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Abstract

Species-rich communities, such as the microbiota or microbial ecosystems,
provide key functions for human health and climatic resilience. Increas-
ing effort is being dedicated to design experimental protocols for selecting
community-level functions of interest. These experiments typically involve
selection acting on populations of communities, each of which is composed of
multiple species. If numerical simulations started to explore the evolution-
ary dynamics of this complex, multi-scale system, a comprehensive theoreti-
cal understanding of the process of artificial selection of communities is still
lacking. Here, we propose a general model for the evolutionary dynamics of
communities composed of a large number of interacting species, described
by disordered generalised Lotka-Volterra equations. Our analytical and nu-
merical results reveal that selection for scalar community functions leads to
the emergence, along an evolutionary trajectory, of a low-dimensional struc-
ture in an initially featureless interaction matrix. Such structure reflects the
combination of the properties of the ancestral community and of the selec-
tive pressure. Our analysis determines how the speed of adaptation scales
with the system parameters and the abundance distribution of the evolved
communities. Artificial selection for larger total abundance is thus shown
to drive increased levels of mutualism and interaction diversity. Inference of
the interaction matrix is proposed as a method to assess the emergence of
structured interactions from experimentally accessible measures.
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1. Introduction

Artificial selection has been used for millennia to steer plant and animal
characters towards target phenotypes. Recently, it is attracting a lot of
interest as a way to control and tune ecosystem services and functions, which
are emergent properties of biological communities formed by many different
species [25]. Particularly interesting in this respect are microbial communities
that dispense highly relevant functions, contributing to human health [19] as
well as to global biogeochemical cycles [28]. The widespread application of
artificial community evolution is nonetheless hampered by the large number
of parameters that have potential bearings on the efficiency of the selection
protocol, and that must be critically evaluated in designing these experiments
[49, 3, 12]. Such choices still largely rely on intuition and experience of the
experimenter rather than on general design principles. It is therefore difficult
to set expectations to be compared with empirical observations. This is
particularly important because microbial communities’ directed evolution has
yielded uneven results [40], suggesting that the success of artificial selection
may hinge upon some unresolved details of the matching between selection
target and ancestral community.

Numerical simulations of large, virtual communities have started explor-
ing how selection for a collective function affects community composition
[46, 36, 3, 12, 14]. Alternative experimental designs and system parameters
have thus be shown to affect the efficiency of the selection process. Given
the huge space of possible experimental choices and of interaction types, a
fundamental problem is how to asses the robustness of simulation results and
use them to optimise selection protocols.

Thorough studies of communities composed of two-species helped identi-
fying key processes involved in artificial selection of communities, and pointed
out how competition among composing species may be overcome in attaining
collective functions [49, 45, 48]. In particular, when community ecology was
modelled by two-species competitive Lotka-Volterra equations, evolution of
a specific community composition relied essentially on modifications of in-
terspecific interactions [16]. Methods used to attain theoretical insights for
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communities composed of a few species are however not scalable to more
complex communities, where a high number of species coexist.

Here, we use a general mathematical framework rooted in statistical
physics of disordered systems [35] to address the evolutionary dynamics of
species-rich communities under artificial selection. Mirroring experimental
protocols, communities are selected for an assigned, community-level function
of species abundances (e.g. total abundance). Communities that maximise
the function get the chance to seed the following generation of communi-
ties, that are however ’mutated’ with respect to the parental community.
The novelty introduced by such mutations fuels open-ended evolution that
can reshape the ecology of the evolved communities. On the ecological time
scale (between two selection events - or community generations), we assume
species abundances to be described by deterministic equations.

In the spirit of providing null expectations for species-rich ecosystems with
minimal imposed structure [34, 1], we model community ecology by Gener-
alised Lotka-Volterra equations (GLVs) with random interactions. Within
this framework, species are characterised by the intensity of intra- and inter-
specific pairwise interactions. The statistics of such interactions determine
the overall nature of the ecological relationships – e.g. competitive vs mutu-
alistic – in the community. The study of disordered GLVs has recently been
fuelled by the application of methods from statistical physics [10, 8, 2, 20],
and has brought important insights into the ecological dynamics of complex
communities [5, 26]. Such models for species-rich communities assume that
interactions rates are constant, and focus on the resulting ecological dynam-
ics.

Here, we address the evolution of the inter-species interaction matrix
when selection is imposed on a collective function. In order to highlight the
effect of community-level selection, we chose to represent mutations as a pro-
cess that randomly changes interactions without biasing the evolution of the
target function. This simplification allows us to analytically derive, in the
limit where the ecological and evolutionary time scales are separated, the
equation for the matrix dynamics, which captures the effects of community-
level selection on interactions. When the function to be maximised is the
total abundance, selection drives the emergence of a global mutualistic term
akin to collective cross-feeding. Our analytic results predict the interplay of
different parameters, including choice of the ancestral community, number of
communities and the nature of mutations, in determining the speed and at-
tainability of the target function. This analysis reveals that community-level
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selection modifies interactions by progressively evolving a complex, struc-
tured matrix from an initially featureless one.

2. Model and Methods

Before presenting in detail the model, we start by describing the biological
problem we want to solve in the manner of a simplified experimental protocol.
Let’s imagine we want to improve the ability of a microbial community to
perform a specific function, such as increasing its biomass or breaking down
chemical compounds. We would start by inoculating culture vials with sam-
ples of a same initial ’ancestral’ community. After an initial growth phase
where the abundances of the composing species stabilise, we obtain the first
generation of ’adult’ communities, that we can then score based on how well
they perform the desired function.

’Newborn’ communities of the second generation can be derived from
adult communities of the first generation in multiple ways [12, 44]. The sim-
plest community selection method, called ’propagule pool’ [46] consists in
choosing the communities with the highest score and letting each of them
seed one or multiple newborn communities, without mixing. This ensures
that the properties acquired in one generation get inherited by the next gen-
eration, except for variations due to mutations, population stochasticity, or
sampling at reproduction. The same sequence of growth phase, selection and
reproduction is repeated over and over again, following the same ’serial trans-
fer’ scheme used in artificial selection experiments of microbial populations.

Throughout the process, microbes will undergo mutations that can af-
fect the community’s ability to perform its function. In particular, these
mutations can cause changes in interactions between the different species
[24, 49, 16], resulting in functional variation between communities, upon
which selection can act. Some mutations will be maintained in the com-
munities that survive multiple rounds of artificial selection, and affect in
return their ecological dynamics [36].

Our goal is to describe how community-level selection shapes interactions
between species, and how these changes affect the selected function. To this
avail, we consider a population of n communities that undergo cycles of eco-
logical growth, selection and reproduction, as illustrated in Fig. 1. The eco-
logical dynamics within a cycle is described by a deterministic model, as often
done in numerical models that addressed similar questions [36, 46, 12, 44].
The abundance Ni of any species i belonging to the community is therefore
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a function of a continuous time variable t. Selection is applied by letting the
probability that a community reproduces depend upon a collective function,
evaluated at t = T , the duration of one community generation. Repro-
duction occurs via monoparental seeding of the next community generation
(’propagule’ reproduction). Community generations are indexed with a dis-
crete variable τ . The evolutionary dynamics that we aim to describe consists
in the change of the community composition, thus of the species’ abundance,
across multiple generations. Such changes are associated to the evolution of
ecological parameters, notably inter-specific interactions. For simplicity, we
assume that mutations only occur in newborn communities, so that within
one collective generation species abundances are only ruled by the ecological
dynamics.

In the following, we first detail the model for the dynamics of a single
community within one generation, and then the rules for community repro-
duction and mutation.

2.1. Within-generation community ecology.

Each of the n communities is composed of S species with continuous abun-
dances (Ni)i=1,...,S, whose variation is described by the generalised Lotka-
Volterra equations [7]:

dNi

dt
=

Ni

Ki

(
Ki −Ni −

∑

j ̸=i

αijNj

)
. (1)

The constants Ki are the carrying capacities and the interaction coefficients
αij represent the effect of species j on the growth of species i.

The carrying capacities, therefore the intra-species interaction strengths,
are assumed to be species-specific, and the vector K = {Ki} does not change
over evolutionary time. In the simulations, Ki’s are assigned by randomly
and independently drawing from a uniform distribution, but the analytical
results hold for any vector K. The matrix of inter-species interactions, on
the other hand, is subjected to mutations, starting from an ancestral random
matrix, as described below.
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Figure 1: Structure of the model for the artificial selection of community func-
tion. Each community in a population of n (here, n = 4) communities is represented by a
circle and is composed of a set of individuals (represented by the tokens), belonging to dif-
ferent species (represented by colour). The initial, ancestral community is sampled from a
same metacommunity, and varies, within a community generation, according to the deter-
ministic ecological dynamics. The m = 2 communities that at the end of the community
generation display the best function (here, largest total population size) are selected for
reproduction. Newborn communities of the following generation are generated by copying
the state (vector of species abundances), but mutating the parameters of inter-species
interactions, as detailed in the text. These changes in interactions, which are different
for each newborn community, are represented by the different shapes of the tokens. This
causes community composition to change within the current community generation, at the
end of which selection is again applied to the function of the adult community. The same
selection-reproduction-ecological growth scheme is repeated at every community genera-
tion.

2.2. Species interactions in the ancestral community.

We choose ancestral communities with random interactions. Specifically,
the coefficients αij are drawn from a normal distribution of parameters:

E(αij) = µ/S

Var(αij) = σ2/S

Corr(αij, αji) = γ.

(2)

Here, µ represents the total interaction strength faced by one species
from all of its partners, whereas σ measures the diversity of interactions. The
parameter γ ∈ [−1, 1] determines the symmetry of the ecological interactions:
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competition and mutualism correspond to γ = 1 whereas γ = −1 indicates
exploitative interactions like predator-prey and parasitic interactions.

The ecological dynamic of such communities has been characterised in
the limit of large number of species S [11], where it only depends on the
summary statistics of the interaction matrix: µ, σ and γ. Among the three
qualitatively different dynamical regimes the system can display, we chose
the matrix of the ancestral community in a region where interactions are
competitive and not too diverse, so that the system has a unique, globally
stable equilibrium (Supplementary Section 1).

2.3. State of the community at the end of a generation

The state of the community at the end of one generation (at time t = T )
generally depends on the abundances of the newborn community (at time
t = 0). If T is too small for the dynamics to have reached an attractor, the
transient composition of adult communities can have, when selection is ap-
plied to a community function, unpredictable effects on long-term evolution
[12]. For this reason, we assume that the duration of one generation is large
enough for abundances of adult communities to be close to their asymptotic
attractor, that is the ecological steady state defined by the interaction matrix
at that generation.

We start from a situation where the ancestral community has a unique,
globally stable equilibrium. By its structural stability, small perturbations
of the interaction matrix – as those realised in the first steps of evolution –
will still give rise to stable equilibria. This is however not guaranteed after
many generations of community selection, and the stability of the ecological
equilibrium may eventually be lost. As we will discuss later, we will focus
on the region where the within-generation ecological dynamics has a stable
equilibrium.

2.4. Community-level selection and reproduction.

Selecting communities requires ranking them according to a single collec-
tive function. We will essentially focus on the total community abundance
NT =

∑
i Ni. Our approach can be generalised to any function f(N) of the

abundances, as we will point out later. The m communities (m = 1 for the
analytical derivation) that at the end of one generation have larger NT are
chosen for reproduction, and the rest is discarded (Fig.1). Such death and
birth processes is what characterises community-level selection. When an
offspring community is born, it acquires the same composition of the parent

7



community. In the absence of variation in the community parameters, this
guarantees that community functions are perfectly inherited.

2.5. Community-level mutations.

For evolution by natural selection to occur at the level of communities,
there must be variation in the collective function [29]. At each community
generation the interactions between species change as some species undergo
mutations. Fully characterising the stochastic process associated to these
changes is an open challenge. Here, we focus on a simplified model in which
these changes, called ’community-level mutations’, are random, small and
unbiased. The latter feature ensures that the collective function does not
undergo directional changes unless selection is applied. Although this is a
strong simplification, it allows us to study specifically the evolutionary con-
sequences of community-level selection on species interactions. In order for
mutations not to bias a priori the change of the trait under selection, they
need to maintain, in expectation, the mean and variance of the interaction
matrices of newborn communities. Even though the expected value of the
collective function after mutation remains unchanged, single realisations of
the mutation yield however different collective functions, producing the vari-
ation between communities selection acts upon.

We write the interaction matrix at generation τ as:

αij(τ) =
µ(τ)

S
+

σ(τ)√
S

bij (3)

where:
µ(τ)

S
=

1

S2

∑

ij

αij(τ)

σ(τ)√
S

=

√√√√ 1

S2

∑

ij

(
αij(τ)−

µ(τ)

S

)2

are the empirical mean and standard deviation of the matrix α, and the
reduced matrix b has empirical mean 0 and empirical variance 1.

The mutated interaction matrix of one newborn community is then de-
fined as:

αij(τ + 1) =
µ(τ)

S
+

σ(τ)√
S

b̂ij (4)
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with:

b̂ij =
bij + εηij√

1 + ε2
, (5)

where η is a realisation – different for every τ and each community – of
a Gaussian random matrix of expected value 0, variance 1 and symmet-
ric correlation γ. Therefore, when averaging over all possible communi-
ties of generation τ + 1 (thus, over η), the interaction matrices have the
same summary statistics. Mutations therefore don’t introduce any bias in
between-community variation of interaction matrices, so that interactions get
reshaped along an evolutionary trajectory only by the action of community-
level selection.

2.6. Code description

Numerical simulations were performed in python using the code accessible
at https://github.com/jules-fbl/LV_community_selection. All the figures
of the paper were obtained with a number of species S = 100, m = 1 se-
lected communities out of n = 10, a mutation strength ε = 0.02, an initial
interaction matrix drawn from a Gaussian distribution of parameters µ = 3,
σ = 0.3 and γ = 0 and random carrying capacities drawn uniformly between
0.5 and 1.5. The collective generation time was chosen to be T = 500 (with
the exception of the first generation where a time T = 5000 was used in
order to avoid the propagation of transient effects). This time is long enough
for the mutated communities to approach their equilibrium abundances. To
integrate the Lotka-Volterra equations, we used an integration scheme de-
scribed in Supplementary section 11. We also imposed an abundance cut-off
Nmin = 10−20 below which species are deemed extinct. This cut-off was added
for numerical convenience but has no significant impact on the results.

3. Results

We start by discussing the evolutionary dynamics of the interactions when
no selection is applied. Then, we present numerical simulations of the model
previously introduced to illustrate salient features of the evolutionary dynam-
ics under selection for total abundance. We finally explain the theoretical
framework that allows to generalise these observations and outline their scope
of application.
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3.1. Community evolution without artificial selection

As a preamble, it is interesting to study the dynamics induced by commu-
nity mutations in the absence of selection. As we show in the Supplementary
section 7, the interaction matrix remains Gaussian and is hence completely
determined, for large S, by its mean and variance. The probability distri-
bution of µ(τ + 1) and σ(τ + 1), conditioned on their value at the previous
generation (µ(τ) and σ(τ)), reads, at first order in ϵ:

µ(τ + 1) ∼ N
(
µ(τ),

σ(τ)ε√
S

)

σ(τ + 1) ∼ N
(
σ(τ),

σ(τ)ε

S

)
,

(6)

where N (µ, σ) is a Gaussian distribution of mean µ and standard deviation
σ.

In the absence of selection, therefore, the summary statistics of the in-
teraction matrix evolve by neutral drift and the matrix retains its ancestral
random character. In expectation over different realisation of mutated com-
munities, the interaction matrices at two successive generations have the
same summary statistics. As a consequence, any community function will
also change by drift. The lack of directionality of evolution in the absence
of selection is a consequence of our choice of not representing the biases that
can be induced by intra-community selection.

3.2. Numerical simulations of community evolution under artificial selection

As observed in past numerical studies [46, 36, 37, 27], we find that in
response to selection, communities evolve so as to improve the desired col-
lective function (Fig. 2). In our case, the rate of improvement increases
over time, so that the ecological dynamics is eventually pushed in a region
where some abundances diverge. Such divergence is a well-known pathology
of the Lotka-Volterra equations that can be corrected by choosing a satura-
tion stronger than quadratic [43]. We will focus on the regimes where the
total abundance increases, but does not diverge.

The observed improvement of community function derives from changes
of the interaction matrix α, that is also visible on its empirical statistics µ(τ)
and σ(τ). As shown in Fig. 3 A, the mean decreases, indicating that inter-
actions become – on average – progressively more mutualistic. At the same

10



Figure 2: Changes of species abundance along an evolutionary trajectory. Selec-
tion for increased total abundance leads to an increase in the abundances of most species
(grey lines), and, as a consequence, of the average abundance NT /S (blue line)

time, their variance increases, so that interactions within the community
become more diverse.

Analytical results obtained for disordered communities show that for ran-
dom matrices defined by equation (2) the total population size NT is purely
a function of µ and σ. Thus, one could envision selection as a process in
which the empirical moments of α change across community generations but
the interaction matrix remains structureless as in equation (2). The evolu-
tionary process could then be described as climbing along the gradient of
the fitness function NT (µ, σ) (reproduced from [10] in Supplementary Fig.
1). This, however, is not what happens: the evolutionary trajectory of the
community function NT (µ(τ), σ(τ)) deviates from the gradient-climbing pro-
cess predicted for a random matrix with the same moments (Fig. 4). Hence,
the evolutionary trajectory cannot be explained only in terms of summary
statistics. One needs to dwell on the evolution of the fine-scale properties of
the interaction matrix.

The mismatch between the evolved and the corresponding random ma-
trices in eq. (2) (with the same µ and σ) can be understood by looking at
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Figure 3: Changes of the interaction matrix along an evolutionary trajectory.
The interaction matrix α of the best community evolves so that the average interaction
strength decreases linearly in time (A, cyan), while its variance increases (A, red). Such
changes are accompanied by a modification in the matrix structure, manifest in the spec-
trum of its eigenvalues. The dynamics of their real part across community generations
(B) reveals the appearance of an isolated negative real eigenvalue (green), as well as the
decrease of the eigenvalue associated to µ (blue). A zoom of the spectrum in the complex
plane (C) at generation τ = 1900 (represented by the dotted line in (B)) reveals that,
apart from the emergence of this mutualistic collective mode, the matrix retains its initial
random structure characterised by a circular eigenvalues distribution.

the evolutionary dynamics of the eigenvalue spectrum. The spectrum of the
initial random interaction matrix is, in the complex plane, a circle of radius
σ centred in the origin [21], plus an isolated positive eigenvalue (blue in Fig.
3 B) of magnitude µ. The initial effect of selection is to reduce this value.
After some time, however, an isolated negative eigenvalue λ (green in Fig.
3 B and C) emerges from the circle and detaches from it linearly in time.
When this happens, the interaction matrix α has two components. The ran-
dom component, represented by a circle of eigenvalues, changes only slightly
its radius along the evolutionary trajectory. The isolated eigenvalues, on the
other hand, and their associated eigenvector change on the evolutionary time
scale. At the dominant order, the structure imprinted by selection on the in-
teraction matrix is determined by its smallest eigenvalue, that corresponds to
the slowest mode of the GLV equation. Such rank-one perturbation adds to
eq. (1) a global mutualistic term, which pushes towards higher abundances
all species that do not go extinct.

The left eigenvector q associated to the outlier eigenvalue essentially re-
tains the information on the evolved community composition, as it is strongly
correlated to the equilibrium abundance vector (Supplementary Fig. 3).
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Figure 4: Purely random interactions cannot explain the evolution of total
community abundance. Variation of the interaction moments µ(τ), σ(τ), and of the
total abundance log(NT (τ)) (red line) along an evolutionary trajectory. The abundance
of a random interaction matrix (equation (2)) with moments µ, σ (surface) is plotted for
comparison. The white line is the predicted total abundance if the matrix of moments
µ(τ), σ(τ) was completely random, indicating that along the trajectory the matrix becomes
progressively structured.

Moreover, both vectors are correlated to the vector of carrying capacities
K (Supplementary Fig. 3). As a result, species that have become more
mutualistic after 2000 generations are mostly those that initially had higher
carrying capacity. The imprinted structure that emerged along the evolution-
ary trajectory thus appears when the entries of α for early and late stages
of community evolution are compared. By ordering species in terms of their
carrying capacity (from larger to smaller, Fig. 5), no structure of the off-
diagonal entries is visible in the ancestral matrix, while a gradient appears
after selection has acted for a sufficiently long time.

If we stop selection for increased total abundance but maintain muta-
tions, the outlier eigenvalue goes back slowly to the circle. The evolutionary
trajectory thus approaches the surface in Fig 4, so that the total abundance
becomes purely a function of µ and σ, as it was in the ancestral commu-
nity. The only trace of the elapsed community evolution remains then in the
modified summary statistics of the interaction matrix, while selection is no
longer directly detectable.
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Figure 5: Evolution of the interaction matrix. Coefficients of the interaction matrix
α with rows and columns sorted by decreasing carrying capacities at generations 1 (left)
and 2000 (right) for the same simulation as Fig. 2. Only the species that have positive
abundance at generation 2000 are shown.

Simulations realised for a number of different parameter values and for
other target functions (Supplementary Section 10) suggest that the phenom-
ena illustrated above for asymmetric interactions (γ = 0) are general.

3.3. Analytical description of the evolutionary dynamics

In order to understand the origin of this generality and to deduce the laws
governing the evolution of the interaction matrix, we introduce a theoretical
framework that links the dynamics of interactions to the parameters of the
system, including those defining the experimental protocol, the target of
selection and the ancestral community. In this part we derive equations
for any community-level function f and discuss how the numerical results
presented above can be understood if f is the total abundance.

Given a community with interaction matrix α(τ) (not necessarily random)
and the corresponding equilibrium abundances N(τ) at a given generation τ ,
we aim to characterise the interaction matrix α(τ+1) of the selected offspring
community – the one that provides the largest community-level function f
at equilibrium.

Because of mutations, the interaction matrix of each offspring communi-
ties can be written for small ε as α = α(τ)+ εσ(τ)√

S
η, with a different realisation

of η for every communities (from Eq. (5)). The changes of the equilibrium
abundances induced by a modification of the interaction matrix are mathe-
matically equivalent to those obtained after small random perturbations of

14



the carrying capacities δK = − εσ(τ)√
S

η N(τ). Linear response theory provides
the corresponding change induced on the equilibrium abundances:

δN = χ(τ)δK = −ε σ(τ)√
S

χ ηN(τ) (7)

with χij = ∂Ni

∂Kj
the stability matrix. This matrix measures the effect of a

small change in the carrying capacities on the abundances at equilibrium and
depends non-linearly on the interaction matrix (see Supplementary section
2).

If f(N) is the community-level function that one wants to maximise,
its value at equilibrium for each community is thus equal to the value at
generation τ , plus a small random change that derives from the variation in
the abundances. Using eq. (7), this random contribution can be written as:

δf = ∇f(N) · δN = −ε σ(τ)√
S

∇f(N) · χ(τ) ηN. (8)

The largest improvement of the function that will be realised in the pool of
mutated communities can therefore be identified as the largest among the
n independent random variables δf [23]. In the Supplementary section 3,
we derive the statistics of such largest contribution δf⋆, which is related to a
random variableMn following the law of the maximum value of n independent
Gaussian variables (see the distribution of Mn in Supplementary Fig.2). The
community-level function of the selected community is then simply the sum
of its value at the previous generation and of this largest contribution: f(τ +
1) = f(τ)+ δf⋆. As we explain in detail in the Supplementary section 4, this
gives the expression:

f(τ + 1) = f(τ) +Mn(τ)
εσ(τ)√

S
∥v(τ)∥ ∥N(τ)∥, (9)

where:
v(τ) = χ⊤(τ)∇f(N(τ)) (10)

is a vector representing how the function f measured at equilibrium changes
when we vary the carrying capacities: vi =

∂f(N)
∂Ki

1. This ”sensitivity vector”
depends both on the interaction matrix and on the function f .

1The dependency on the carrying capacities is mediated by the equilibrium abundances.
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In the specific case of f(N) being the total abundance NT = N · 1, we
have v(τ) = χ⊤(τ)1.

Equation (9) implies that the community function increases on average
along an evolutionary trajectory, as the product of the norms is always pos-
itive and Mn has a positive expected value for n > 1. When the number
of communities is too small, it can also transiently decrease, thus breaking
the alignment between selection and community response. For large n the
distribution of Mn concentrates around its mean for n ≫ 1, thus making this
event very unlikely.

Changes in the community-level function are ultimately based on the evo-
lution of the interaction matrix. As detailed in the SI, its change across one
collective generation can be decomposed in a directional term – contribut-
ing to the evolution of f – and its complement Bij, that acts as a random
fluctuation2. The interaction between any two species i and j thus evolves
according to:

αij(τ + 1) = αij(τ)−
εσ(τ)√

S

(
Mn(τ)

vi(τ)

∥v(τ)∥
Nj(τ)

∥N(τ)∥ +Bij

)
, (11)

which encodes the evolutionary dynamics of the interaction matrix. This
expression (generalised for γ ̸= 0 in the Supplementary equation (22)) has a
simple interpretation: among the random mutations of the interaction ma-
trix, only matter those in the special ”direction” viNj, that combines the
sensitivity of the community function f and the equilibrium abundances.
The selected community is the one having the largest random Gaussian con-
tribution associated to such direction.

A direct consequence of equation (11) is that the most abundant species
will experience greater changes in the impact they have on other species
(αij), but these changes can be of any sign, depending on the sensitivity
with respect to the other species involved (vi). Conversely, species with the
most positive impact on the function (those with larger vi) will face a greater
reduction in the effects that any other species has on them.

It is interesting to note that in equations (9) and (11), the community
function only appears through the vector v. Because this vector depends both

2Formally, this amounts to decomposing ηij in two parts: one along the direc-

tion (in the space of the S2 indices) vi(τ)
∥v(τ)∥

Nj(τ)
∥N(τ)∥ , and a remainder Bij = ηij −

vi(τ)
∥v(τ)∥

Nj(τ)
∥N(τ)∥

∑
k,l

vk(τ)
∥v(τ)∥ηkl

Nl(τ)
∥N(τ)∥

16



on the interaction matrix of the community and on the function f , different
communities will have different responses to the same target functions, and,
vice versa, the same community may react differently to selection depending
on the function it is selected for. Matching selection target and community
structure is therefore determinant for speeding up evolution, and could be
improved by preliminary tests of the community response to perturbations.
In the special case when f(N) does not depend on N, instead, selection at
the community level is neutral (any community composition is equivalent),
and interactions evolve by drift, driven by the random term Bij.

Equations (9) and (11) apply to any initial interaction matrix (not only
random ones) and allow us to draw general conclusions, which we spell out
below, on how speed and direction of evolutionary change depend on the
numerous parameters of the system.

As could be intuited, evolution is faster when selection screens a larger
number of communities, since the expected value Mn is an increasing func-
tion of n. When only one community is considered, on the other hand,
the total abundance and the interaction matrix undergo unbiased stochastic
changes (see Supplementary section 7), as M1 is Gaussian with zero mean.
Under these conditions, collective functions cannot be selected and evolve
by community-level drift. However, increasing the number of communities
may not always be the key to success. The growth of Mn with n, indeed,
scales as

√
log(n), which increases slowly for large n, so that transition to

high community throughput may be of little avail to speed up evolution.
Other parameters can be changed so as to improve the efficacy of commu-

nity selection. The variation of the interaction matrix, thus of the selected
function, across one community generation occurs on a time scale dt = ε/

√
S.

Thus, in our model, evolution has faster pace in communities with a smaller
number of species and for larger mutational steps. This is however linked to
the choices we made for the initial interactions and for the mutations, and
we expect that different assumptions may lead to other scaling laws.

The non-linear recursive matrix equation (11) cannot be solved in gen-
eral, so as to exactly predict how the ancestral community changes along an
evolutionary trajectory. Whatever the exact change, however, it shows that
selection will – sooner or later – result in a perturbation of rank one of the
interaction matrix, which translates into the addition of a rank one term in
the original GLV equation (1). This term, as well as the whole dynamics,
can be explicitly computed when the selected function is the total abun-
dance and in the limiting case of small variability of interactions σ ≪ 1 (see
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Supplementary section 6). The effect of selection is here simply to decrease
all the interactions by the same amount εMnσ

√
1 + γ/

√
S at each genera-

tion (Supplementary equation (30)), so that they progressively become more
mutualistic, up to the point where the selected function diverges.

The exactly solvable, approximate solution moreover highlights the role
of the symmetry of interactions in the efficiency of artificial selection. In-
deed, evolution is fastest when γ = 1, i.e. for competitive or mutualistic
interactions. On the contrary, when interactions are antagonistic, such as
predator-prey or host-parasite (in the extreme cases, γ = −1), very little
improvement has to be expected when applying selection for increased abun-
dance. Intuitively, this is because variations in the abundance of the two
interacting partners are negatively correlated, so that their global effects
cancel out.

A remarkable feature in the evolution of interactions is, as illustrated
earlier by numerical simulations (Fig. 3 C), the existence of a finite time
where the matrix transitions from random to acquiring new structure in the
spectrum. The emergence of an isolated eigenvalue from the random circle
when a strong enough rank one term is added to a random matrix is known
in statistical physics and signal processing as BBP phase transition [4]. The
transition we find has exactly the same properties of a BBP one. However,
unlike this transition, in our case the moment when this will happen and the
associated eigenvalues cannot be predicted because of the random Gaussian
contributions Bij. They do not modify the initial random structure, but
they change in time whenever interaction diversity is not vanishing3. As a
consequence, the composition of the evolved community at the moment of
the transition is not unique despite the clear statistical signature.

How can one then distinguish communities that have undergone the tran-
sition, whose composition is constrained by the alignment to the eigenvector
associated to the isolated eigenvalue? If all the pairwise interaction coeffi-
cients were know, it would be straightforward to compute the spectrum of
the interaction matrix. But in large communities the estimation of such co-
efficients is very time-consuming even for one point in time, and complete
time series may be hardly accessible. We thus explored the possibility of

3In mathematical terms, the difference with the standard BBP transition is that in-
stead of adding always the same rank-one contribution, in eq. (11) the added rank one
contribution changes with time making the analysis challenging.
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inferring the transition time from observables that are more readily acces-
sible. By leveraging the maximum entropy method developed in [6] we can
characterise the class of the most likely interaction matrices, knowing the
mean interaction µ, the equilibrium abundances N and the carrying capac-
ity vector K. For large S, these matrices can be written (see Supplementary
section 9):

α̃ij(τ) =
li(τ)Nj(τ)∑

k N
2
k (τ)

+ σ(τ)zij, (12)

where li(τ) = Ki − Ni(τ) − µ(τ)NT (τ)/S and zij is a Gaussian random
matrix of zero mean and unit variance. 4 When ∥l(τ)∥ > σ(τ)∥N(τ)∥, this
matrix undergoes a BBP transition, and an isolated eigenvalue emerges from
a circle of radius σ(τ). We find that this maximum entropy method provides
a very accurate description of the evolutionary dynamics of the interaction
matrix. In fact, both the isolated eigenvalue and the associated eigenvectors
of the maximum entropy inferred matrix agree remarkably well with the
actual ones, all along the evolutionary trajectory (Supplementary Fig. 8).
These results suggest that it may be possible to detect the low-dimensional
structure imprinted by artificial selection of species-rich communities even in
experimental settings.

4. Discussion

This study is devoted to identifying key and general features of the evo-
lutionary dynamics in species-rich communities under a scheme that is com-
monly used for artificial selection of collective functions. We showed that
the interaction matrix evolves in response to selection for total abundance,
and that it results generically in interspecific interactions becoming progres-
sively less competitive. We interpret this as the evolution of facilitation,
similar to what was observed in a two-species model [16]. At the same time
as the average strength of interspecific interactions decreases, they become
more variable. Notably, the evolutionary process imprints a structure on
the interaction matrix. The key to this structure is an isolated eigenvalue,
which emerges as a ’collective mode’ that positively impacts the abundances
of all species. In the analytical description, this corresponds to a rank-one

4Here we are only interested in the spectrum and the isolated eigenvalue.
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perturbation of the interaction matrix, that otherwise retains its original,
disordered nature.

The emergence of structure in the form of a low-rank perturbation is not
specific to selection acting on total abundance, but is predicted to hold for
any function of the abundances at equilibrium. This seems indeed to be a
general feature of systems with a high number of degrees of freedom whose
interactions are dynamically adjusted for achieving a specific collective goal,
such as a lower ground state energy in spin-glasses and learning in neural
networks [38, 41, 42]. The ubiquity of this phenomenon raises the question if
and when selection can produce the emergence of more complex structures,
for instance the emergence of several distinct dominant eigenvalues.

These findings have valuable implications for the formulation of models
that incorporate further biological realism. In particular, they suggest that,
from the point of view of community-level selection, relevant modifications
of basic disordered models are those that produce low-rank terms in the
interaction matrix. These terms may compete with selection acting at the
collective level, and stir the evolutionary path of the community.

We chose to analyse an idealised model in order to achieve analytical
tractability. If disordered models are certainly an oversimplification of real
communities, they have the double advantage of not relying on detailed de-
scriptions of the community, and of providing null expectations for how col-
lective properties would evolve in the absence of species-level constrains. In
fact, the actual strength of ecological interactions is unknown in most mi-
crobial communities. Statistical approaches, that represent interactions in
terms of a few key parameters, can then be a valuable method for identifying
general prescriptions relevant in experiments [5, 26].

The model we have studied may be extended in several meaningful ways.
Instead of modelling species interactions through direct effects, one could
include explicitly the resources that are consumed or exchanged [46, 13, 12].
Given the equivalence of the Lotka-Volterra and MacArthur models when
resource dynamics is much faster than the ecological one, we expect that
our main results qualitatively hold in this case too. However, a formulation
in terms of resource consumption would connect theoretical results to ex-
periments exploring the metabolic foundations of ecological interactions in
microbial communities [18, 17]. Especially, this may guide the choice of more
realistic interaction matrices, such as sparse networks [33, 11], or networks
with empirical biases [32].

Even maintaining random direct interactions, the model we considered
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could be explored in regimes where the perturbative approach is expected
to break down. This would occur for instance when the ecological dynamics
of the community does not attain an equilibrium because of transients [12],
stochastic demographic fluctuations [2] or chaotic population dynamics [39,
10, 8]. All these processes may reduce the heritability of the community
function and thus alter the evolutionary trajectory.

Finally, consistent with the idea that communities are Darwinian individ-
uals [22], we chose mutations that would provide unbiased community-level
variation in the target function. Such assumption allowed us to develop a null
model that is independent of the details of the underlying community inter-
actions. Collective-level mutations can be thought of as the result of multiple
changes in species interactions that occurred during the lifetime of a com-
munity. More detailed descriptions of how sequential species-level mutations
give rise to variation of the interaction matrix at the time of community re-
production – that is when the function is evaluated – are worth studying and
may prove necessary for specific applications (they could provide additional
constraints, as observed for simpler models [16]). Furthermore, the model
could be extended so as to include mutations of intra-species interactions via
changes of the carrying capacities or speciation events that would increase
diversity.

Communities are increasingly conceived as coherent units that provide
collective-level functions, to the point to be attributed the status of ’organ-
isms’ [47, 31]. If this view can reflect the way ecological interactions produce
a given population structure [30], it can go as far as identifying communities
as full-fledged evolutionary units. In the latter case, how they are ’scaffolded’
by physical compartmentalisation and the establishment of community-level
lineages, is all-important in determining the action of natural selection at the
level of communities [15, 9]. We have modelled here the protocol commonly
used in experiments of artificial selection [3, 40]. Considering that the collec-
tive level is the true center of interest for this process, moreover, we described
mutations only for their effect on the community-level function under selec-
tion. Nested levels of reproducing units are widespread in the hierarchy of
living beings. Our results might thus be relevant whenever selection on high-
level functions bestows a structure on the interaction among heterogeneous
constituent units, and contribute to understanding how integration across
levels of organisation is achieved.
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1 Phase diagram

The phase diagram of the random Lotka-Volterra model (equation (12) of the main text) in the space of the
parameters µ and σ, for the case γ = 0, was derived in [Bunin, 2017] and is reproduced in Figure 1. In the
unbounded growth phase, some population sizes diverge in finite time: this is a pathological feature of the
Lotka-Volterra equations, that can only be corrected by modifying the equations [Sidhom and Galla, 2020].
The chaotic phase is characterised by a chaotic dynamics with multiple unstable equilibria. In the unique-
equilibrium phase, the community converges, independently of the initial conditions, toward a unique ecological
equilibrium where numerous species coexist. In light of this result, we decided to draw our initial interaction
matrix in the unique-equilibrium phase as the ecological equilibrium is well defined. In the last two phases, a
long-term value of the mean abundance can be computed, depending only on µ, σ and γ: the contour plot of
the log of this mean value is represented in Figure 1. Since the total abundance is proportional to the mean

Figure 1: Phase diagram of the dynamics of the Lotka-Volterra equations, superposed with the contour plot of
the log of the mean population in the limit S → ∞, in the space (µ, σ) with γ = 0 and all carrying capacities
equal to one. This plot is a reproduction using the equations derived in [Bunin, 2017].

abundance, this surface is used in Figure 4 of the main text for the comparison between a purely random and
the evolved interaction matrix.

2 First order perturbation theory of Lotka-Volterra equations

The equilibrium condition for the Lotka-Volterra equations is:

0 = Ni


Ki −Ni −

∑

j

αijNj


 = Ni [Ki − [(I+ α)N]i] (1)

We define χij =
∂Ni

∂Kj
the perturbation matrix that measure the effect of a perturbation of the carrying capacities

on the equilibrium abundances. We will denote with a ⋆ the vectors or matrices reduced to the set of extant
species {i = 1, . . . , S |Ni > 0}.

The solution of equation (1) is:
(I⋆ + α⋆)N⋆ = K⋆

N⋆ = (I⋆ + α⋆)−1K⋆
(2)

We now differentiate equation (1) with respect to Kj :

0 = χij

[
Ki −Ni −

∑

k

αikNk

]
+Ni

[
δij − χij −

∑

k

αikχkj

]
(3)

For the set of extant species the first term is equal to zero and Ni ̸= 0 so we must have :

χij +
∑

k

αi,kχk,j = δij (4)

That is to say, in matrix notation :
χ⋆ + α⋆χ⋆ = I⋆ (5)
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Figure 2: At the top is the distribution of Mn for different values of n. At the bottom is the evolution of the
expected value of this distribution with n (in blue), with an approximation by 0.5−

√
2 log(n) in dotted green.

This gives us an expression for χ⋆:
χ⋆ = (I⋆ + α⋆)−1 (6)

and from equations (2) and (6) we get that at equilibrium:

N⋆ = χ⋆K⋆ (7)

3 Maximum over Gaussian samples

Let x1, . . . ,xn be independent Gaussian random vectors of dimension d and of law N (0, Id). For u ∈ Rd, we
define fi = xi · u. We want to find the distribution of f⋆ = max({fi}) and of the associated x⋆.

We denote û = u
∥u∥ . Let Pu and Pu⊥ be the projection matrices on û and on its orthogonal space û⊥ such

that we have fi = ∥u∥Puxi. By Cochran theorem Puxi and Pu⊥xi are independent Gaussian variables of law
N (0, Pu) and N (0, Pu⊥).

As Puxi is aligned with û and because û is normalized, we have Puxi = yiû with yi ∼ N (0, 1). We thus
have fi = ∥u∥yi. In this notation fi > fj ⇔ yi > yj . We define Mn = max(y1, . . . , yn) such that y⋆ = Mn if
∀i ̸= ⋆ , yi < y⋆ . By Bayes formula, Mn has the probability density :

p(Mn = y) = p(y⋆ = y | ∀i ̸= ⋆ , yi < y⋆)

=
1

Z
P(∀i ̸= ⋆ , yi < y)p(y⋆ = y)

=
1

Z
(P(yi < y))

n−1
p(y⋆ = y)

=
1

Z
Φ(y)n−1ϕ(y)

(8)

with Φ and ϕ the CDF and PDF of Gaussian law and Z a normalisation constant :

Z =

∫ +∞

−∞
Φ(y)n−1ϕ(y) dy =

1

n
[Φ(y)n]

+∞
−∞ =

1

n
(9)

Finally, p(Mn = y) = nΦ(y)n−1ϕ(y). This distribution is represented in Figure 2. It is asymptotic to a shifted
Gumbel distribution [Gumbel, 2004].

We now use the decomposition x⋆ = Pux⋆ + Pu⊥x⋆ = Mnû+ Pu⊥x⋆. We thus have :

x⋆ = Mnû+ b with b ∼ N (0, Pu⊥) (10)

or, in another notation :

x⋆ = Mnû+ Pu⊥z = (Mn − z · û)û+ z with z ∼ N (0, Id) (11)
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4 Mutation-Selection Process for any γ

LetN be the equilibrium for the community described by the Lotka-Volterra equations. Each species’ abundance
obeys the equation:

0 = Ni


Ki −Ni −

∑

j

αijNj


 . (12)

After a mutational step, the interaction matrix becomes, at first order in ε :

α̂ij = αij +
εσ√
S
ηij (13)

with η a Gaussian matrix of expected value zero, variance 1 and symmetric correlation γ.

Let N̂ be the equilibrium abundances associated to the interaction matrix α̂. To first order in ε, the equation
for N̂ is:

0 = N̂i



Ki − N̂i −

∑

j

αijN̂j −ε
σ√
S

∑

j

ηijNj

︸ ︷︷ ︸
δKi




(14)

The variable N̂ is the solution of equation (12), where we added a perturbation field δK = −ε σ√
S
ηN of order

ε. Defining χij =
∂Ni

∂Kj
as in section 2, for small ε we can compute the resulting change in abundances δN as:

δN = χδK

= −ε
σ√
S
χηN

(15)

This change in abundance δN will result in a change in the community function f(N) that we can charac-
terise:

δf = ∇f(N) · δN
= −ε

σ√
S
∇f(N)⊤χηN

= −ε
σ√
S
[(χ⊤∇f(N))⊗N] : η

= −ε
σ√
S
[v ⊗N] : η

(16)

with v = χ⊤∇f(N), ⊗ the tensor product ((u⊗v)ij = uivj) and : the tensor contraction (A : B =
∑

ij AijBij).
Because in the case γ ̸= 0, the ηij are not all independent, we can’t directly apply the results of section 3. For
this reason, we use the decomposition of η (see SI of [Barbier et al., 2018]) :

η =
x+ κx⊤
√
1 + κ2

(17)

with κ =
1−

√
1−γ2

γ and x a Gaussian matrix of mean 0, variance 1 with no correlations between xij and xji for
i ̸= j.

Using A : x⊤ = A⊤ : x, we have

δf = −ε
σ√

S
√
1 + κ2

[v ⊗N+ κN⊗ v] : x (18)

We now denote u = −ε σ√
S
√
1+κ2

[v ⊗N+ κN⊗ v] so that δf = u : x as in section 3, but this time x and u

are matrices instead of vectors and the scalar product is replaced by a tensor contraction. However, by packing
the two indices ij of xij and uij into a general index α we can interpret the exact same form as the scalar
product of two large vectors of dimension d = S2. In this way, the tensor contraction reduces to a simple scalar
product so that we can directly apply the results of section 3.

Among n different realisations of the random matrix x (and thus of η), the one that will give rise to the
highest score can be written:

x⋆ = Mn
u

∥u∥ =
−Mn

N [v ⊗N+ κN⊗ v] +B (19)
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and is associated with a change in score:

δf⋆ = u : x⋆ =
εσN√

S
√
1 + κ2

Mn (20)

with N = ∥v⊗N+κN⊗v∥, Mn the random variable defined in section 3 and B a Gaussian matrix ”orthogonal
to the selected direction” (u : B = 0). This equation reduces to equation (9) of the main text when γ = 0.

Putting the expression of x⋆ in the formula for η and using 2κ
1+κ2 = γ we get an expression for the selected

η⋆:

η⋆ =
−Mn

N
√
1 + κ2

[
(1 + κ2)v ⊗N+ 2κN⊗ v

]
+ B̃

=
−Mn

√
1 + κ2

N [v ⊗N+ γN⊗ v] + B̃

(21)

with B̃ = B+κB⊤
√
1+κ2

being a Gaussian matrix of mean 0 and variance 1 with symmetric correlation γ (it is the

same construction as equation (17)).
The resulting selected interaction matrix can be written:

α̂⋆ = α− εσ√
S

(
Mn

√
1 + κ2

N [v ⊗N+ γN⊗ v]− B̃

)
(22)

In the case γ = 0, we obtain equation (12) of the main text.

5 Correlation of the eigenvector with the abundances at equilibrium

Fig. 3 shows that at a late generation (τ = 2000), the vector of abundances at equilibrium is strongly correlated
with the eigenvector associated to the left-most isolated eigenvalue of α and to the vector v = δNT

δK . Theses
correlations explain the structure of α: Fig. 4 shows that the species that are the most abundant are also the
most mutualist.

Figure 3: Coefficients of N⋆, v⋆ (as defined in the main text) and of the left eigenvector q⋆ associated to the
isolated eigenvalue of α⋆ at generation τ = 2000 reduced to extant species, all normalised, with indices sorted
by decreasing carrying capacity. It is evident that N⋆, v⋆ and q⋆ are strongly correlated. Their dependence on
K is weaker, but still sufficient for the structure to emerge in Fig. 5 of the main text.

This correlation is caused by two effects that feed back onto one another. First, species with mutualistic
interactions are more likely to be abundant than those with competitive interactions. Secondly, as shown in
Eq. 7 (Main text), the most abundant species will see their interactions evolve faster toward mutualism.

6 Limit of small σ and large S

For simplicity, we consider here that all the carrying capacities are equal (we set Ki = 1, without loss of
generality). When S ≫ 1, σ(τ) is almost constant, and we assume here that it is initially small.
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Figure 4: Coefficients of the interaction matrix α at generations 1 (left) and 2000 (right) with rows and columns
sorted by decreasing equilibrium abundances at τ = 2000 for the same simulation as described in Materials
and Methods. Only the species that have positive abundance at generation 2000 are shown.

For small σ, the interaction matrix α(τ) can be characterised only by its mean value :

αij(τ) =
µ(τ)

S
+O(σ) (23)

that we write in matrix notation :

α(τ) =
µ(τ)

S
11⊤ +O(σ) (24)

Then, following eq (6), the perturbation matrix can be expressed as :

χ(τ) = (I+ α(τ))−1

=

(
I+

µ(τ)

S
11⊤ +O(σ)

)−1

= I− µ(τ)/S

1 + µ(τ)
11⊤ +O(σ)

(25)

using Sherman–Morrison formula. With this, we can compute the abundances at equilibrium:

N(τ) = χ(τ)1

=
1

1 + µ(τ)
1+O(σ)

(26)

The total abundance along the evolutionary trajectory depends, as well as the interaction matrix, only on
the mean interaction strength:

NT (τ)

S
= ⟨Ni(τ)⟩ =

1

1 + µ(τ)
+O(σ). (27)

In the same fashion, we get that :

v(τ) =
1

1 + µ(τ)
1+O(σ) (28)

Equation (22) for γ = 0 or equation (6) of the main text then gives the recursive equation for µ(τ):

µ(τ + 1) = µ(τ)−
√
1 + γ

εMnσ√
S

(29)

that has for solution:
µ(τ) = µ(0)− τ

εσ√
S
Mn

√
1 + γ (30)

Fig. 5 shows that equations (27) and (30) match the numerical simulations remarkably well in the case of
an initial σ = 0.1 and S = 100.
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Figure 5: Comparison of the evolution of the mean abundance < N > and of the rescaled mean interaction
µ from the Eqs. (30) and (27) (green lines) and from numerical simulations (blue lines) with S = 100 and
σ(0) = 0.1.

7 Community changes in the absence of selection

We now look at the evolutionary dynamics of the interaction matrix in the neutral regime, when any community
leaves an offspring with equal probability.

In this subsection only, we denote for simplicity d = S(S − 1) the number of interaction terms and every
sum

∑
are index on i ̸= j. The notations bij is not the same as before.

The process is the following:

• We have α
(t)
ij = mt + stdta

(t)
ij with mt =

1
d

∑
α
(t)
ij the empirical mean and stdt =

√
1
d

∑
(α

(t)
ij −mt)2 the

empirical standard deviation.

• We then define α
(t+1)
ij = mt + stdtb

(t+1)
ij with b

(t+1)
ij =

a
(t)
ij +εη

(t+1)
ij√

1+ε2
.

• We repeat the operation.

Note that by definition, aij have the following properties:
∑

a
(t)
ij = 0 and 1

d

∑
(a

(t)
ij )

2 = 1.
We now wish to get a an expression of µt+1 as a function of µt and η. We start with the empirical mean:

mt+1 =
1

d

∑
α
(t+1)
ij

= mt +
stdt
d

∑
b
(t+1)
ij

= mt +
stdt ε√
1 + ε2

1

d

∑
η
(t+1)
ij

(31)

Using the Central Limit Theorem and writing with µ, S and σ we get:

µt+1 ∼ N (µt, σt
ε√

S(1 + ε2)
) (32)

To have a similar expression for σ the computation is a bit longer. We start with the empirical variance:

Vart+1 =
1

d

∑
(α

(t+1)
ij −mt+1)

2

=
1

d

∑
(mt −mt+1 + stdtb

(t+1)
ij )2

=
Vart
d

∑

a

(t)
ij + εη

(t+1)
ij√

1 + ε2
− stdt ε√

1 + ε2
1

N

∑

k ̸=l

η
(t+1)
k,l




We denote ⟨η⟩ = 1
d

∑
k ̸=l η

(t+1)
k,l the empirical mean of η so that:

Vart+1 =
Vart

(1 + ε)2d

∑(
αt
ij + ε(ηij − ⟨η⟩)

)

=
Vart

(1 + ε)2d

[∑
(atij)

2 + ε
∑

(ηij − ⟨η⟩)2 + 2ε
∑

a
(t)
ij (ηij − ⟨η⟩)

]
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We now use the fact that
∑

a
(t)
ij = 0 and 1

d

∑
(a

(t)
ij )

2 = 1. Furthermore, as η is a Gaussian random variable,∑
(ηij − ⟨η⟩)2 ∼ χ2

n−1 (chi-square distribution).
As aij and ηij are uncorrelated we have by the Central Limit Theorem:

1

d

∑
aijηij ∼ N (0,

1√
N

) (33)

We then use the asymptotic expression: χ2
d−1 −→ d−1+

√
2(d− 1)N (0, 1) so that in the large S (and thus

d) limit:

Vart+1 =
Vart

(1 + ε)2

[
1 + ε2 + ε2

√
2

d
N (0, 1) +

2ε√
d
N (0, 1)

]

But as ε ≪ 1 we can neglect the first normal distribution:

Vart+1 = Vart

(
1 +

2ε

1 + ε2
1√
d
N (0, 1)

)
(34)

Using the Taylor expansion of the square root we get the expression for σ:

σt+1 ∼ N (σt, σt
ε

S(1 + ε2)
) (35)

We thus observe that this process is a isotropic random walk in the space (µ, σ) and that the variation
in σ are small compared to the one in µ: it scales like 1

S for σ and 1√
S

for µ. Thus, for large S, σ evolves

with a longer time-scale than µ and so can be approximated as constant. These results are consistent with the
numerical observation in Figure 6.

Figure 6: Evolution of the empirical µ (top-left), σ (top-right) and mean population ⟨N⟩ (bottom-right) in
absence of selection, with the parameters S = 100, ε = 0.1, τmax = 100, n = 50 and γ = 0. For the panels in the
top and in the bottom-right, the red lines are the mean of the quantity of interest and the blue area is bounded
by the maximum and minimum values. The green line in the bottom-right panel represent the predicted value
from the cavity method. The panel in the bottom-left is the evolution of the communities in the (µ, σ) space.

8 Evolution of species diversity

Fig. 7 represents the evolution of the diversity (or species richness) ϕ = S⋆

S along the same evolutionary
trajectory as the figures of the main text. This shows that diversity decreases along the evolutionary trajectory
but the number of extant species does not collapse, and the community maintains a substantial amount of
diversity.
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Figure 7: Changes of species richness along an evolutionary trajectory. Selection for increased total
abundance leads to a decrease in the species richness. The parameters of the simulation are described in the
Methods section.

9 Comparison with synthetic interaction matrix

Following [Barbier et al., 2021], we can compute the inferred interaction matrix β that gives rise to the observed
equilibrium abundances and has a given mean interaction β̄. Neglecting the correlations between different matrix
elements (which are sub-leading in the large S limit), such matrix is of the form:

β⋆
ij = β̄ +

(Ki −Ni − β̄)Nj∑
k N

2
k

+ σBij (36)

with B a Gaussian matrix of mean 0 and variance 1. Fig. 8 shows the eigenvalue distribution of such matrix,
compared to the one obtained from the evolutionary process. The agreement is remarkable.

10 Generalisations

We checked that the features presented in the main text hold for a broad range of parameters in the numerical
simulations, in particular for most initial values of (µ, σ) as long as we are in the unique equilibrium phase (see
section 1), for any values of m and n (when selecting m communities out of n) as long as n > 1 and m < n
(theses two extreme cases lead to no selection) and for any value of γ with the exception of γ = −1, as expected
from the equations discussed in the main text. The addition of a small immigration term to the ecological
dynamics, moreover, doesn’t qualitatively alter the results.

We considered different selection functions, such as f =
∑

i wiNi with all weights wi being positives. Similar
results keep holding. This can be understood by interpreting the selection process as a modification of selection
for the total abundance, obtained by rescaling species abundances as wiNi, so that species i has carrying
capacities wiKi and an interaction matrix αijwi/wj . The same computations explained in the main text and

in Section 4 then allow us to obtain the exact same recursive equations for f and α but with v = δf
δK and

v⋆(τ) = (I⋆ + α⋆(τ)⊤)−1w⋆.

11 Numerical integration method

We here present an integration method for the Lotka-Volterra equations :

dNi

dt
= ri

Ni

Ki


Ki −Ni −

∑

j ̸=i

αijNj


 , (37)

with Ki the carrying capacities, ri the growth rates (all equals to one in the paper) and α the interaction matrix.
In contrast to the Euler method where one assumes that the derivative is constant during a short interval of

time dt, potentially leading to negative populations for strong derivatives, we assume that only the abundances
of the other species (Nj(t))j ̸=i are constant. During this time interval [t, t + dt], the equations are reduced

to uncoupled logistic equations of effective carrying capacities
∼
Ki = Ki −

∑
j ̸=i αijNj(t) and effective growth

9



Figure 8: Evolved and synthetic matrix have similar structure of eigenstates. Comparison between
the eigenvalues of the evolved interaction matrix α⋆ (blue) and of the maximum entropy matrix β⋆ (green) at
generation τ = 1500 (Top) and the coefficient of the eigenvector of the minimal eigenvalue (middle). Evolution
of the minimum eigenvalue of both matrices for every generations (Bottom).
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rates
∼
ri(t) = ri

∼
Ki(t)/Ki. These logistic equations can be analytically solved in the interval [t, t+dt], giving the

recursive formula:

Ni(t+ dt) =
Ni(t)

∼
Ki(t)

Ni(t) + (
∼
Ki(t)−Ni(t)) exp

(
−∼
ri(t)dt

) (38)

with 



∼
Ki(t) = Ki −

∑
j ̸=i αijNj(t)

∼
ri(t) = ri

∼
Ki(t)
Ki

(39)

We then have a logistic-by-part curve that avoids abundances to become negative. We can show by Taylor
expansion that we get back the Euler method at first order in dt.
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