to y, the distance d is the classical graph

distance, the edges being distributed here exactly between the consecutive

numbers of Z/12Z. By choosing for µ the normalized counting measure on

Z/12Z, i.e. µ(A) = #A/12 we obtain the following expression for (Hex) in

Theorem 1.3:

1

122
#{(x, y) ∈ A2 : d(x, y) ∈ E} =

1

122
#{(x, y) ∈ (Ac)2 : d(x, y) ∈ E}.

Let ψA be the function defined for k ∈ N by

ψA(k) = #
{

(x, y) ∈ A2 : d(x, y) = k
}

and IA the so-called interval content of A defined for k ∈ Z/12Z by

IA(k) = #
{

(x, y) ∈ A2 : y − x = k
}
.

These two functions count the number of oriented pairs at distance k ∈ N
and of oriented intervals k ∈ Z/12Z, respectively. Consequently (Hex) writes

ψA = ψAc . Next, for every A (and Ac) IA(k) = ψA(k) for k = 0 and k = 6

and, since (x, y) ∈ A2 ⇔ (y, x) ∈ A2, we also have IA(k) = IA(12 − k) =

ψA(k)/2 for k = 1, . . . , 5. Thus IA = IAc holds on the whole Z/12Z. In the

latter we recognize Babbitt’s Hexachordal Theorem.

Since Babbitt’s original formulation [4] his Hexachordal Theorem has

been discussed, reproved and sometimes generalized many times. Hereafter

we distinguish between two types of hexachordal theorems: the metric

ones as Theorem 1.3 is and the general ones in the continuation of the

interval content formulation IA = IAc by Babbitt. By general we mean

that the distance d can be replaced by a non real-valued function such as

for instance the antisymmetric f : (x, y) 7→ x−1 · y when (X, ·) is a group or

some symmetric function. Our main theorem (the already stated Theorem

1.3) falls in the first category since it deals with metric probability spaces

satisfying the constant volume condition (CVC). In Theorem 4.2 we prove

that the metric hexachordal phenomenon is in fact equivalent to the (CVC)

when the latter is properly modified. Finally, Theorem 4.5 is a general

hexachordal theorem where we adapt our theorems for general functions.
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Previous literature. Before we proceed on with the proofs let us give

a few more comments on the mathematical content also with respect to the

existing literature (more historical comments and relations with music and

other domains such as spectroscopy are to be given in a companion paper

in preparation). While scanning over the literature, we noticed that one

same simple idea appears more or less clearly behind the proof of most

instances of the hexachordal theorems. It is the idea of not only counting

the intervals –or sometimes measuring the size of objects that generalize

them– between A and A, on the one side, and Ac and Ac on the other

side, but also the intervals between A and Ac. This principle is already

well explained in Ralph Hartzler Fox’s contribution [7] that is possibly

the first complete written proof of Babbitt’s Hexachordal Theorem –notice

however that completely different short interesting proofs of Babbitt’s case

are possible [6, 2]. While Fox’s explaination is for abstract discrete sets, one

stream of research has been to explore continuous spaces. This is the case

[5] for the circle S1 –extending the discrete circle Z/12Z– and [11, 12] for

the spheres S3, S7 among other locally compact groups. A still geometric

result but discrete is the full characterization of simple graphs exhibiting

the hexachordal property by T. A. Althuis and F. Göbel [1]. It seems to

have been the unique metric theorem in the hexachordal literature. With

our probabilistic approach we implement the principle described in [7] to

the whole geometric setting, discrete or continuous (or even mixed). Our

probabilistic presentation also adapts to the general hexachordal theorem

as we show in Section 4 for which some additional examples are to appear

in the companion paper.

2. Probabilistic interpretation and proof of Theorem 1.3

Our proof uses a probabilistic writing of (Hex). Let (X,Y ) be a pair of X-

valued independent random variables of law µ and D = d(X,Y ). Property

(Hex) writes

P(X ∈ A and Y ∈ A and D ∈ E) = P(X ∈ Ac and Y ∈ Ac and D ∈ E).

(1)

Adding P(X ∈ A and Y ∈ Ac and D ∈ E) on both sides we see that (Hex)

holds if (and only if) one has

P(X ∈ A and D ∈ E) = P(Y ∈ Ac and D ∈ E)(2)

for every Borel set E ⊆ R. Hence, for Theorem 1.3 it suffices to prove (2).
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Proof of Theorem 1.3. Let S be a Borel set of X and r ≥ 0. We have:

P(X ∈ S and D ∈ [0, r]) =

∫∫
X×X

1(x ∈ S) · 1(d(x, y) ≤ r)dµ(x)dµ(y)

=

∫
S

(∫
X

1(d(x, y) ≤ r)dµ(y)

)
dµ(x)(3)

=

∫
S

µ(B(x, r))dµ(x)

= µ(S) · ρ(r).

This proves that X and D are independent random variables, X has law µ

(this is not new) and D has cumulative distribution function ρ (see Remark

2.3). Therefore, on the left-hand side of (2), P(X ∈ A and D ∈ E) = P(X ∈
A) × P(D ∈ E) = (1/2)P(D ∈ E). Exactly in the same way (or noticing

that (X,D) and (Y,D) have the same joint law) we see that Y and D are

independent and P(Y ∈ Ac and D ∈ E) = (1/2)P(D ∈ E). This proves (2)

and hence completes the proof. �

Remark 2.1. We can express (Hex) in a different way in terms of con-

ditional laws. Dividing Equation (1) by 1
4 = P((X,Y ) ∈ A2) = P((X,Y ) ∈

(Ac)2)) we obtain

P(D ∈ ·| X ∈ A and Y ∈ A) = P(D ∈ ·| X ∈ Ac and Y ∈ Ac).

This may be read as follows: Provided points X and Y are in A, their

distance D is distributed in the same way as it were provided they were in

the complementary set.

Remark 2.2. Similarly, P(D ∈ ·|X ∈ A) = P(D ∈ ·|Y ∈ Ac) is a version

of (2) formulated with conditional laws. The following one-line computation

P (D ≤ r|X ∈ A) = µ(A)−1
∫
A

P(d(x, Y ) ≤ r)︸ ︷︷ ︸
=ρx(r)=ρ(x)

dµ(x) = ρ(r),

with its counterpart P (D ≤ r|Y ∈ Ac) = ρ(r) (for every r ≥ 0), constitute

an alternative, shorter and more probabilistic proof of Theorem 1.3.

Remark 2.3. Taking S = X in (3), for a general X without (CVC) we

obtain P(D ≤ r) = ρ̄(r) so that ρ̄ is the cumulative distribution function of

D. The cumulative distribution functions of d(x, Y ) and d(X, y) are simply

ρx and ρy. Moreover, under the (CVC) all these functions equal ρ.
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Remark 2.4. The random variables X, Y and D are pairwise indepen-

dent but they are not independent. In particular, for very localized sets S

and T , say balls of (small) radius ε, the law P(D ∈ ·|X ∈ S and Y ∈ T )

is a measure concentrated on an interval of length shorter than 4ε, hence

different from P(D ∈ ·).

3. Metric probability spaces satisfying the constant volume condi-

tion

In this section we give examples of spaces where Theorem 1.3 applies. Since

there are non transitive simple graphs that satisfy (CVC) the hexachordal

phenomenon surprisingly happens fo them, see Subsection 3.1. Thus, a

fascinating open question remains: can there be radically different examples,

as in particular Riemannian manifolds of unitary volume? In Subsection 3.2

we treat of the case of the 2-dimensional manifolds for which the answer is

“no”. More insight should be given in our paper in preparation

3.1 – Non transitive graphs satisfying (CVC)

The following metric measure spaces are particularly interesting since these

are graphs that satisfy (CVC) - and hence (Hex) - but are not transitive.

Briefly, in our context transitive would mean that for x, x′ there exists an

isometry f with f#µ = µ and f(x) = x′. Example 3.2 is with seven vertices

the smallest possible non transitive simple graph that satisfies (CVC).

During the writing of the present paper we realized that a collection of

similar graphs (notably three graphs with twelve vertices) were already

exhibited by Althuis and Göbel in [1].

Example 3.1. Consider the finite 3-regular graph depicted on the left

part of Figure 1. One can easily convince that it satisfies the constant

volume condition: the balls of radius 0 have cardinal 1, the balls of radius 1

cardinal 4 and all the greater balls are the whole space whose cardinal is 8.

However, it clear that a and h are points of different types: the neighbors

of h are disconnected whereas the neighbors b and c of a satisfy b ∼ c.

Consequently the group of isomorphisms does not act transitively.

Example 3.2. The graph on the right of Figure 1 also satisfies the

constant volume condition (ρ(0) = 1, ρ(1) = 5, ρ(2) = 7). With cardinal

seven it has the minimal cardinal for a graph satisfying (CVC) without
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Figure 1. Left: two points randomly picked in the dark region of the graph have distance

equally distributed as the one between points picked in the bright region. Conditional

upon one or the other region the random distance D takes values 0, 1 and 2 with

probability 4/16, 8/16 and 4/16 respectively – Right: two points randomly picked in

the dark region of the graph have distance distributed equally as the one between

points picked in the bright region. Vertex a is for half bright and for half dark.

transitive action of group of isomorphisms. However, since seven is an odd

number the hexachordal property is –contrary to Example 3.1– a trivial

statement: subsets A and Ac of cardinal 7/2 do not exist. Hence Theorem

1.3 is a correct but empty statement. Theorem 4.2 in the next section will

give a new turn to this poor conclusion. See already the caption under the

figure for some preliminary intuition.

3.2 – Riemannian surfaces satisfying (CVC)

In the following we consider the connected, complete and separable Riem-

manian surfaces with their geodesic distance and Riemannian volume.

Proposition 3.3. Let (X, d, µ) be a connected, complete and separable

Riemmanian surfaces with its geodesic distance and Riemannian volume such

that µ(X) = 1. Then it satisfies (CVC) if and only if it isomorphic to one of

the following metric probability spaces:

• A flat torus R2/(Zu+ Zv) with |det(u, v)| = 1,

• a Klein bottle (quotient of R2 through the group generated by a translation

and a glide reflexion) of volume 1,

• the sphere of dimension 2 and radius 1/
√

4π,

• the projective two plane RP2 obtained from the sphere of radius 1/
√

2π

when the opposite points are identified.
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Proof. Let (X, d, µ) be as in the statement a Riemannian surface that

satisfies the constant volume condition. At any point x ∈ X one has

µ(B(x, r)) =r→0+ πr2(1− κ(x)r/24) + o(r3)

where κ(x) is the curvature at x. It follows κ(x) = limr→0 24(πr2 − ρ(r))/r
where ρ(r) = µ(B(x, r)) is independent from x. Therefore X has constant

curvature. Hence, up to multiplying d by
√
|κ| (if κ 6= 0) the universal

cover of X is one of the three simply connected “space forms”: the Euclidean

space (of curvature zero), the hyperbolic plane (curvature -1) and the sphere

(curvature 1). For the zero and negative curvature we find the tori, the Klein

bottles, the sphere and the projective plane. Moreover the right scaling is

enforced by µ(X) = 1. Conversely since the isometry group transitively acts

on these spaces and the isometries preserve the Riemannian volume we see

that the (CVC) is satisfied.

For the negative curvature let us prove that (CVC) is not satisfied. It

is well known that the small balls have the same volume as the balls of

radius r of its universal cover (the hyperbolic plane up to a metric scaling)

that we denote by ρ̃(r). However, in the compact case if x is on the systole

(the shortest closed geodesic curve of length `) and x′ is not, there will be

ε > 0 such that µ(B(x, ε+ `/2)) < ρ̃(ε+ `/2) = µ(B(x′, ε+ `/2)). The strict

inequality is due to the cut-locus phenomenon on the systole: the balls of

center x and radius > `/2 are overlapping. In the non compact case there is

no necessarily a systole but another argument is possible. For some x0 ∈ X

let r0 be such that µ(B(x0, r0)) = ρ̃(r0). Then since X is not bounded there

exists infinitely many disjoint balls of radius r0 and centers (xn)n∈N. Since∑
n µ(B(xn, r0)) ≤ 1 we obtain a contradiction to the (CVC).

�

4. Full characterization of the spaces satisfying the hexachordal

property

In this last section we show that (CVC) is not far from being a necessary

and sufficient condition for the hexagonal property (Hex). To obtain this

equivalence we i) observe that sets of measure zero have no incidence in

the hexachordal property and introduce for this (CVC’) ; ii) carefully

avoid the logical trap explained in Example 3.2 by introducing (Hex’).

This being done we obtain Theorem 4.2. In Theorem 4.5 we give a second

generalization that connects our work with previous group theoretic [14, 11]

or abstract [7] interpretations of the hexachordal theorem.
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4.1 – Full characterization for metric probability spaces

For our full characterizations of Theorems 4.2 and 4.5 we introduce the

concept of balanced decomposition. It is an appropriate answer to the

problem described in Example 3.2. Similar concepts are to be found in

the literature in the weights of [5] and the bounded functions of [11].

Definition 4.1. Let (X,F , µ) be a probability space. We call balanced

decomposition of µ any pair (µ0, µ1) of probability measures such that

2µ = µ0 + µ1. Note that µ0 and µ1 can be identified with functions of

density smaller than or equal to 2.

We can now state our full characterization of spaces that satisfy (Hex’),

i.e. (Hex) generalized as suggested in Example 3.2.

Theorem 4.2 (Characterization for metric probability spaces). Let

(X, d, µ) be a metric probability space. The following properties are equiva-

lent:

(CVC’) There exists a set X′ ⊆ X of full measure for µ such that the constant

volume condition is satisfied on (X′, d, µ).

(Ind) For any independent random variables X and Y of law µ and D =

d(X,Y ), the random variables X, Y and D are pairwise independent.

(Hex’) For every balanced decomposition (µ0, µ1) of µ and two random triples

(Xi, Yi, Di)i=0,1 where for every i, (Xi, Yi) is a pair of independent

random variables of law µi and Di = d(Xi, Yi), we have the equality

on distributions

P(D0 ∈ ·) = P(D1 ∈ ·).

Remark 4.3. We recover Theorem 1.3 as follows: the constant volume

condition implies (CVC’) (take X′ = X for example). Hence (Hex’) is

satisfied for any balanced decomposition, in particular for (µA, µAc) where

A has measure 1/2 and µA is defined by µA = µ(A)−1µ(A∩·). This directly

corresponds to (Hex) in Theorem 1.3, up to a factor 4.

Remark 4.4. If X and Y are independent of law µ, since d is symmetric

we have equality of laws (X,D) = (X, d(X,Y )) ∼ (Y, d(Y,X)) = (Y,D).

Therefore, to satisfy (Ind) it suffices that X and D are independent.

The symmetry condition is also sufficient in the setting of the upcoming

Theorem 4.5. If X and Y have the same law and both (X,Y ), (X,F )
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are independent pairs (where F = f(X,Y ) with f symmetric), the last

pair (Y, F ) is independent. As can be easily checked, the same happens as

soon as f is antisymmetric, in the sense there exists an involution i with

f(y, x) = i(f(x, y)).

Proof of Theorem 4.2. The beginning of the proof of Theorem 1.3

is the implication (CVC)⇒(Ind). The reader can check that it also readily

constitutes a proof of (CVC’)⇒(Ind) too. We use that x 7→ µ(B(x, r)) is

equal to ρ̄(r) in all points x apart from a set of empty measure. Let us now

prove (Ind)⇒(CVC’). For every r ≥ 0 we set S−r = {x ∈ X| ρx(r) < ρ̄(r)}
and S+

r = {x ∈ X| ρx(r) > ρ̄(r)}. Recall from Remark 2.3 that ρ̄ is the

cumulative distribution function of D and ρx the one of d(x, Y ). Suppose

by contradiction that µ(S−r ) > 0. Thus

P(X ∈ S−r and D ∈ [0, r]) =

∫∫
1(x ∈ S−r ) · 1(d(x, y) ≤ r)dµ(x)dµ(y)

=

∫
S−
r

(∫
1(d(x, y) ≤ r)dµ(y)

)
dµ(x) =

∫
S−
r

µ(B(x, r))dµ(x) < µ(S−r ) · ρ̄(r),

which shows that X and D are not independent, a contradiction. Therefore

µ(S−r ) = 0 and similarly µ(S+
r ) = 0. We deduce that

⋃
r≥0, r∈Q(S−r ∪S+

r ) has

µ-measure zero. If we denote X′ the complementary set we obtain ρ̄(r) =

ρx(r) for every x ∈ X′ and r ∈ Q. This extends to every r ∈ R+ because

cumulative distribution functions are right-continuous. Hence (CVC’) is

satisfied.

We have proved (CVC’)⇔(Ind) and will be ready after we prove

(Ind)⇔(Hex’). We postpone this proof to Theorem 4.5 because considering

that d is symmetric and measurable on X× X this theorem states a result

that includes (Ind)⇔(Hex’). Its proof is also independent from the rest of

Theorem 4.2. �

4.2 – Full characterization for general spaces and groups

Here we replace d by a general function f that does neither need to be real

valued nor symmetric. Typically f is an “ interval” antisymmetric function

defined by f(x, y) = x−1 · y as in Corollary 4.6. This is the original music

theoretical point of view of Babbitt and Lewin [9].

Theorem 4.5 (Characterization for abstract probability spaces). Let

(X,F , µ) be a probability space and f a measurable symmetric function into

a measured space (M,M). The following properties are equivalent:
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(Ind) For any independent random variables X and Y of law µ and F =

f(X,Y ), the random variables X, Y and F are pairwise independent

(Hex’) For every balanced decomposition (µ0, µ1), considering the triples

(X0, Y0, F0) and (X1, Y1, F1), where for i = 0, 1 the pair (Xi, Yi) is made

of independent random variables of law µi and Fi = f(Xi, Yi), we have

equality of both distributions, P(F0 ∈ ·) = P(F1 ∈ ·) as measures on M.

(Hex”) For any balanced decompositions (µ0, µ1) and (ν0, ν1) where for i =

0, 1, Xi has law µi, Yi has law νi and Fi = f(Xi, Yi), we have equality

of both distributions P(F0 ∈ ·) = P(F1 ∈ ·).

Moreover if f is no longer supposed to be symmetric (Ind)⇔(Hex”) still holds

as well as (Hex”)⇒(Hex’).

Proof. To complete the proof of Theorem 4.2 we first establish in part

1. and 2. of the present proof the two implications of (Ind)⇔(Hex’) in

the case where f is symmetric. For the remainder, notice already that

(Hex”)⇒(Hex’) is obvious since (Hex”) corresponds to a generalization of

(Hex’) where the relation µi = νi is relaxed. In part 3. we will finish with

the equivalence (Ind)⇔(Hex”) by briefly adapting the scheme drawn up in

1. and 2.

1. (Ind)⇒(Hex’). Let us fix some measurable E ⊆ M and (µ0, µ1) a

balanced decomposition of µ. We first prove

P(f(x, Y ) ∈ E) = P(F ∈ E)(4)

for µ-a.e. x ∈ X. This follows from the fact that these two functions have

the same integral on the measurable sets S in X. We have indeed
∫
S

P(f(x, Y ) ∈ E)dµ(x) = P(X ∈ S, f(X,Y )︸ ︷︷ ︸
F

∈ E)

∫
S

P(F ∈ E)dµ(x) = P(X ∈ S) · P(F ∈ E)

Equality follows from (Ind). Integrating (4) with respect to µ0 (that is

absolutely continuous with respect to µ) we obtain BE(µ0, µ) = BE(µ, µ)

where BE is the bilinear function defined by BE : (α, β) 7→
∫∫

1(f(x, y) ∈
E)dα(x)dβ(y). Note now that f(x, Y ) = f(Y, x) and that these ran-

dom variables have also the same law as f(X,x). Therefore P(f(X, y) ∈
E) = P(F ∈ E) for µ-a.e. y ∈ X. Similarly as before we deduce
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BE(µ, µ) = BE(µ, µ1). Finally, subtracting BE(µ0, µ1) on each extreme side

of BE(µ0, 2µ) = 2BE(µ, µ) = BE(2µ, µ1) we get

BE(µ0, µ0) = BE(µ1, µ1) for every measurable E ⊆M.(5)

Translated with random variables it is exactly (Hex’).

2. (Hex’)⇒(Ind). For this implication, it is sufficient to prove

P(X ∈ S and F ∈ E) = P(X ∈ S) · P(F ∈ E)

for every measurable E ⊆ M and S ⊆ X with µ(S) ≥ 1/2. For sets S of

probability less than 1/2 the independence relation is obtained through the

complementary set X \ S. We fix S and E. Let µ0 be µ(S)−1µ(· ∩ S) such

that (µ0, 2µ−µ0) is a balanced decomposition of µ. Starting back from (5),

adding BE(µ0, µ1) we obtain back BE(µ0, µ) = BE(µ, µ1) = BE(µ1, µ) =

BE(µ, µ) where we use the symmetry of f in the second equality and the

bilinearity in the third one. In probabilistic terms we have obtained

µ(S)−1P(X ∈ S and F ∈ E) = P(F ∈ E),

which is exactly the wanted equation, since µ(S) = P(X ∈ S).

3. We follow part 1. and obtain that x 7→ P(f(x, Y ) ∈ E) and y 7→
P(f(X, y) ∈ E) are almost surely constant of value P(F ∈ E) on (X, µ). It

follows

BE(µ0, ν0 + ν1) = 2BE(µ0, µ) = 2BE(µ, ν1) = BE(µ0 + µ1, ν1)

for every balanced decompositions (µ0, µ1) and (ν0, ν1). Subtracting B(µ0, ν1)

we obtain BE(µ0, ν0) = BE(µ1, ν1) which proves the first implication. For

the second one, from BE(µ0, ν0) = BE(µ1, ν1) we obtain back BE(µ0, ν) =

BE(µ, ν1) for every µ0 ≤ 2µ and ν1 ≤ 2µ (these inequalities correspond to

the conditions that (µ0, 2µ − µ0) and (2µ − ν1, ν1) are balanced decompo-

sitions). Choosing µ0 = µ(S)−1µ(· ∩ S) and ν1 = µ we can reconnect with

the proof in 2. �

In the next corollary we stress that Theorem 4.5 applies to “intervals”

(x, y) 7→ x−1 ·y on locally compact Hausdorff topological groups. We present

this corollary in the slightly larger setting of separable topological groups

with bi-invariant Haar measure. Note that such a bi-invariant Haar measure

exists as soon as there exists a left-invariant measure µ: if X and Y are

independent of law µ and µ′, respectively where µ′ is right-invariant (as

for instance µ−1 : E 7→ µ(E−1)), one can check that Y · X : Ω → X
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is measurable, is both left- and right-invariant and has law µ and µ′.

Therefore, µ = µ′ so that there exists a unique Haar measure and it is

bi-invariant.

Corollary 4.6 (Separable topological groups). Let (X, ·) be a separable

topological group with a left- and right-invariant probability measure µ, then

for every balanced decomposition (µ0, µ1) of µ and (Xi, Yi) independent ran-

dom variables of law µi, i = 0, 1, the law of X0 · Y0 equals the law of X1 · Y1.

Moreover the same equality in holds for (Xi)−1 · Yi.

Proof. Property (Ind) is clearly satisfied as a consequence of the left-

and right-invariance of µ. Therefore Theorem 4.5 applies and we have (Hex’)

for the function f(x, y) = x · y (that does not have to be symmetric). Since

µ is invariant for x 7→ x−1 the pairwise independence of (X,Y,X−1 · Y )

follows from the pairwise independence of (X ′, Y,X ′ · Y ) with X ′ = X−1.

Again Theorem 4.5 applies and we obtain (Hex’). �

As it appears in the literature [7] and in Section 3 the hexachordal

phenomenon should not hastily be associated to regular structures like

groups or transitive spaces. For instance the non associative set of octonions

of modulus 1 were already mentioned in [11] (it is homeomorphic to S7).
In [7, 14] the author recognize that the sufficient property of the Cayley

table of a group that permits the hexachordal phenomenon to show up is

that it is a Latin square: every symbol occurs exactly once in each row and

exactly once in each column. In particular (Ind) is satisfied. We plan to

provide further examples and counterexamples related to our theorems in

the paper in preparation.
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