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Quantum transmission links are central elements in essentially all implementations of quantum information
protocols. Emerging progress in quantum technologies involving such links needs to be accompanied by appro-
priate certification tools. In adversarial scenarios, a certification method can be vulnerable to attacks if too much
trust is placed on the underlying system. Here, we propose a protocol in a device independent framework, which
allows for the certification of practical quantum transmission links in scenarios where minimal assumptions are
made about the functioning of the certification setup. In particular, we take unavoidable transmission losses
into account by modeling the link as a completely-positive trace-decreasing map. We also, crucially, remove
the assumption of independent and identically distributed samples, which is known to be incompatible with
adversarial settings. Finally, in view of the use of the certified transmitted states for follow-up applications, our
protocol moves beyond certification of the channel to allow us to estimate the quality of the transmitted state
itself. To illustrate the practical relevance and the feasibility of our protocol with currently available technol-
ogy we provide an experimental implementation based on a state-of-the-art polarization entangled photon pair
source in a Sagnac configuration and analyze its robustness for realistic losses and errors.

Introduction
The ability to send and receive quantum information is at
the heart of the rapidly developing quantum technologies.
Transmitting quantum information over quantum networks
promises unparalleled efficiency and security [1], as well as
new functionalities such as the delegation of quantum com-
putation [2] and quantum sensing [3]. Within quantum com-
puters themselves we will need to input, share and distribute
quantum information to different parts, particularly impor-
tant for architectures relying on multiple quantum proces-
sors [4, 5]. The reliable transmission of quantum information
is thus an essential building block for future quantum tech-
nologies, and, as such, we must be very sure of its working.
When the physical devices used to test and use these quantum
channels are trusted, this question can be answered by stan-
dard quantum channel authentication [6], and there are var-
ious approaches to this end, from those requiring incredibly
expensive entangled resources [6–8], to those more achiev-
able, but at cost to security scaling [9–12]. In this work, we
consider a much stronger requirement, where some or all de-
vices used are not trusted, in a so-called device independent
setting. This will be a crucial step for testing the transmission
through quantum channels for future applications.

Device independence uses Bell-like correlations to imply
correct behaviour of quantum hardware, without the need to
understand or trust their inner workings [13, 14], that is, inde-
pendently of the physical device used. It is motivated by the
inevitable situation where the user of a quantum technology
is not necessarily the one who built all the hardware and does
not necessarily want to trust it to behave as specified. It has
first been applied in quantum information to prove security in
quantum key distribution devices, thus making them secure
against potential hardware hacks. It has then expanded in
many directions, including random number generation [15],
verification of quantum computation [16], and more [17, 18].
The application to quantum channels is relatively recent [19]

(but see also [20]), however there are some important missing
elements in order to obtain useful certification.

Here, we address the main remaining obstacles to certify
the transmission of quantum information in the device inde-
pendent framework. First, in our approach we explicitly take
into account loss. This is particularly important in optical im-
plementations (which is the most natural choice for quantum
channels). It is not addressed in current schemes [19, 20],
which effectively assume that any loss is innocent; this is
somewhat against the goals of device independence and opens
a security loophole if the loss is controlled by malicious par-
ties. Second, we remove the assumption that each time a
channel is used, it is done so in an independent, uncorrelated
way, known as identical independent distribution (IID). This
assumption similarly makes us vulnerable in terms of secu-
rity so should be avoided in general. Third, we certify the
transmission of quantum information itself. Previous works
assume IID, that loss is not malicious, and they certify that the
channel that was used during the test was good but without
a statement on actual transmitted quantum information [19].
We develop the treatment of loss as a non trace preserving
channel, bounding the diamond fidelity between an untrusted
channel and an ideal one. We use this to build protocols cer-
tifying transmitted quantum information using this channel.
Our protocols are secure in the one-sided device independent
setting (where the sender’s devices are fully trusted, but not
the receiver’s), and also in the fully device independent set-
ting when IID is assumed on the source; in both cases no IID
needs to be assumed on the uses of the channel.

We also demonstrate the feasibility of our protocol and
experimentally validate the main elements of one-sided
device independent certified transmission with an implemen-
tation exploiting a high-quality entangled photon source with
polarization encoding obtained in a Sagnac configuration.
This allows us to explore the behavior of the minimum
fidelity that we can certify for realistic losses in honest
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channels and confirm the robustness of the protocol against
simulated errors introduced by dishonest channels.

Results
Certification protocol. In our framework, a player Al-
ice wishes to send a qubit state from Hilbert space Hi to
Bob, through a local unitary quantum channel E0. This
qubit is possibly entangled with another system of Hilbert
space S of arbitrary dimension, so the global state reads
ρi ∈ L(Hi ⊗ S). The channel takes any qubit from L(Hi)
to another qubit from L(Ho), with output global state
ρo = (E0 ⊗ I)[ρi] = (U ⊗ I)ρi(U

† ⊗ I), where U is a local
unitary and I is the identity. This model describes a perfect
unitary gate in a quantum computer, quantum transmission
link (carried on through quantum teleportation or a simple
optical fiber) or quantum memory. Without loss of generality,
we takeU = I and (E0⊗I)[ρi] = ρi, as this case encompasses
all unitaries in a device independent scenario [19]. This chan-
nel is called the reference channel.

In real world situations, the channel would be lossy, noisy,
or even operated by a malicious party Eve. Also, Alice and
Bob normally do not have access to isolated qubit spaces,
but operate with physical systems such as photons or atoms,
displaying other degrees of freedom. This way, without fur-
ther assumptions, Alice and Bob have access to a completely
positive trace-decreasing (CPTD) map E , i.e. a probabilistic
channel, that sends density operators from an input Hilbert
spaceHA1

to positive operators of trace smaller than 1 on an
output Hilbert space HB. This channel is called the physi-
cal channel. Alice also possesses a source of bipartite states
Φi shared between HA1

and a secondary Hilbert space HA2
,

that we call the probe input state. She can send one part of Φi
through the channel E , resulting in the probe output state Φo,
shared with Bob:

Φo = (E ⊗ I)[Φi]/t(E|Φi), (1)

where t(E|Φi) = Tr(E ⊗ I)[Φi] is the transmissivity of E
which a priori depends on the input state, as it does in polar-
izing channels for instance. For more details on this relatively
new notion, the reader can refer to SUPP. MAT. A. Finally, the
players can measure states with 2-outcome positive operator-
valued measures (POVMs) {MPl|q}l=0,1 where P = A1,A2

orB indicating the Hilbert space on which the measurement is
acting, and q indicates which POVM is measured, see Eqs. (9)
to (12) below. Fig. 1 illustrates our setting.

In an adversarial scenario, Alice and Bob wish to draw
device independent conclusions, meaning they make no as-
sumption whatsoever on the states or the measurements. In
particular, physical Hilbert spaces are of arbitrarily big di-
mensions, which include all degrees of freedom of the phys-
ical systems and possible entanglement with the rest of the
universe. In this way, players can only certify objects up to lo-
cal isometries, which associate finite-dimension qubit spaces
Hi andHo, to these infinite-dimension physical spacesHA1

,
HA2

, HB. As a device independent procedure, self-testing is
actually "blind" to local isometries such that it does not cer-

FIG. 1: Sketch of the problem. Alice’s goal is to send a
qubit, potentially part of a larger system, in state ρi, through
an untrusted quantum channel E (green path). To do so, she
sometimes tests the channel by sending half an entangled
state (blue path). Alice and Bob can then measure the out-
put state Φo, to assess how close the action of the physical
channel E is to an ideal reference channel E0 on the transmit-
ted state ρi.

tify a single state, but a whole equivalence class of quantum
states mutually related by locally isometric transformations.
As shown in [19], similar conclusions can be drawn in or-
der to device-independently test the equivalence between the
physical channel E ⊗ I and the reference operation E0 ⊗ I.
Note, however, that as a quantum channel is associated to
two Hilbert spaces (one in input and the other in output),
two isometries are involved in order to extract a qubit-to-qubit
channel from a physical channel. This way, the input isom-
etry brings a qubit input state to a physical state that can be
fed into the physical channel, while the output isometry ex-
tracts a qubit state from the physical channel’s output state.
However, this formalism, in principle, only applies to com-
pletely positive trace-preserving (CPTP) maps. In our case,
a trace-decreasing physical channel only returns a state with
a certain probability, such that it can only be compared to
the reference channel multiplied by a constant t ≤ 1. Then,
one can only make a statement about equivalence between the
physical and reference channels, when considering rounds in
which the transmission was successful. We capture this intu-
ition with the following definition.

Definition 1 (Self-testing of a CPTD map). Let us
consider a physical channel E : HA1

−→ HB. With
two local isometries Γi : HA1

⊗Hi −→ HA1
⊗Hexti

and Γo : HB −→ Ho ⊗Hexto , and an ancillary state
ρA1
∈ L(HA1

), we can define an extracted qubit channel
Ei,o as:

Ei,o : ρ ∈ L(Hi) −→ Trext
(
(Γo ◦ E ◦ Γi)[ρA1

⊗ ρ ]
)
, (2)

where the trace is taken over Hexti and Hexto [21]. The self-
testing equivalence between a probabilistic channel E and the
reference channel E0 is established if there exists t ∈]0; 1]
giving:

Ei,o = tE0. (3)
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The reader can refer to SUPP. MAT. A 2 for more details
on the lossy channels’ equivalence classes. In experiments,
we can never perfectly certify E , therefore we quantify the
ability of this probabilistic channel to implement the deter-
ministic channel E0 by generalizing the diamond fidelity to
probabilistic quantum channels:

FΓi,o
� (E , E0) = F�(Ei,o, E0)

= inf
|φ〉
F ((Ei,o ⊗ I)[φ]/t(Ei,o|φ), (E0 ⊗ I)[φ]),

(4)

where F (ρ, σ) = Tr
(√

ρ1/2σρ1/2
)2

is the Ulhmann fidelity
for quantum states, and the minimization is carried out over
all pure states from H⊗2

i . Note that the left state is normal-
ized by the transmissivity. Consequently, contrary to CPTP
maps fidelities, F�(Ei,o, E0) = 1 does not imply Ei,o = E0,
but only that there exists t ∈]0, 1] such that Ei,o = tE0, mean-
ing that the channels are equivalent in the sense of our defini-
tion. Physically speaking, these two channels output the same
states, under the condition those were not lost. The diamond
fidelity is particularly useful here, as it can be interpreted as
the minimum probability that E ⊗ I successfully implements
the operation E0 ⊗ I on any state, under the condition that a
state successfully passes through the channel. The main goal
of our protocol is therefore to certify that fidelity.

For that purpose, let us consider the situation where Alice
can certify the probe input state Φi up to two local isometries
ΓA1/A2 : HA1/A2

−→ HA1/A2
⊗ Hi with the following

fidelity to a maximally entangled state:

F i = F
(
(ΛA1 ⊗ ΛA2)[Φi],Φ+

)
, (5)

where Φ+ is a maximally-entangled state (for instance
|Φ+〉 = |00〉+|11〉√

2
) and Λj [·] = Trj(Γj [·]). We next con-

sider the situation that Alice and Bob are able to certify
the probe output state Φo up to local isometries ΓA2 and
ΓB : HB −→ HB ⊗Ho with the following fidelity:

F o = F
(
(ΛB ⊗ ΛA2)[(E ⊗ I)[Φi]]/t(E|Φi), (E0 ⊗ I)[Φ+]

)
.

(6)
Given Eqs. (5) and (6), we show in SUPP. MAT. D 1 that there
exist isometries Γi,Γo such that Alice and Bob are able to
lower bound the diamond fidelity on the corresponding ex-
tracted channel Ei,o:

F�(Ei,o, E0) ≥ 1−4 sin2
(

arcsin
(
Ci/t(E|Φi)

)
+arcsinCo

)
,

(7)
where Cj =

√
1− F j are sine distances associated to their

corresponding fidelities [22]. In this way, checking the in-
put and output fidelities allows us to assess the fidelity of
the channel itself. This bound generalizes what is shown in
[19] to probabilistic channels. It also uses the diamond fi-
delity, which informs on the behavior of the channel on any
state, instead of the Choi-Jamiołkowski fidelity, which only
informs on the behavior of the channel on a maximally entan-
gled state.

This bound gives the direction for estimating the fidelity
of a quantum channel. The idea is to evaluate the fidelity F i

of the probe input state to a Bell state, then send one part
of that probe state through the channel Alice wishes to send
ρi through, and finally evaluate the fidelity F o of the corre-
sponding output state to the same Bell state. Such procedure
is possible using recent self-testing results [23], but requires
a very large number of experimental rounds in the absence
of the IID assumption, as both input and output probe states
require certification. We significantly decrease that number
by making the IID assumption on the probe state, or by leav-
ing its full characterization to Alice’s responsibility. Still, as
we make no IID assumption on the channel, optimal secu-
rity cannot be reached by first testing that channel, and only
then using it to send the input state ρi, as Eve may change the
channel’s expression in the last moment. Our protocol works
around this problem by allowing Alice to hide the state ρi
among a large number of probe states, at a random position
unknown to Eve. In that case, we show in SUPP. MAT. D 4
that the bound (7) holds for the average channel Ēi,o over the
whole protocol. Then the transmission fidelity between the
output state ρ̄o = (Ēi,o⊗ I)[ρi]/t(Ē |ρi) and the input state ρi
is certified:

F (ρi, ρ̄o) ≥ F�(Ēi,o, I). (8)

We can use this state ρ̄o to describe accurately any statistics
that would occur when processing the output state of the pro-
tocol, and estimate the quality of an actual transmisted state,
instead of a verification of a channel only.

In SUPP. MAT. C we give detailed protocols where we ap-
ply these ideas to test a transmitted state under the device
independent (DI) and one-sided device independent (1sDI)
scenarios. For the purpose of our demonstration, we focus on
an one-sided device independent scenario. A summary of the
protocol in this case is given in Fig. 2 (for a detailed recipe,
the reader can refer to the Supplementary Material). Here,
Alice’s measurement setup is trusted, such that her Hilbert
spaces are qubit spaces HA1

= HA2
= Hi, her isometries

are trivial Γi = ΓA1 = ΓA2 = I, and she performs measure-
ments in the Pauli X and Z bases:

A0 = MA2

0|0 −M
A2

1|0 = Z, (9)

A1 = MA2

0|1 −M
A2

1|1 = X. (10)

This fits a variety of scenarios where Alice is a power-
ful server, trying to provide states to a weaker client, Bob,
whose measurement apparatus is still untrusted. For that rea-
son, Bob’s observables, defined as:

B0 = MB0|0 −M
B
1|0, (11)

B1 = MB0|1 −M
B
1|1, (12)

are a priori unknown. In order to bound F o, Alice and Bob
use self-testing through steering [24]. Namely, the maximal
violation of the steering inequality [25]:

β = |〈A0B0〉+ 〈A1B1〉| ≤
√

2, (13)
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FIG. 2: Protocol sketch in a one-sided device independent
scenario: Alice prepares N copies of the probe state Φi, and
sends them through the untrusted channel E that varies with
time, as well as ρi at a random secret position r. Some states
are lost such that Bob only receives a fraction of them. Alice
tells Bob the value of r. If ρi was lost, then the protocol
aborts. Otherwise, Bob stores ρi and, together with Alice,
tests the violation of the steering inequality with the output
probe states. They deduce the average channel’s quality over
the protocol, which informs on the probability that the state
ρi was accurately transmitted to Bob, up to isometries.

self-tests the maximally entangled pair of qubits. We then
combine recent self-testing results [23] with further finite
statistics methods in a non-IID setting and with a lossy chan-
nel, in order to estimateF o in bound (7) with high confidence,
when a close-to-maximal violation β = 2− ε is measured:

F o ≥ 1− αf(ε,K) ' 1− αε, (14)

with f a function of ε and the number K of states measured
by Alice and Bob during the protocol (see Eq. (27) in
Methods), and α = 1.26 [23]. This outlines the protocol: by
sending N characterized probe states through the channel,
Alice and Bob estimate Fo and thus the diamond fidelity
between the extracted channel and the identity channel, and
therefore the transmission fidelity of an unknown state ρi, as
a function of N , ε, and the number K of transmitted states.

Experimental implementation. In order to test the feasibil-
ity of our protocol, we perform a proof-of-principle experi-
ment based on photon pairs, emitted at telecom wavelength
via type-II spontaneous parametric down-conversion (SPDC)
in a periodically-poled KTP crystal (ppKTP). Photons are en-
tangled in polarization thanks to a Sagnac interferometer [26],
encoding in this way a close-to-maximally entangled pair of
qubits. Details of the setup are given in Fig. 3.

The states emitted by the source are characterized at each
iteration of the protocol via quantum state tomography [27],
without inserting any untrusted quantum channel (green box
in Fig. 3). Polarization analyzers (PA) are trusted for that
task, as it is performed by Alice. This way we measured
a fidelity of the probe’s polarization state to a Bell state of
F i = 99.20%±0.02% on average over all protocol attempts,

with a maximum reached fidelity of F i = 99.43% ± 0.05%.
We then send the probe states through an untrusted quantum
channel. For this first demonstration we use a variable opti-
cal attenuator (VOA) in order to simulate a lossy but honest
channel that requires certification. Detecting an idler photon
in Alice’s PA heralds a signal photon being sent through the
quantum channel, which is then detected in Bob’s PA. In each
protocol attempt, the transmissivity is identified as the prob-
ability that Bob detects a state, knowing Alice heralded that
state, and is also known as the heralding efficiency ηs:

t(E|Φi) ' ηs = Rsi/Ri, (15)

where Rsi is the pair detection rate and Ri the idler detec-
tion rate. We measure the pairs in random bases A0B0 or
A1B1, and evaluate a close-to-maximum violation of steer-
ing inequality β = 2 − ε, with and average deviation
ε = 1.42 · 10−2, and a minimum deviation measured in a pro-
tocol εmin = 1.32 · 10−2.

For each protocol attempt we set a different transmissiv-
ity of the VOA, such that ηs ranges from 21.9% to 47.3%,
the maximum value corresponding to the replacement of the
VOA by a simple fiber connector. Following the 1sDI set-
ting, Alice trusts her devices, so we are allowed to take losses
originating from her equipment as trusted. However, the ex-
perimental set up makes it difficult to distinguish between the
source of losses. To allow for all cases we consider that a cer-
tain fraction of the losses is not induced by the channel itself,
but by other components which are characterized by Alice, as
part of the source. Such losses are considered homogeneous
and trusted, so the channel reads

E = (1− λc)E ′, (16)

with λc the amount of losses that is trusted and state-
independent, and E ′ a quantum channel that is strictly equiv-
alent to E by definition, and therefore returns the same output
states; see Fig. 4. In that case we can certify E ′ instead of E ,
and evaluate the transmissivity in bound (7) as

t(E ′|Φi) = t(E|Φi)/(1− λc) = ηs/(1− λc). (17)

This tightens the bound compared to the naive approach
where all losses are attributed to the channel. Adopting this
interpretation is quite realistic, considering that Alice pre-
forms a full characterization of the probe states, which po-
tentially includes a lower bound on the coupling losses. In
the most paranoid scenario, we can always set λc = 0 we
attribute all loss (including Alice’s coupling and detection
losses) to the quantum channel.

We show the results of our implementations in Fig. 5.
Thanks to our close-to-maximum violation of steering in-
equality and relatively high coupling efficiency, we are able
to certify the transmission of an unknown qubit state through
the untrusted channel, with a non-trivial transmission fidelity
F (ρi, ρo) > 50%. This is true even when Alice attributes all
losses to the channel, i.e. λc = 0, for channels with the high-
est transmissivities. The certified fidelity increases as Alice
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FIG. 3: Experimental setup for photonic certified quantum communication through an unstrusted channel. Photon pairs
are generated via type-II SPDC, in a ppKTP crystal (30 mm-long, 46.2 µm poling period), and entangled in polarization in a
Sagnac interferometer. The source is pumped with a 770 nm continuous laser. Signal and idler photons are emitted around
1540 nm, separated from the pump by a dichroic mirror, and from each other by the polarizing beam splitter (PBS) of the
interferometer. They are then coupled into single-mode fibers, and sent to the different players. The idler photon is both used
as Alice’s part of the maximally-entangled pair and to herald the probe state. The signal photon is sent to Bob through the
untrusted lossy channel. A variable optical attenuator (VOA) allows to simulate an honest channel with a tunable amount of
loss. The biphoton state is measured with polarization analyzers, each made of two waveplates (WPs), a fibered PBS, and
> 80%-efficiency Superconducting Nanowire Single-Photon Detectors (SNSPDs). The WPs are mounted on motorized stages,
allowing to both regularly randomize the measurement basis and implement dishonest channels. Detection events are then sent
to a fast coincidence counter which gathers all the data required in order to evaluate the quantum correlations and channel’s
transmissivity.

FIG. 4: Schematic decomposition of the untrusted channel
E , into an equivalent channel E ′ that the protocol effectively
certifies, and a trusted channel, corresponding to the charac-
terized and homogeneous losses λc trusted by Alice.

trusts a larger amount of homogeneous losses λc, reaching
F (ρi, ρo) ≥ 77.1% ± 0.6% when she assumes a maximum
value λc = 0.526 and the channel is close to lossless. In any
case, the certified fidelity decreases as the channel gets more
lossy, as a direct consequence of bound (7), highlighting the
difficulties of certifying lossy channels. This gives further
motivation to assume that a fraction of the losses is trusted, in
order to certify, for example, long-distance quantum commu-
nications. In our implementation, assuming maximum trusted
losses λc = 0.526, we could certify a non-trivial transmission
fidelity F (ρi, ρo) > 50%, for total transmissivities as low as
t(E|Φi) = ηs ' 0.263, while such certification was possible
only for ηs & 0.44 with no trusted losses λc = 0.

In order to fully demonstrate the protocol, one should send
a single input state ρi through the channel, hidden among the
probe states. The value of that state does not matter in our

FIG. 5: Minimum fidelity F (ρi, ρo) certified via our proto-
col as a function of the measured heralding efficiency, tuned
with a VOA, and for different trusted losses λc (colored
curves). The curves are plotted by taking the average fidelity
of the probe state to a Bell state Fi, and the average of the de-
viation from maximum violation ε, over all protocol attempts.
Experimental results deviate from these curves, as F i and ε
vary between experiments. Errors induced by the finite statis-
tics are directly subtracted from the certified fidelity, as de-
tailed in Methods (see Eqs. (28) and (29) in particular). Error
bars include effects induced by the unbalance in detectors’ ef-
ficiency and the propagation of errors on F i. We also display
the fidelity F (ρi, ρo) measured via quantum state tomogra-
phy, for ρi = Φi.
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implementation as we do not use it in a later protocol, so
we choose ρi = Φi and consider that a random copy of the
probe state is actually the input state. To show the correct-
ness of our protocol, we then perform a tomography of the
corresponding output state ρo after the channel, and evaluate
a transmission fidelity of F (ρi, ρo) = 99.79% ± 0.02% on
average over all protocol attempts, with a minimum value of
F (ρi, ρo) = 98.7%±0.5%. This is far higher than the values
certified by our protocol, as displayed on Fig. 5, which shows
the state was indeed properly transmitted. Note that, in this
case, the channel and measurement stations are trusted dur-
ing the output state’s tomography, as it is performed outside
of the protocol. This allows us to measure numerous copies
of ρo, which is necessary for a full characterization of the
state. In order to show that the correctness of our certifica-
tion protocol would hold for other input states ρi, we perform
a full-process tomography of the quantum channel [28], and
lower-bound the fidelity between the physical channel and the
identityF�(E , I) ≥ 94%±3%. We expect this bound to be far
from tight, as it is evaluated using the equivalence between di-
amond and Choi-Jamiołkowski distances [29] (see Lemma 2
in Methods). Still, the fidelity is greatly above the values cer-
tified by our protocol, showing the certification procedure is
indeed valid for any input state ρi.

The resilience of the protocol is further shown by experi-
mentally simulating examples of dishonest channels. Let us
first recall that the operator of the channel has no informa-
tion on the position of the input state ρi before the end of
the protocol. This way, a typical attack consists in applying
a disruptive transformation with small probability, hoping it
will be applied to ρi and stay undetected by Alice and Bob.
Here we consider such a transformation to be a bit flip and/or
a phase flip. For this experimental demonstration, we remove
the VOA and consider that all losses are trusted. Note that
performing a phase flip is equivalent to turning Bob’s first
measurement B0 into −B0:

B0 = MB0|0 −M
B
1|0 −→ −B0 = MB1|0 −M

B
0|0. (18)

Similarly, a bit flip is equivalent to turning Bob’s second mea-
surement B1 into −B1. Thus, we perform these flips in prac-
tice by randomly changing the waveplate angles in order to
get the opposite measurement bases. This simulates dishon-
est channels of the form:

Ep,q[ρ] = (1− p)(1− q)ρ+ p(1− q)XρX
+ pqY ρY + (1− p)qZρZ,

(19)

with p the bit flip probability and q the phase flip probability.

The certification results are displayed in Fig. 6, for
different bit and phase flip probabilities. These show that
our implementation is quite sensitive to these attacks, such
that a flip probability of 0.01 induces a collapse of 16% of
the certified fidelity, and we only certify F (ρi, ρo) ≥ 58%.
The certified fidelity falls below the trivial value 50% for flip
probabilities as low as 0.017. In this way, any attempt of
Eve to disrupt the input state ρi with such a method can only

FIG. 6: Minimum fidelity F (ρi, ρo) certified via our pro-
tocol, for malicious channels Ep,q , where p is the probability
of applying gate X and q is the probability of applying gate
Z. Here we measured a probe state fidelity to a Bell state of
F i = 99.16% ± 0.04%, and we trust a maximum amount of
losses λc = 0.526.

succeed with very small probabilities p, q < 0.02, or it will
be detected by Alice and Bob.

Discussion
In this work, we have provided a protocol to certify the trans-
mission of a qubit through an untrusted and lossy quantum
channel, by probing the latter with close-to-maximally entan-
gled states and witnessing non-classical correlations at its out-
put. In the DI case these are Bell correlations, in the 1sDI they
are steering correlations. Our theoretical investigations rely
only on assumptions made on the probe state’s source and the
sender’s measurement apparatus (in the case of 1sDI), while
relaxing assumptions made on the quantum channel and the
receiver’s measurement apparatus. This setting proves to be
an interesting trade-off between realistic experimental condi-
tions and reasonable cryptographic requirements. It also em-
bodies a practical scenario in which a strong server provides
a weaker receiver with a quantum bit.

Compared to previously proposed verification procedures,
our protocol not only certifies the probed channels, but also
an unmeasured channel through which a single unknown state
can be sent. As quantum measurements deteriorate the quan-
tum states, this task can only be performed at the price of
measuring a huge amount of probe states, which limits the
repeatability of the protocol with current technology. Until
further theoretical considerations or technological improve-
ments provide higher repeatability, our protocol can still serve
as a practical primitive for other single-shot protocols that
require a single quantum state, such as the recently demon-
strated quantum weak coin-flipping [30, 31].

Our proof-of-principle implementation shows the correct-
ness of this certification procedure, and its feasibility with
current technology. This way we could certify non-trivial
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transmission fidelities for a wide range of losses induced by
the channel, by making some mild but realistic assumptions,
such as the characterization of a fraction of trusted losses, in-
duced for instance by the coupling of probe states inside op-
tical fibers. By implementing random bit and phase flips, we
could show that even a small probability attempt to disrupt
the quantum information degrades the certified transmission
fidelity, and is therefore detected by the players.

Future developments could demonstrate the feasibility of
a fully device independent version of our protocol, in which
Alice’s measurement or even the probe states’ source are not
trusted. Such a protocol could be achieved by linking the
probe state quality to that of the corresponding output state,
or by making the IID assumption on the probe state’s source.
Also, more investigation on quantum-memory-based attacks
could give a sharper idea on the possibilities of deceiving the
certification procedure.

Our work opens the way to certification of a wide variety
of more sophisticated lossy quantum channels. In particular,
the rapid improvements of quantum technologies could soon
provide possible applications of this protocol to the authenti-
cation of quantum teleportation, memories or repeaters.

Methods
Two Useful Lemmas. The proof of bound (7) relies on two
lemmas, which give fundamental results on lossy quantum
channels, and that we provide here.

Lemma 1 (Extended Processing Inequality). For any prob-
abilistic channel E (CPTD), and any input states ρi and σi,
the following inequality holds for the sine distance C(ρ, σ) =√

1− F (ρ, σ):

C(ρi, σi) ≥ t · C(ρo, σo), (20)

where ρo = E [ρi]/t(E|ρi) and σo = E [σi]/t(E|σi) are the
output states of the channel, and t = t(E|ρi) or t = t(E|σi).

This first lemma generalizes to CPTD maps the
well-known fidelity processing inequality F (ρ, σ) ≤
F (E [ρ], E [σ]), which holds for any CPTP map E .

Lemma 2 (Channel’s Metrics Equivalence). For any proba-
bilistic channel E1, and any E2 that is proportional to a de-
terministic channel (CPTP map), both acting on L(Hi), we
have the following inequalities:

CJ(E1, E2) ≤ C�(E1, E2) ≤ dimHi × CJ(E1, E2), (21)

where the CJ , resp. C�, are the Choi-Jamiołkowski, resp. dia-
mond, sine distances of probabilistic quantum channels:

CJ(E1, E2) = C
( (E1 ⊗ I)[Φ+]

t(E1|Φ+)
, (E2 ⊗ I)[Φ+]

)
(22)

C�(E1, E2) = sup
|φ〉

C
( (E1 ⊗ I)[φ]

t(E1|φ)
, (E2 ⊗ I)[φ]

)
(23)

This lemma shows the equivalence between Choi-
Jamiołkowski and diamond distances, which is fundamen-
tal when trying to link the behaviour of the channel on a
maximally-entangled state, to its behaviour on any quantum
state. We also use this lemma in order to bound the dia-
mond fidelity after performing a full process tomography of
the channel, by evaluating the more straightforward Choi-
Jamiołkowski fidelity.

Note that both these lemmas also apply to the trace distance
D(ρ, σ) = 1

2 Tr|ρ − σ|, and are proven in SUPP. MAT. B 1
and B 2.

Protocol Security. In our protocol, the quantum channel is
allowed to evolve through time, with some potential mem-
ory of the experiment’s past history. This way we define the
channel Ek|[k−1], where [k − 1] = k − 1, k − 2, ..., 1, that
operates on the k-th state sent by Alice through the protocol.
In particular, Alice sends the input state ρi at a random posi-
tion r through channel Er|[r−1]. We then define the expected
channel over the protocol:

Ē =
1

N + 1

N+1∑
k=1

Ek|[k−1]. (24)

As ρi is sent at a random position that stayed concealed
from the channel’s operator, the expected output state is
ρ̄o = (Ē ⊗ I)[ρi]/t(Ē |ρi). As long as r stays hidden and
random, any measurement performed on the output state later
after the protocol would follow the same statistics as if it was
performed on ρ̄o. This way, we derive the protocol security
by applying bound (7) to the average channel Ē , in order to
bound the fidelity of ρ̄o to ρi, up to isometry. In particular,
the output probe state fidelity to a maximally entangled state
now reads

F o = F
(
(ΛB ⊗ ΛA2)[(E ⊗ I)[Φi]]/t(Ē |Φi), (E0 ⊗ I)[Φ+]

)
.

(25)
Using recent self-testing results in a non-IID setting

[23] applied to the output probe state, we show in SUPP.
MAT. D that for any x > 0, Co =

√
1− F o can

be bounded by two terms, with confidence of at least
cx = (1− e−x) · (1− 2e−x)2:

arcsinCo ≤ arcsin
√
αfx(ε,K) + ∆x(ηs,K), (26)

where K is the number of pairs measured by Alice and Bob,
ηs is the measured heralding efficiency, ∆x(ηs,K) is an error
function that goes to 0 for high values of K, αfx gives self-
testing bound on the output state, in a non-IID regime, with

fx(ε,K) = 8

√
x

K
+
ε

2
+
ε+ 8/K

2 + 1/K
−−−−−→
K→+∞

ε, (27)

and α = 1.26. We choose x = 7 to get a confidence
cx > 99.5%, and measure K ' 109 copies of the probe state,
in order to reach the asymptotic values, which takes from 1 to
3 hours in our experiments depending on the channel trans-
missivity. Note that the error function is due to both the non-
IID regime and the lack of information on channels that do
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not output any state. A similar error occurs when we evaluate
the transmissivity as the measured heralding efficiency:

t(Ē |Φi) & τx(ηs,K), (28)

where τx(ηs,K) ' ηs for high values of K. This way, the
actual bound on the fidelity between the input and output state
reads, with confidence cx,

F (ρ̄o, ρi) ≥ 1− 4 · sin2

(
arcsin

(
Ci/τx

)
+

arcsin
√
αfx(ε,K) + ∆x

)
,

(29)

which includes additive error terms compared to bound (7).
In the analysis of our data, we include these terms that are
minimized thanks to the large number K of states measured
for each implementation. Note that the expressions for all the
mentioned functions are detailed in SUPP. MAT. D 3.

Assumptions. For clarity we highlight the assumptions made
in our security analysis.

First, we assume Alice and Bob can communicate via a
trusted private classical channel. It allows the players to agree
on their measurement settings, Alice to send Bob the position
r of the input state ρi, and Bob to tell Alice if the states were
properly received. This way, the players can perform mea-
surements on the fly, instead of storing all the states, then
deciding of the measurement bases and finally measuring the
states, which would require one billion of quantum memories
with hours-long storage-time.

Secondly, the fair sampling assumption is required on the
measurement apparatus for the self-testing procedure, as we
allow a large amount of losses to be induced by the quan-
tum channel. Alice’s measurement apparatus is completely
trusted and characterized, according to the one-sided device
independent scenario. On Bob’s side, we assume the effi-
ciency of the measurement apparatus to be independent of the
measurement setting B0 or B1. If the efficiency depends on
the state measured, then we consider that dependence to be
part of the quantum channel. A slight unbalance of efficiency
is allowed between the two different measurement outcomes,
and we show in the SUPP. MAT. E 3 that the error induced by
this unbalance is negligible.

Finally, in keeping with the 1sDI setting, we make the IID
assumption on the probe state source, during each attempt of
the protocol. To show the legitimacy of this assumption in
our implementation, we performed a series of quantum state
tomography measurements, during 8 hours, in order to char-
acterize the fluctuation of the probe state with time. This char-
acterization shows the probe states are stable at the scale of
one protocol (see SUPP. MAT. E 1 for the detailed results).

Source and Detection. Probe states are generated via type-
II SPDC in a ppKTP crystal combined with a Sagnac in-
terferometer. We maximized the heralding efficiency ηs =
Rsi/Ri, with Ri the idler photon detection rate and Rsi the
pair detection rate, following the method proposed in [32, 33].

For that purpose, the pump’s spatial mode and focus as well as
the pair’s collection modes, were tuned carefully when cou-
pling to single-mode fibers, and losses on the signal photon
path were minimized. This way the pump is in a collimated
mode at the scale of the crystal, close to a gaussian mode
of waist wp ' 315 µm, which maximizes the heralding ef-
ficiency [33, 34]. The signal photon’s coupling mode has a
waist ws ' 190 µm, and the idler photon’s is wi ' 218 µm.
We also used high-efficiency SNSPDs to detect the photons.
Losses on the idler photon were not limiting, so we selected
the best components and detectors for the signal photon. All
detection events were recorded by a time tagger, and dated
with picosecond precision. Two detection events were con-
sidered simultaneous when measured within the same 500 ps
coincidence window. In this way, we detect idler photons
in Alice’s detectors with a rate Ri = 600± 40 kHz (vary-
ing from one protocol attempt to another), for a brilliance of
' 670± 50 kHz W−1 nm−1. SNSPDs display dark count
rates of ≤ 500 Hz, such that the probability of falsely herald-
ing a probe state is negligible. Finally, 1 nm-bandwidth spec-
tral filters were used to limit the spectrum spread that would
otherwise degrade the polarization state because of birefrin-
gence and dispersion in optical fibers.

Quantum State Tomography. We perform quantum state
tomographies via linear regression estimation [35] and fast
maximum likelihood estimation [36]. Photon counts are cor-
rected by measuring relative efficiencies of the detectors. We
use this method in order to reconstruct the probe state Φi, and
to calculate the probe state fidelity to a maximally entangled
state F i. For this calculation, we maximize the fidelity

F iU = F
(
(I⊗ U)Φi(I⊗ U†),Φ+

)
(30)

on a local unitary U , to evaluate the maximum fidelity up to
isometries, as defined in Eq. (5).

The uncertainties on the reconstructed states, induced by
the photon counting poissonian statistics as well as by the
systematic errors on the measurement bases, are evaluated by
using the Monte Carlo method. This way, we simulate 1000
new data samples within the respective uncertainties distri-
butions and reconstruct new density matrices from which
we evaluate the average fidelity and standard deviation [37].
Slow thermal fluctuation also induce some uncertainty on the
fidelity, as our experiment lasts for a relatively long period
of time. By continuously performing quantum state tomogra-
phies for 8 hours, we are able to evaluate the fluctuations in
the quantum state on time spans of the order of a protocol du-
ration. This way, we measure an additional 0.02% error on
the quantum state fidelities to Bell states, due to thermal fluc-
tuations. The reader can refer to SUPP. MAT. E 1 for more
details on the evaluation of these thermal fluctuations and the
drift of the quantum state through time.

Steering measurement. When testing the violation of steer-
ing inequality, players should in principle pick a random mea-
surement basis betweenA0B0 andA1B1 for each new photon
pair. However, because of technical limitations of our motor-
ized waveplate stages, we only operate this randomization at
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a limited rate of 1 Hz. A fully secure protocol would therefore
require faster electronics and active optical components.

For the implementation of malicious channels, we perform
a 7-hours measurement run. From this single run we generate
the data that could be acquired in the certification procedure
of a variety of channels Ep,q , as defined in Eq. (19). For this
run, we randomize the measurement basis, with equal prob-
abilities between A0B0, A1B1 (the channel chooses to act
honestly), and −A0B0, −A1B1 (the channel chooses to dis-
rupt the state). In order to simulate a larger variety of data
samples, we perform that randomization at a 5 Hz-rate. We
then generate the data for the certification of channel Ep,q , by
picking a random set of samples, with the following propor-
tions:

• q/2 in basis −A0B0,

• p/2 in basis −A1B1,

• (1− q)/2 in basis A0B0,

• (1− p)/2 in basis A1B1.

The data acquired in basis −A0B0 and −A1B1 is treated
as if it was acquired in basis A0B0 and A1B1, respectively,
when calculating the average violation of steering inequality
β = |〈A0B0〉+ 〈A1B1〉|.

Note added. While finishing this manuscript we became
aware of a related work by Bock et al [38].
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SUPPLEMENTARY MATERIAL

In addition to the results presented in the main text, we provide the following material in order to prove our different
theoretical results and present more experimental details. We also show some interesting theoretical results related to our study,
though they are not essential for its understanding. The outline for this material is the following.

In appendix A we give some important definitions, including that of general quantum channels, including lossy channels,
equivalence classes of channels, and channels metrics.

In appendix B we show some new fundamental results, such as Lemma 1, i.e., the processing inequality of general lossy
channels, Lemma 2, i.e., equivalence inequalities between different metrics of quantum channels, and some useful result on
channels’ transmissivity.

In appendix C we provide the detailed theoretical recipes for channel certification protocols, in a one-sided device indepen-
dent and in a fully device independent. Both these recipes are detailed in the spirit of those provided in [23] for authenticated
teleportation, and differ slightly from the protocol that we experimentally implement. In particular, the former rely on trusted
quantum memories for storing all states sent by Alice, while the latter rely on trusted private classical communications between
Alice and Bob.

In appendix D we use the results of previous paragraphs in order to derive security bounds for our protocols. We first show
bound (7), which relies on the evaluation of the fidelity of a probe state to a maximally entangled state, and the fidelity of the
corresponding output state after the channel to the same maximally entangled state. This bounds the fidelity between any state
that outputs a quantum channel and the corresponding unknown input state. In the second part of that paragraph, we show how
to evaluate the two probe states’ fidelities up to isometries, even when no IID assumption is made and the state source might
be untrusted. This method relies on self-testing of steering inequalities in a semi-device independent scenario, where Alice’s
measurement setup is trusted. Still, this method requires the measurement of a large sample of close-to-maximally entangled
states, going through a channel that might evolve through time. In particular, the channel might not have the same action on
the probe states than on the transmitted state. Therefore, we give some important statistical development in the next part of the
paragraph, in order to bound the errors made on the different evaluated fidelities, due to finite state sample in a non-IID setting,
as well as losses in the untrusted channel. Finally, we tie up the security proof, combining the previous parts’ results in order to
provide a bound on the expected fidelity of the transmitted output state to the input state. We then give some way to generalize
that security proof to a fully-device independent setting.

In appendix E, we give additional details on our experimental implementation. In particular, we provide some developments
on the probe state source, such as the density matrix of a state emitted by that source, and a characterization of the stability of
our source, motivating the IID assumption. We also detail the results of measurements performed during our implementations
of the protocol, from which we deduce the bound on the transmission fidelity. We also formalize the fair-sampling assumptions
made on the players’ measurement apparatus, and discuss the influence of a slight unbalance in the detectors efficiency, which
we observe in our experiments.

Appendix A: Preliminary Definitions

In this study, we use the quantum operations formalism [39], in order to describe as generally as possible the transformations
undergone by quantum states. Such a formalism allows us to include a variety of processes, such as unitary transformations,
quantum measurements and ancillary inclusion. Although most studies consider only trace-preserving quantum channels, i.e.
lossless channels, our study requires the consideration of trace-decreasing channels that account for potentially lossy devices.
This section is meant to clarify some important definitions and properties linked to these channels, as well as discuss the
physical reality embodied in these mathematical objects.
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1. Quantum Channels

A general quantum channel E is a convex, linear and completely-positive non-trace-increasing (CPnTI) map, from operators
on spaceHi to operators on spaceHo i.e.:

1. For any sets of probabilities {pi} and density operators {ρi}, the following equality holds:

E
[∑

i

piρi

]
=
∑
i

piE [ρi] (A1)

2. For any secondary system of Hilbert space S, (E ⊗ IS)[K] is positive for any positive operator K taken in L(Hi ⊗ S).
In particular, E is completely positive.

3. For any operator K acting onHi, we have TrE [K] ≤ TrK.

When E is also trace-preserving (CPTP map), in particular TrE [ρ] = 1 for any density operator ρ, then we call E a deterministic
or lossless quantum channel. Otherwise, if the map is trace-decreasing, then there exists a state ρ such that TrE [ρ] < 1, we call
it a probabilistic or lossy quantum channel. From this definition can be derived the well known Kraus’ theorem, that gives a
complete characterization of quantum channels:

Theorem 1 (Kraus’ Theorem). The map E from L(Hi) to L(Ho) is a quantum channel if and only if there exist a set of
operators {Kj}j that mapHi toHo, such that:

E [ρi] =
∑
j

KjρiK
†
j (A2)

and
∑
j K
†
jKj ≤ I. E is a deterministic quantum channel when this condition holds and

∑
j K
†
jKj = I. When

∑
j K
†
jKj < I,

the channel is probabilistic.

This theorem gives us an operator-sum representation for quantum channels, which will be most useful in the following. The
operators {Kj} are refered to as Kraus’ operators of the channel E .

The previous axioms and properties imply that for any density operator ρ ∈ L(Hi ⊗ S), with S an arbitrary Hilbert space,
we have 0 ≤ Tr((E ⊗ I)[ρ]) ≤ 1. This means that in the most general case, (E ⊗ I)[ρ] is not a density operator. This way, our
channel does not operate with absolute certainty, but returns a state only with a certain probability t(E|ρ) = Tr(E ⊗ I)[ρ]. We
call t(E|ρ) the transmissivity of channel E . Then for t(E|ρ) 6= 0 we define the output state:

ρo = (E ⊗ I)[ρ]/t(E|ρ) (A3)

and when t(E|ρ) = 0, i.e. no state ever outputs the channel, we set by convention ρo = I/ dim(Ho ⊗ S).

Quantum channels are fundamental objects that describe any transformation undergone by a quantum state. Still, most studies
focus on lossless quantum channels i.e. CPTP maps, such that any state passes the channel with absolute certainty. In theory,
any situation involving a lossy channel can be described by considering a CPTP map E [•] = Es[•]⊗|s〉〈s|+Ef [•]⊗|f〉〈f |, with
Es the successful branch and Ef the failure branch, where the state might be considered as lost. However in most experimental
situations, we generally have no access to the state when it goes through the failure branch, such that we are only interested
in states sent through the success branch. This means we post-select states on the success branch, and we only consider the
probabilistic channel Es[ρ] = 〈s|E [ρ]|s〉. The transmissivity is then the probability that the channel successfully outputs the
input state, so that t(Es|ρ) = TrEs[ρ] = Tr(E [ρ]I⊗ |s〉〈s|). This way, losses are included in the expression of the channel itself.

Finally we give a few common examples of probabilistic quantum channels. A trivial probabilistic quantum channel is
E = p · I with p ∈ ]0; 1], that models unbiased losses. In that case the state is simply transmitted without transformation with
probability p, or lost with probability 1− p. On the contrary, a channel with fully-biased losses would be a polarizing channel
P , with P[ρ] = |φ〉〈φ| ρ |φ〉〈φ| for any state ρ, with |φ〉 a pure state. In that case t(P|ρ) = 1 if and only if ρ = |φ〉〈φ|. Finally,
probabilistic channels allows us to describe an experiment where one wishes to measure a POVM {Mk}1≤k≤d but only has
access to the first m elements, with m < d. We can therefore define the following channel:

E [ρ] =

m∑
i=1

MkρM
†
k ⊗ |k〉〈k| (A4)

This example is of particular use for Bell state measurements using linear optics, where it was shown that one can measure only
two elements out of four [40].
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2. Equivalence Classes of Quantum Channels

Let us consider two channels E1 and E2 that are proportional to each other, i.e. there exists a factor p ∈ ]0; 1] such that
E1 = p · E2 (or E2 = p · E1 which is a symmetric case). Then their corresponding transmissivities also display the same
proportionality t(E1|ρ) = p · t(E2|ρ) for any input state ρ. The two channels therefore output the same states when fed the same
input state:

E1[ρ]

t(E1|ρ)
=

p · E2[ρ]

p · t(E2|ρ)
=
E2[ρ]

t(E2|ρ)
(A5)

In numerous practical situations, such as those described in this study, we only consider what happens when the states are not
lost, such that we post-select on the states being detected. This way, two channels E1 and E2 that are proportional to each
other actually describe the same physical situation, and we consider them as equivalent E1 ≡ E2. This defines mathematical
equivalence classes of channels that outputs the same quantum states. All channels from a same class can be compared, such
that if E1 ≡ E2, then either E1 ≥ E2 or E2 ≥ E1. In the first case, for instance, we have t(E1|ρ) ≥ t(E2|ρ). For any class
of channel, we can find a maximal channel of that class Emax such that Emax ≥ E for any channel E of the same class. That
maximal channel is therefore the most transmissive channel, and there always exists a state ρ that passes the channel with
absolute certainty, i.e. t(Emax|ρ) = 1.

These equivalence classes are of particular interest in our study, as the distances we use do not rigorously define metrics for
arbitrary quantum channels, but they do for these classes of quantum channels. They also embody the fact that when certifying
a channel E , one can always consider a more transmissive but equivalent channel E ′, with E ′ ≥ E and E ′ ≡ E . We can then
use this more transmissive channel in order to describe the physical process, which falls down to assuming a certain amount of
losses are trusted, as described in Fig. 4 of the main text.

3. Metrics of Quantum Channels

We first define the diamond and Choi-Jamiołkowski trace and sine distances between two channels E1 and E2 acting on a
space L(Hi):

M�(E1, E2) = max
ρ

M
(
(E1 ⊗ I)[ρ]/t(E1|ρ), (E2 ⊗ I)[ρ]/t(E2|ρ)

)
(A6)

MJ(E1, E2) = M
(
(E1 ⊗ I)[Φ+]/t(E1|Φ+), (E2 ⊗ I)[Φ+]/t(E2|Φ+)

)
(A7)

where M = D or C are the trace and sine distances, Φ+ is a maximally-entangled state, and the maximization is carried out
over pure states of H⊗2

i . These quantities are proper distances only when restricted to deterministic quantum channels, i.e.
CPTP maps, in which case MJ(E1, E2) = 0 when M�(E1, E2) = 0, or when E1 = E2. Concerning probabilistic channels, we
show that MJ(E1, E2) = M�(E1, E2) = 0 if and only if E1 ≡ E2 and the channels are equivalent, in the sense we defined in
section A 2, meaning they are proportional to each other.

Proof. If E1 ≡ E2, then there exists p ∈ ]0; 1] such that E1 = p · E2 or E2 = p · E1. Then by definition ofM� andMJ , we
trivially haveM�(E1, E2) =MJ(E1, E2) = 0. Now let us assume E1 and E2 are non-zero channels such thatMJ(E1, E2) = 0,
and let us show that E1 ≡ E2. First, we formulate the following lemma, implicitly introduced earlier in [19]:

Lemma 3. Let |ψ〉 ∈ H⊗2 be a pure 2-qudits state, with dimH = d. Then there exists an operator Kψ = MψUψ on H, with
0 < Mψ ≤ I and Uψ a unitary, such I ⊗Kψ transforms the maximally-entangled state |Φ+〉 = 1√

d

∑d−1
i=0 |i〉|i〉 into |ψ〉 with

probability 1/d, i.e.:

(I⊗Kψ)|Φ+〉 =
1√
d
|ψ〉 (A8)

We remind the proof of this lemma, which was detailed in [19]. We use the Schmidt decomposition of |ψ〉:

|ψ〉 =

d−1∑
i=0

ψi|i〉|i′〉 (A9)
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where {|i〉} and {|i′〉} are two orthonormal bases ofH. There exists a unitary operator Uψ acting onH such that:

(I⊗ Uψ)|Φ+〉 =
1√
d

d−1∑
i=0

|i〉|i′〉 (A10)

with d = dimH. We can then define the operator Mψ that probabilistically transforms (I⊗ Uψ)|Φ+〉 into |ψ〉:

Mψ =

d−1∑
i=0

ψi|i′〉〈i′| (A11)

Now by we defining the operator Kψ = MψUψ , we have:

(I⊗Kψ)|Φ+〉 = 1√
d
|ψ〉 (A12)

which completes the proof of the lemma.

From here, as we haveMJ(E1, E2) = 0, then M
(
(E1 ⊗ I)[Φ+]/t(E1|Φ+), (E2 ⊗ I)[Φ+]/t(E2|Φ+)

)
= 0 which implies:

(E1 ⊗ I)[Φ+] = t(E1|Φ+)
t(E2|Φ+) · (E2 ⊗ I)[Φ+] (A13)

For any pure state |ψ〉 ∈ H⊗2 we define the operator Kψ from Lemma 3, such that (I⊗Kψ)|Φ+〉 = 1√
d
|ψ〉. We can apply that

operator on both sides of equation (A13):

(I⊗Kψ)(E1 ⊗ I)[Φ+](I⊗K†ψ) = t(E1|Φ+)
t(E2|Φ+) · (I⊗Kψ)(E2 ⊗ I)[Φ+](I⊗K†ψ) (A14)

which, since I⊗Kψ commutes with E1 ⊗ I and E2 ⊗ I, implies:

(E1 ⊗ I)

[
(I⊗Kψ)Φ+(I⊗K†ψ)

]
= t(E1|Φ+)

t(E2|Φ+) · (E2 ⊗ I)

[
(I⊗Kψ)Φ+(I⊗K†ψ)

]
(A15)

or equivalently:

(E1 ⊗ I)[ψ] =
t(E1|Φ+)

t(E2|Φ+)
· (E2 ⊗ I)[ψ] (A16)

This way, by taking either p =
t(E1|Φ+)

t(E2|Φ+)
or p =

t(E2|Φ+)

t(E1|Φ+)
we have (E1⊗I)[ψ] = p·(E2⊗I)[ψ] or (E2⊗I)[ψ] = p·(E1⊗I)[ψ]

for all state |ψ〉 ∈ H⊗2, with p ∈ ]0; 1]. This gives either E1 = p · E2 or E2 = p · E1, and therefore E1 ≡ E2 �.
AsM�(E1, E2) ≥MJ(E1, E2), we get the same result whenM�(E1, E2) = 0.

The triangular inequality and symmetry ofMJ andM� come trivially from the distance properties of C and D. Therefore,
MJ andM� define proper distances on classes of non-zero probabilistic channels, that we defined in the last paragraph.

Appendix B: Fundamental Properties of Probabilistic Quantum Channels

In this section, we show some fundamental results regarding the behaviour of probabilistic quantum channels. The most
commonly used distance measure for quantum states is the trace distance D(ρ, σ) = 1

2 Tr|ρ − σ|2. The Ulhmann’s Fidelity

F (ρ, σ) =
(
Tr
√√

ρσ
√
ρ
)2

is not a metric in itself, but is often more relevant in our context as it can be interpreted as the proba-
bility that one state is projected on the other, when the states are purified. Moreover, most self-testing results relate the violation
of Bell inequalities to the fidelity between physical and reference states. Finally, we can simply define convenient distances
from the fidelity, such as the sine distance C(ρ, σ) =

√
1− F (ρ, σ) [22, 41], or the Bures angle A(ρ, σ) = arccos

√
F (ρ, σ)

[39]. We show results for these different functions.
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1. Metrics Monotonicity Under Quantum Channels

Here we give the proof of Lemma 1 from the main text that gives a generalization of the processing inequality, or so-called
metric monotonicity, to probabilistic quantum channels and the sine distance:

Lemma 1 (Extended Processing Inequality). For any probabilistic channel E (CPTD), and any input states ρi and σi, the
following inequality holds for the sine distance C(ρ, σ) =

√
1− F (ρ, σ):

C(ρi, σi) ≥ t · C(ρo, σo), (20)

where ρo = E [ρi]/t(E|ρi) and σo = E [σi]/t(E|σi) are the output states of the channel, and t = t(E|ρi) or t = t(E|σi).

Note that this inequality is also true for the trace distance. We first show that result for the latter, and then extend it to the
sine distance.

Proof. Let us first prove the inequality for the trace distance D. We follow the guidelines of the proof given in [39] for
CPTP maps. As ρi and σi have a symmetric role, let us consider t(E|ρi) ≥ t(E|σi), without loss of generality. We can
define two Hermitian positive matrices P and Q with orthogonal support such that ρi − σi = P − Q. Therefore, we have
Tr(P )− Tr(Q) = Tr(ρi)− Tr(σi) = 0 so Tr(P ) = Tr(Q). Moreover, |ρi − σi| = P +Q. This way,

D(ρi, σi) =
1

2
Tr|ρi − σi|

=
1

2

(
Tr(P ) + Tr(Q)

)
= Tr(P )

(B1)

There also exists a projector Π such that D(ρo, σo) = Tr
(
Π · (ρo − σo)

)
. Keeping in mind that E is trace-decreasing, it follows

that for any t ≤ t(E|ρi):

D(ρi, σi) = Tr(P )

≥ Tr(E [P ])

≥ Tr(Π · E [P ])

≥ Tr
(
Π · (E [P ]− E [Q])

)
= Tr

(
Π · (E [ρi]− E [σi])

)
= t(E|ρi)Tr(Πρo)− t(E|σi)Tr(Πσo)

≥ t(E|ρi)Tr
(
Π · (ρo − σo)

)
= t(E|ρi) ·D(ρo, σo)

≥ t ·D(ρo, σo) (B2)

This way, we have in particular D(ρi, σi) ≥ t ·D(ρo, σo) for t = t(E|ρi) or t = t(E|σi) �.

In order to prove the same inequality for the sine distance C, let us recall that we can express that distance between any
density operators ρ, σ, as a minimization over their purifications |r〉 and |s〉 respectively: C(ρ, σ) = min

√
1− 〈r|s〉 =

minD(|r〉〈r|, |s〉〈s|), where the minimization is taken over all the purifications. This way, we are going to purify the input
and output states in order to extend the inequality from D to C. Let us choose two pure states |ri〉, |si〉 ∈ Hi ⊗ P such that
C(ρi, σi) = D(|ri〉〈ri|, |si〉〈si|), with P a purification space for ρi and σi. This purifies the input states. Now let us define the
operator E onHi ⊗ P such that for any pure state |ψ〉 in that space:

E|ψ〉 =
∑
j

(Kj ⊗ IP |ψ〉)⊗ |ej〉 (B3)

where {Kj} are Kraus operators for E and {|ej〉} is an orthonormal basis of an ancillary space A. As E is trace-decreasing,
E|ψ〉 is not necessarily normalized, but is a pure state when renormalized. This way, we can define the quantum operation Ẽ
such that for any density operator ρ ∈ L(Hi)⊗L(P), we have Ẽ [ρ] = EρE†. This operation conserves the purity of pure states,
and verifies TrA(Ẽ [ρ]) = E [ρ] for any density operator ρ. This way, Ẽ [|r〉〈r|]/t(E|ρi), resp. Ẽ [|s〉〈s|]/t(E|σi), is a purification
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of E [ρi]/t(E|ρi) = ρo, resp. E [σi]/t(E|σi) = σo. This purifies the output states. Now we only have to apply the extended
contractivity of D to the purified states under the quantum operation Ẽ , for t = t(E|ρi) or t = t(E|σi):

C(ρi, σi) = D(|ri〉〈ri|, |si〉〈si|)
≥ t ·D(Ẽ [|r〉〈r|]/t(E|ρi), Ẽ [|s〉〈s|]/t(E|σi))
≥ t ·minD(|ro〉〈ro|, |so〉〈so|) (B4)
= t · C(ρ̂o, σ̂o)

where the minimization is taken over all purifications |ro〉, resp. |so〉, of ρo, resp. σo. This shows the inequality for the sine
distance �.

Note that for a trace-preserving quantum operation, t(E|ρ) = 1 for any state ρ, and we get the well known processing
inequality D(ρ, σ) ≥ D(E [ρ], E [σ]) or F (ρ, σ) ≤ F (E [ρ], E [σ]), indicating this inequality is tight.

2. Comparison between Quantum Channels Metrics

Choi-Jamiołkowski and diamond metrics underline different properties of quantum channels. As pointed out in [41], the
Choi-Jamiołkowki metrics are linked to average probability of distinguishing two quantum channels when sending unknown
states, while the diamond metrics are linked to the maximum probability of distinguishing these channels. The same can be said
about our generalized definitions for probabilistic quantum channels, as long as we condition these probabilities to the detection
of a state. For our protocol’s security, the worst case scenario is more relevant, which is why diamond distances are preferred.
Still, bounding the diamond distance between two channels with the sole knowledge of their actions on a maximally-entangled
state is of major importance for our study, which is why we wish to bound diamond distances with their Choi-Jamiołkowski
counterparts. An attempt to show such bounds was done in [19], linking the diamond trace distance with the Choi-Jamiołkowski
sine distance. However, it does not give a direct bound on the diamond fidelity, which is more suitable in cryptography in order
to evaluate a protocol’s success probability. In Lemma 2, presented in the Methods, we demonstrate a tight bound of the
diamond sine distance using their Choi-Jamiołkowski sine distance, without extra information about the channel:

Lemma 2 (Channel’s Metrics Equivalence). For any probabilistic channel E1, and any E2 that is proportional to a deterministic
channel (CPTP map), both acting on L(Hi), we have the following inequalities:

CJ(E1, E2) ≤ C�(E1, E2) ≤ dimHi × CJ(E1, E2), (21)

where the CJ , resp. C�, are the Choi-Jamiołkowski, resp. diamond, sine distances of probabilistic quantum channels:

CJ(E1, E2) = C
( (E1 ⊗ I)[Φ+]

t(E1|Φ+)
, (E2 ⊗ I)[Φ+]

)
(22)

C�(E1, E2) = sup
|φ〉

C
( (E1 ⊗ I)[φ]

t(E1|φ)
, (E2 ⊗ I)[φ]

)
(23)

Note that once again, the result is also true for trace distances of quantum channels. We provide the proof of this lemma for
both trace and sine distances.

Proof. We want to show the two following inequalities, for any probabilistic channel E1 and any deterministic channel E2:

DJ(E1, E2) ≤ D�(E1, E2) ≤ dimHi ×DJ(E1, E2) (B5)
CJ(E1, E2) ≤ C�(E1, E2) ≤ dimHi × CJ(E1, E2) (B6)

The left-side inequalities are straightforwardly following from the definition of the distances. The right-side comes from the
following corollary:

Corollary 2. For any pure state ρ ∈ L(H⊗2
i ) and any pair of probabilistic quantum channels E1 and E2 from L(Hi) to L(Ho),

we have:

x ·D(ρ1, ρ2) ≤ dimHi ×DJ(E1, E2) (B7)
x · C(ρ1, ρ2) ≤ dimHi × CJ(E1, E2) (B8)

for any x ≤ max
[ t(E1|ρ)
t(E1|Φ+) ,

t(E2|ρ)
t(E2|Φ+)

]
, and with ρk = (Ek ⊗ I)[ρ]/t(Ek|ρ).
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Let us consider a pure state ρ = |ψ〉〈ψ| with |ψ〉 ∈ Hi ⊗ Hi, and two probabilistic channels E1 and E2. We define the
corresponding transmissivities t(Ek|ρ) and output states ρk = (Ek ⊗ I)[ρ]/t(Ek|ρ) for k = 1 and 2. Using the operator Kψ

defined in Lemma 3, the map O defined as O[ρ] = KψρK
†
ψ is a valid quantum operation on L(Hi). Furthermore, I ⊗ O

transforms |Φ+〉 into |ψ〉 with probability 1/dimHi, and commutes with the channels E1 ⊗ I and E2 ⊗ I, such that for k = 1
or 2 and d = dimHi:

(I⊗O)[(Ek ⊗ I)[Φ+] /t(Ek|Φ+)] = 1
d·t(Ek|Φ+) (Ek ⊗ I)[ρ] (B9)

= t(Ek|ρ)
d·t(Ek|Φ+)ρk (B10)

This way, I ⊗ O transforms the state (Ek ⊗ I)[Φ+]/t(Ek|Φ+) into ρk, with probability t(Ek|ρ)
d·t(Ek|Φ+) . This way, using Lemma 1

for extented metrics monotonicity to the quantum operation O ⊗ I, we deduce the following inequality:

M((E1 ⊗ I)[Φ+]/t(E1|Φ+), (E2 ⊗ I)[Φ+]/t(E2|Φ+)) ≥ t ·M(ρ1, ρ2) (B11)

for any t ≤ max
[ t(E1|ρ)
d·t(E1|Φ+) ,

t(E2|ρ)
d·t(E2|Φ+)

]
, andM = C,D. The left term isMJ(E1, E2) forM = C, and we get inequalities (B7)

and (B8) by taking x = t · d ≤ max
[ t(E1|ρ)
t(E1|Φ+) ,

t(E2|ρ)
t(E2|Φ+)

]
, which shows the corollary. If one of the channels, E2 for instance,

is proportional to a trace-preserving channel, then t(E2|ρ) = t(E2|Φ+) for any ρ. This way, we can take x = 1, so that the
following inequality holds for any pure state ρ ∈ L(Hi ⊗Hi):

M(ρ1, ρ2) ≤ d · MJ(E1, E2) (B12)

As it holds for any pure state ρ, we showed thatM�(E1, E2) ≤ d ×MJ(E1, E2) forM = C or D, which is the right-side of
inequalities (B6) and (B5) �.

The corollary we just showed allows us to bound the deviation of any output states, with the sole knowledge of the operations
actions on a maximally entangled state, even if both channels are probabilistic. Yet in a lot of cases, ours in particular, E2 is
a reference quantum channel E0 that is trace-preserving, and we can use the special caseM�(E , E0) ≤ dimHi ×MJ(E , E0)
from the lemma, which does not require to evaluate any transmissivity.

3. Bound on Transmissivity

One can evaluate the channel’s transmissivity t(E|ρi) when sending the input state ρi, by deriving a bound from the parame-
ters of the problem, as shown in the following lemma.

Lemma 4 (Bound on the transmissivity). Let E be a probabilistic quantum channel on L(Hi), and let us consider two states
Φi, ρi ∈ L(H⊗2

i ) with Φi a close-to-maximally-entangled state. Then the following bound holds:

|t(E|ρi)− t(E|Φi)| ≤ d ·D(Φi,Φ+) + d · t(E|Φi) ·min
E0

D(Φo, (E0 ⊗ I)[Φ+]) (B13)

where d = dimHi, Φo = (E ⊗ I)[Φi]/t(E|Φi) and the minimization is carried out over all trace-preserving channels E0.

Using the parameters of our protocols, knowing D ≤ C, it follows:

|t(E|ρi)− t(E|Φi)| ≤ 2 Ci + 2 t(E|Φi) · Co (B14)

This way, Alice and Bob can predict the abort probability of the protocol from the parameters, in particular the minimum
acceptable transmissivity t(E|Φi) of the channel when sending the probe state (see the following paragraphs). If the transmissiv-
ity is too low, one can try to avoid aborting the protocol by asking for more copies of ρi. Here we provide the proof of the lemma.

Proof. Let us first assume ρi = |ψ〉〈ψ| = ψ is a pure state, with |ψ〉 ∈ H⊗2
i . This way we can define the operator Kψ from

Lemma 3 such that (I ⊗ Kψ)|Φ+〉 = 1√
d
|ψ〉, with d = dimHi. We recall that for any trace-preserving channel E0 we have

Tr((E0 ⊗ I)[ψ]) = 1. This way we have:

|t(E|ψ)− t(E|φi)| =
∣∣Tr((E ⊗ I)[ψ])− t(E|Φi)Tr((E0 ⊗ I)[ψ]

∣∣
= d ·

∣∣Tr((E ⊗Kψ)[Φ+])− t(E|Φi)Tr((E0 ⊗Kψ)[Φ+])
∣∣ (B15)

≤ d ·
∣∣Tr((E ⊗Kψ)[Φ+])− Tr((E ⊗Kψ)[Φi])

∣∣+ d ·
∣∣Tr((E ⊗Kψ)[Φi])− t(E|Φi)Tr((E0 ⊗Kψ)[Φ+])

∣∣.
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We use the fact that D(ρ, σ) = max0<P≤I Tr(P (ρ − σ)) in order to bound the two terms. The second one is straightforward
as 0 < Kψ ≤ I:

d ·
∣∣Tr((E ⊗Kψ)[Φi])− t(E|Φi)Tr((E0 ⊗Kψ)[Φ+])

∣∣ ≤ d · t(E|Φi) ·D(Φo, (E0 ⊗ I)[Φ+]). (B16)

For the first term we use Kraus’ theorem on the probabilistic channel E ⊗ Kψ such that for any ρ ∈ L(H⊗2
i ) we have

(E ⊗Kψ)[ρ] =
∑
jMjρM

†
j , with 0 <

∑
M†jMj ≤ I. The first term therefore gives:

d ·
∣∣Tr((E ⊗Kψ)[Φ+])− Tr((E ⊗Kψ)[Φi])

∣∣ = d ·
∣∣Tr
∑
j

Mj(Φ+ − Φi)M
†
j

∣∣
= d ·

∣∣∣∣Tr
((∑

j

M†jMj

)
(Φ+ − Φi)

)∣∣∣∣ (B17)

≤ d ·D(Φi,Φ+).

This gives the bound:

|t(E|ρi)− t(E|Φi)| ≤ d ·D(Φi,Φ+) + d · t(E|Φi) ·D(Φo, (E0 ⊗ I)[Φ+]). (B18)

As it is true for any CPTP map E0, we can minimize the bound on this map, which shows the lemma �.

Appendix C: Detailed Theoretical Protocols

In the following we give the details on the theoretical protocol recipes. We start with two protocols for 1sDI and DI trans-
mission certification where we assume Bob can use trusted quantum memories in order to store all the states he receives, before
performing the measurements. In fact, these memories can be replaced by the more reasonable assumption that Alice and Bob
share a common random source (this is indeed a standard trick in trading memory and communication requirements for shared
randomness, see e.g. [42]). It is the latter protocol that we implement in experiments, as we perform the measurements on the
fly. The method we use in experiment seems more practical with current photonic technology, which does not allow the storage
of ' 109 states for a time span of the a few hours. In addition, one can consider these quantum memories to be untrusted
channels which require certification. In that sense it also seems more secure to assume trusted classical communications than
trusted quantum memories. Here we still provide the recipes for theoretical protocols with quantum memories, as they follow
the spirit of the protocol provided in [23] for authenticated teleportation. This way, when proving the security, we can apply the
bounds from this previous study in order to certify the output probe states after our untrusted channel more directly. However
the security caries through all protocols.

1. One-Sided Device Independent Protocol

This first recipe details the protocol that we study in our paper, when Alice’s measurement apparatus as well as the probe
state source are trusted. This specifically applies to a scenario where a powerful server Alice wants to send a qubit to a weaker
receiver Bob through an untrusted quantum channel.

Note that from step 1.(b) Alice deduces the minimum amount of state she has to prepare in order to properly certify the
channel. If t is overstated and the channel has a lower tranmissivity, then Alice will not prepare enough probe states, which
will make the protocol abort in step 5. On the contrary if t is understated, then Alice will prepare more probe states than she
and Bob require, which will in fact improve the certification confidence.

The security of the protocol is in principle ensured by the fact that Alice and Bob only agree on the measurement after Bob
receives all the states. The position of the input state ρi is also broadcasted after all state are sent through the channel. This
way, the channel’s operator has no way of guessing the position of the state by spying the communications between Alice and
Bob, that can even remain public. As mentioned earlier, in experiment we rely on private classical communication to hide the
position r of state ρi. The full security bound is given in later section D.



19

Protocol 1: Certified Transmission through a Probabilistic Quantum Channel in 1sDI scenario

1. Prior to the protocol:

(a) Alice characterizes the state Φi emitted by her source and evaluates the quantity F i. She also receives or prepares
the state ρi, possibly shared with an outside party.

(b) Alice and Bob agree on parameters ε,K, and the minimum transmissivity t allowed for the channel E , depending
on their requirements and experimental limitations.

2. Alice prepares N = dK/te copies of the probe state Φi.

3. Alice successively sends each state through E , including ρi in a random r-th position, with r ≤ N + 1.

4. Bob establishes the set SP of states which successfully passed through E , and broadcast it publicly.

5. If r /∈ SP or |S/{r}| < K, Alice aborts the protocol. Otherwise, Alice sends r to Bob.

6. Alice separates S/{r} into two random sets S0 and S1.

7. For each k ∈ Sq , q = 0, 1:

(a) Alice measures observable Aq on her part of the k-th state and gets outcome ak.

(b) She tells Bob to measure observable Bq on his part of the k-th state and he gets outcome bk.

(c) Alice and Bob calculate their correlation for round k as ck = akbk.

8. Alice and Bob deduce the average value over all rounds, of β = |〈A0B0〉+ 〈A1B1〉|.

9. If β ≥ 2− ε, then Alice successfully sent the state ρo = E [ρi]/t(E|ρi) to Bob, with a certified average fidelity to ρi,
up to isometry.

2. Fully Device Independent Protocol

While the protocol described in the previous section has high relevance when devices in one laboratory can be trusted,
the completely adversarial scenario would demand the fully device independent protocol. Theoretically, such protocol can
be formulated, but in the absence on any assumptions about the functioning of the devices, which should be the case in the
fully device-independent protocol, we argue that the certification procedure would be very resource-demanding and difficult to
perform with available resources. To make Protocol 1 fully device independent one needs to certify in a device independent
manner the fidelity of probe states Fi, which in Protocol 1 figures as a parameter.

The input fidelity Fi can be estimated by using self-testing methods, in a similar way like it was done in Protocol 1, with
an important difference, that self-testing would be done through the violation of the CHSH inequality. However, without any
assumptions about the source or the channel, such protocol would require a very big number of experimental rounds. Namely,
if in Protocol 1 one has to measure N copies to verify that the channel was correctly applied to an unknown state ρi, in the fully
DI scenario, to verify Fi of a single state passing through the channel, one would have to measure around N additional states.
Hence, the number of experimental rounds would need to be squared, which corresponds to a very low sample-efficiency of
the certification protocol.

One way to simplify the protocol is by assuming that the source is producing independent and identically distributed copies,
i.e. that the source functions in the IID scenario. In that case, we schematically double the sample size N instead of squaring
it. Here we provide the recipe for that certification protocol, making the IID assumption on the input probe state. In this
framework, our fully device independent protocol simply consists in performing a very similar protocol to the one presented in
the previous section, with one difference in step 1.(a), related to using the CHSH inequality [43] for certification instead of the
steering inequality. In that version, Alice measures the observables A3, A4 on the part of the system she can send through the
channel.
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The security of this protocol can be derived from that of protocol 1, with some slight adjustments. First we use another
bound for the self-testing of CHSH inequalities, in a fully device independent and non-IID scenario [44], in order to certify the
output probe state. The input state is also certified via self-testing of CHSH inequality in a fully device independent scenario,
but keeping the IID assumption. We can then plug the two certified fidelities in our bound (7).

Protocol 2: Certified Transmission through a Probabilistic Quantum Channel in DI scenario

1. Prior to the protocol, Alice and Bob agree on parameters ε, η, K, M , and the minimum transmissivity t allowed for
the channel E , depending on their requirements and experimental limitations.

2. Alice prepares N +M copies of Φi, where N = dK/te.

3. Alice measures M random copies of Φi, and deduce the value of Ei = |〈A0A2〉+ 〈A0A3〉+ 〈A1A2〉 − 〈A1A3〉|.

4. If βi < 2
√

2− η, Alice aborts the protocol.

5. Alice successively sends each state through E , including ρi in a random r-th position, with r ≤ N + 1.

6. Bob establishes the set SP of states which successfully passed through E , and broadcast it publicly.

7. If r /∈ SP or |S/{r}| < K, Alice aborts the protocol. Otherwise, Alice sends r to Bob.

8. For each k ∈ Sq , q = 0, 1:

(a) Alice measures observable Au on her part of the k-th statem with u = 0 or 1 at random. She gets outcome ak.

(b) Bob to measures the observable Bv on her part of the k-th state, with v = 0 or 1 at random. He gets the outcome
bk.

(c) Alice and Bob calculate their correlation for round k as ck = akbk.

9. Alice and Bob deduce the average value over all rounds, of βo = |〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉|.

10. If β ≥ 2
√

2 − ε, then Alice successfully sent the state ρo = E [ρi]/t(E|ρi) to Bob, with a certified average fidelity
to ρi, up to isometry.

3. Practical Protocol

We mentioned that the protocol we implement in our experiment differ slightly from the theoretical protocols detailed in
previous paragraphs, as the latter rely on Bob being able to store all states he receives from the channel, before agreeing
with Alice to measure them. This imposes a strong assumption on Bob’s power, which is both impractical for experiments,
and unrealistic in our one-sided device independent scenario that assumes the receiver possesses as few trusted resources
as possible. Thus, although this protocol follows the recipe from [23] which allows for the derivation of the security, we
implement a more practical protocol in our experiment. That protocol assumes a private and trusted classical communication
channel, but does not rely on trusted quantum memories. Here we detail a theoretical version of that protocol, in a one-sided
device independent setting, which fits more to our implementation. We assume the security to be the equivalent to that of
protocol 1. In addition, as players perform the measurements on the fly, more assumptions are required in order to distinguish
potentially biased losses from the channel from detection losses. These are detailed in appendix E.3, and mainly consist in
considering detection losses are independent of the measurement basis, which is a form of fair-sampling assumption.
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Protocol 3: Practical Certified Transmission through a Probabilistic Quantum Channel in 1sDI scenario

1. Prior to the protocol:

(a) Alice characterizes the state Φi emitted by her source and evaluates the quantity F i. She also receives or prepares
the state ρi, possibly shared with an outside party.

(b) Alice and Bob agree on parameters ε,K, and the minimum transmissivity t allowed for the channel E , depending
on their requirements and experimental limitations. They also share a private random key r ∈ [[1, N + 1]], with
N = dK/te.

For k ∈ [[1, N + 1]]:

2. If k 6= r:

(a) Alice prepares a copy of the probe state Φi and sends half of it through E .

(b) Alice and Bob privately agree on a random q ∈ {0, 1} and measure the observable AqBq , with an outcome
ck = akbk if Bob received a state, or no outcome if the state was lost through the channel.

3. If k = r:

(a) Alice sends ρi through E .

(b) If Bob does not receive any state, the protocol aborts. Otherwise, Bob sets the state aside.

4. If the number of "no-outcome" events during step 2.(b) is bigger than N −K, then the protocol aborts.

5. From the correlations {ck}, Alice and Bob deduce the average value over all rounds, of β = |〈A0B0〉+ 〈A1B1〉|.

6. If β ≥ 2− ε, then Alice successfully sent the state ρo = E [ρi]/t(E|ρi) to Bob, with a certified average fidelity to ρi,
up to isometry.

Appendix D: Protocol Security

When the protocol does not abort, Alice and Bob wish to bound the probability that it successfully implements the channel
E0 ⊗ Ii on the input state ρi. First let us recall the protocol structure. Alice sends N + 1 states through the channel, including
N states Φi, and one copy of ρi. On the k−th state, the channel takes the expression Ek|[k−1]. We also recall the expression of
the average channel:

Ē =
1

N + 1

N+1∑
k=1

Ek|[k−1] (D1)

This defines a physical channel, which would randomly apply any of the Ek|[k−1]. Similarly as we did in (2), we call Ēi,o the
average channel when the isometries Γi and Γo are applied. From these two definitions follow the ouput states when sending
the probe state Φi or the input state ρi:

Φ̄o = (Ē ⊗ I)[Φi]/t(Ē |Φi), (D2)

ρ̄o = (Ēi,o ⊗ I)[ρi]/t(Ēi,o|ρi) (D3)

Only one copy of the state ρi is sent through the channel during the protocol, at a random position r. Assuming the channel’s
operator has no way of guessing that position, that state has the same probability of going through any one of the channels
Ek|[k−1], such that it is expected to undergo the operation Ēi,o. Therefore, ρ̄o is the expected output state, and the fidelity
F
(
ρ̄o, (E0 ⊗ I)[ρi]

)
can be interpreted as the average probability of successfully implementing the channel E0 on ρi, up to

isometry [45]. In the following, we show how to bound that fidelity using only the measurements performed during the protocol
when sending the probe states Φi through the channel.

First, we show the certification bound 7, by going through similar guidelines as the certification bound shown in [19] for
CPTP maps, and using our new fundamental results on probabilistic channels.
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Next we show how we can apply the recent results from [23] to our protocol, in order to certify a virtual and unmeasured
probe state, thanks to violation of steering inequality in a one-sided device-independent and non-IID setting, measured on all
other probe states.

Then, we show the expressions of error terms on the fidelity of the probe output state, and on the channel’s transmissivity,
due to finite number of samples in a non-IID setting.

Finally we tie all these results together in order to give the full bound on the transmission fidelity F (ρo, ρi). We also give the
modification required to that bound in order to certify the transmission fidelity in protocol 2.

1. Bounding Channel Fidelity with State Fidelities

In the following, we prove the key theoretical result of this study (7), which allows one to bound the quality of a channel with
probe states fidelities to a maximally-entangled state, up to isometries. More precisely, we show the following lemma:

Lemma 5 (Probabilistic Channel Certification). Let us consider a deterministic channel E0 from L(Hi) to L(Ho), a proba-
bilistic channel E from L(HA1

) to L(HB), and a secondary space L(HA2
). For any isometries ΓB : HB −→ HB ⊗ Ho and

ΓA1/A2 : HA1/A2
−→ HA1/A2

⊗Hi we define the corresponding fidelities of a state Φi ∈ L(HA1
⊗HA2

) to a maximally-
entangled state Φ+ ∈ L(H⊗2

i ), before and after application of the channels:

F i = F ((ΛA1 ⊗ ΛA2)[Φi],Φ+)

F o = F ((ΛB ⊗ ΛA2)[(E ⊗ I)[Φi]]/t(E|Φi), (E0 ⊗ I)[Φ+])
(D4)

where ΛP [·] = TrP(ΓP [·]) for P = A1,A2 or B. Then there exist two isometries Γi and Γo, built from ΓA1 , ΓA2 and ΓB, such
that channel fidelities between E and E0 are bounded, up to isometries:√

1−F�(Ei,o, E0) ≤ d ·
√

1−FJ(Ei,o, E0) ≤ d · sin
(

arcsin
(
Ci/t(E|Φi)

)
+ arcsinCo

)
(D5)

where d = dimHi, Ei,o = Trext
(
(Γo ◦ E ◦ Γi)[ρA1

⊗ • ]
)
, ρA1

an ancillary state in L(HA1
), and Ci =

√
1− F i and

Co =
√

1− F o.

Proof: This theorem is a generalization of the result from [19] to trace-decreasing channels. We follow the same guidelines
for our proof. First we define Φ′i = (I⊗ΛA2)[Φi], in order to forget about the injection on Alice’s second subsystem, that does
not have much relevance here as the channel E leaves it unaffected. Then, we note that according to Proposition 2 from [19], if
one is given a target pure state ρ0 ∈ L(Hsys) and any state Γ[ρ] ∈ L(Hext ⊗Hsys) with Λ[ρ] = Trext(Γ[ρ]) ∈ L(Hsys), then
the following relation holds

F (Λ[ρ], ρ0) = F (Γ[ρ], ρext ⊗ ρ0) (D6)

with ρext =
Trsys(Γ[ρ]ρ0 ⊗ I)

Tr(Γ[ρ]ρ0 ⊗ I)
. We start by applying this proposition to F i, with Hsys = Hi ⊗Hi and Hext = HA1

, so we

get a new expression of that fidelity:

F i = F
(
(ΓA1 ⊗ I)[Φ′i], ρA1

⊗ Φ+

)
(D7)

with ρA1
=

TrHi⊗Hi

(
(ΓA1 ⊗ I)[Φ′i]|Φ+〉〈Φ+| ⊗ I

)
Tr
(
(ΓA1 ⊗ I)[Φ′i]|Φ+〉〈Φ+| ⊗ I

) . The isometry ΓA1 can be written as a unitary, applied on a Hilbert state

of larger dimension, so that (ΓA1 ⊗ I)[Φ′i] = (U i ⊗ I)[σext ⊗ Φ′i] with σext an ancillary pure state and U i a unitary operation
applied on that state andHA1

. This way we get:

F i = F
(
(U i ⊗ I)[σext ⊗ Φ′i], ρA1

⊗ Φ+

)
= F

(
σext ⊗ Φ′i, (U

i† ⊗ I)[ρA1
⊗ Φ+]

)
≤ F

(
Φ′i,Trext,i(U i

† ⊗ I)[ρA1
⊗ Φ+]

) (D8)

where we use the fidelity invariance under unitary operation, and the fact that it can only increase upon tracing out, here of the
Hilbert space of σext. This allows us to define the input isometry Γi = (U i

† ⊗ I)[ • ] so we have:

F i ≤ F
(
Φ′i,Trext,i(Γi[ρA1 ⊗ Φ+])

)
(D9)
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Now by defining the output isometry Γo = ΓB, we can apply the map Γo ◦ Ē ⊗ I to both states on the right-hand side of
the inequality, and use Lemma 1 for extended metric monotonicity, and once again fidelity monotonicity when tracing out
subsystems:

Ci =
√

1− F i

≥ C
(
Φ′i,Trext,i(Γi[ρA1

⊗ Φ+])
)

≥ t(Ē |Φ′i) · C
(
(Γo ◦ Ē ⊗ I)[Φ′i]/t(Ē |Φ′i),Trext,i((Γo ◦ Ē ◦ Γi ⊗ I)[ρA1

⊗ Φ+])/t̃
)

≥ t(Ē |Φ′i) · C
(
(ΛB ◦ Ē ⊗ I)[Φ′i]/t(Ē |Φ′i),Trext((Γo ◦ Ē ◦ Γi ⊗ I)[ρA1

⊗ Φ+])/t̃
) (D10)

Here in order to apply Lemma 1, we noted that t(Ē |Φ′i) = Tr((Ē ⊗ I)[Φ′i]) is the transmissivity of the first state, which does
not vary under application of isometry Γo. Also t̃ is the transmissivity of the second state, i.e. t̃ = t(Ēi,o|Φ+) as we define
Ēi,o = Trext((Γo◦Ē ◦Γi)[ρA1

⊗•]). The last partial trace in the inequality is carried out over all subsystems exceptL(Ho⊗Hi),
such that the distance can only decrease. Noting that (ΛB ◦ Ē ⊗ I)[Φ′i]/t(Ē |Φ′i) = (ΛB ⊗ ΛA2) ◦ (Ē ⊗ I)[Φi]/t(Ē |Φi) we get:

Ci/t(Ē |Φ′i) ≥ C
(
(ΛB ⊗ ΛA2)[Φ̄o], (Ēi,o ⊗ I)[Φ+]/t(Ēi,o|Φ+)

)
(D11)

Finally, we can apply an equivalent of triangular inequality to Ulhmann’s fidelity:

arccos
√
F (ρ1, ρ3) = arcsinC(ρ1, ρ3)

≤ arccos
√
F (ρ1, ρ2) + arccos

√
F (ρ2, ρ3)

= arcsinC(ρ1, ρ2) + arcsinC(ρ2, ρ3)

(D12)

with the following states

ρ1 = (Ēi,o ⊗ I)[Φ+]/t(Ēi,o|Φ+) (D13)

ρ2 = (ΛB ⊗ ΛA2)[Φ̄o] (D14)
ρ3 = (E0 ⊗ I)[Φ+]. (D15)

ρ1 is the output state of the real channel when sending a perfect maximally entangled state, ρ2 the average output state we
effectively measure after application of the real channel on a close-to-maximally-entangled state, and ρ3 the output state of
the target channel when sending a perfect maximally entangled state. This way we have C(ρ2, ρ3) = Co and C(ρ1, ρ3) =

arccos
√
FJ(Ēi,o, E0) by definition, and C(ρ1, ρ2) ≤ Ci/t(Ē |Φi) via inequality (D11). This gives the final result:

arccos
√
FJ(Ēi,o, E0) = arcsin CJ(Ēi,o, E0) ≤ arcsin

(
Ci/t(Ē |Φi)

)
+ arcsin(Co) (D16)

From here, one just has to use the comparison between diamond and Choi-Jamiołkowski distances, as we showed in Lemma 2,
in order to get the bound (D5) and lemma 5 �.

FIG. 7: Schematic representation of isometries’ actions on (a) the input state Φi, (b) the output state Φo, and (c) the quantum
channel E . All isometries, except Γi, extract a qubit state from a physical system. Only the qubit state remains as the other
degrees of freedom are discarded. The isometry Γi encodes a qubit state onto a physical state that can be fed into the quantum
channel E . Γi schematically performs the inverse operation than ΓA1 . Together, Γi and Γo extract a qubit-to-qubit channel
from a physical channel.
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The isometries mentioned in the proof are fundamental in a device independent study, in order to extract ideal qubit spaces
to real-world infinite-dimension physical Hilbert spaces. ΓA1 , ΓA2 and ΓB are the same type of isometries as in all standard
self-testing results [46], and they extract a qubit state from the full state of a physical system, which encompasses all other
degrees of freedom. The unused degrees of freedom are then thrown away. The channel isometries Γi and Γo were introduced
more recently [19] and together extract a qubit channel from a physical channel acting on all degrees of freedom of a physical
system. The output isometry Γo performs the same operation as ΓB, extracting a qubit out of a physical system. The isometry
Γi however, performs the inverse operation than the other isometries, encoding the qubit state into a physical system, such that
it can be fed into the physical channel. We give a schematic view of these channels in Fig. 7. In Protocol 1, the input state Φi is
assumed to be fully characterized, so we can ignore the input isometry and Γi = ΓA1 = I. Yet, we must include that isometry
when building the fully device independent Protocol 2.

The result we just showed allows us to deduce the protocol’s success probability, by evaluating the fidelities F i and F o to
a Bell state, as well as the transmissivity t(Ē |Φi). The two following paragraphs are dedicated to evaluating F o and t(Ē |Φi),
using data received by Alice and Bob only. In order to tie up the security of Protocol 2, we tackle the certification of F i in a
later paragraph.

2. Certifying the average Bell output state

In order to certify the average output state Φ̄o = (Ē⊗I)[Φi]/t(Ē |Φi), we use self-testing results from previous works [44] that
consider steering-based certification of the Bell pair in a finite number of measurement rounds, without making the common IID
assumption. In a non-IID scenario the channel may change its behaviour throughout the protocol, such that we define Ek|[k−1]

the expression of the channel when Alice sends the k−th state. Then, we call the output state Φk = (Ek|[k−1]⊗ I)[Φi]/tk when
Alice sends the state Φi, with tk = t(Ek|[k−1]|Φi) being the transmissivity of the state Φi through the channel Ek|[k−1]. Using
this notation, we can define the following state:

Φ̄t =
(N+1∑
k=1

TkΦk
)
/(K + 1) (D17)

where Tk = 1 when a state is detected by Bob, and Tk = 0 otherwise, such that
∑N+1
k=1 Tk = K + 1. We take Tr = 1, in order

to include the state Φr = (Er|[r−1] ⊗ I)[Φi]/tr in the sum. Φ̄t is the average output state of the protocol, in the particular case
ρi = Φi and when the protocol did not abort. Therefore, we expect Φ̄t to be a good approximation for Φ̄o, the output state
when sending Φi through the average channel Ēi,o. However, we leave that consideration for the next subsection, and now
show certification results for Φ̄t in place of Φ̄o.

When ρi = Φi, we can see our protocol as an attempt to authenticate an unmeasured Bell pair, emerging from an untrusted
source. The latter is made of Alice’s trusted source, sending copies of Φi in the untrusted quantum channel. The state emerging
from the Er is the unmeasured pair, and the K other output states are measured by Alice and Bob in order to perform a Bell
test. In that case, our protocol corresponds to that described in [44, 45], such that we can apply the self-testing-based security
results from that work, in a non-IID and 1sDI setting, to our protocol:

Proposition 3. Let us consider our protocol where ρi = Φi, Alice and Bob measure K states and witness an average violation
of either steering inequality of 2− ε. We can bound the fidelity of the average state Φ̄t to a maximally-entangled state Φ+, up to
isometry. More precisely, there exist isometries ΓA2 and ΓB acting respectively on L(HA2

) and L(HB), such that by defining
the local maps ΛA2 [·] = TrA2

(ΓA2 [·]) and ΛB[·] = TrB(ΓB[·]), for any x > 0 we have with probability at least (1− e−x):

F ((ΛB ⊗ ΛA2)[Φ̄t],Φ+) ≥ 1− α · fx(ε,K) −→
K→+∞

1− αε (D18)

with α a constant and f a function which both depend on the inequality used:

fx(ε,K) = 8

√
x

K
+
ε

2
+
ε+ 8/K

2 + 1/K
(D19)

and α = 1.26

It is worth noting that as the r-th state is left unmeasured in this protocol, and we assume the channel’s operator has no way
of guessing r, then the measurements performed on the test EPR pairs follow the same statistics in the general case than in the
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special case ρi = Φi. We can therefore use the correlations witnessed in our protocol in Proposition 3, even when sending any
ρi in r-th position, in order to certify the hypothetical state Φ̄t up to isometry.

Finally, we give some insight on the behaviour of those bounds with the parameters of the problem. First, we can take x = 7

in order to get a bound with almost absolute certainty, as (1− e−x) ≈ 0.999. The corresponding term in
√
x/K can be made

arbitrarily small by measuring a large number K of states. Similarly, when measuring a reasonable amount of states K > 108,
we reach the asymptotic regime where the fidelity is simply bounded by 1− αε. These results are presented in Fig. 8.

FIG. 8: Minimum fidelity of the average output state to a Bell state, up to isometries, as a function of the deviation to
maximum violation. As we make no IID assumption, we give the evolution for different numbers K of states measured. We set
a confidence level 1− e−x ≈ 0.999.

3. Errors due to Post-Selection and Finite Statistics

We now show the validity of approximating the state Φ̄o (D2) with Φ̄t (D17), as well as the following approximation:

t(Ē |Φi) ≈ R =
K + 1

N + 1
(D20)

where K + 1 = |SP | is the number of states that Bob is able to measure after they are sent through the channel. Alice and Bob
have direct access to the value R in the end of the protocol, as the fraction of states that successfully pass through the channel,
which we identify as the heralding efficiency ηs. Therefore, they can easily evaluate t(Ē |Φi) by using (D20).

Proposition 4. In our protocol, provided that Bob measured a large enough number K+ 1 of states, the transmissivity t(Ē |Φi)
of Φi through the average channel Ē can be approximated by the proportion R of states which were successfully detected by
Bob, and the state Φ̄o can be approximated by Φ̄t. More precisely, for any x > 0 we have with probability at least (1−2e−x)2:

arccos
√
F (Φ̄t, Φ̄o) ≤ ∆x(R,K) (D21)

t(Ē |Φi) ≥ τx(R,K), (D22)

where

∆x(R,K) = arccos 1−3 δx(R,K)
1−δx(R,K) (D23)

τx(R,K) = R (1− δx(R,K)) (D24)

δx(R,K) = 1
K+1 +

√
2x

R(K+1) (D25)

In particular, this proposition gives the error terms mentioned given in Eqs. (28) and (29) from the Methods.
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Proof. We prove this proposition in two main steps, first showing bound (D22) on the transmissivity t(Ē |Φi) with a certain
probability, and secondly assuming (D22) in order to derive bound (D21) on the trace distance D(Φ̄t, Φ̄o) with another
probability. In each step, we define a random variable which, without assuming IID statistics, is identified as a martingale. The
bounds are therefore derived from the Azuma-Hoeffding inequality.

First let us rewrite the transmissivity using the notation from the last paragraph:

t(Ē |Φi) = Tr
(

1

N + 1

N+1∑
k=1

Ek[Φi]

)
=

1

N + 1

N+1∑
k=1

tk (D26)

Alice and Bob do not have direct access to that quantity, as they cannot measure tk individually. However, they have access to
the random variables {Tk}1≤k≤N+1 defined in the previous subsection, the sum of which gives the number of states that were
measured by Bob during the protocol:

K + 1 = |SP | =
N+1∑
k=1

Tk (D27)

As no IID assumption is made, the variables Tk may differ from one another and depend on the experiment’s history. Taking
the difference with transmissivities, we define a new random variable, for j 6= k :

Dj =

j∑
k=1
k 6=r

(Tk − E[Tk]) =

j∑
k=1
k 6=r

(Tk − tk) (D28)

and Dr = Dr−1. The expectation value of Dj is finite for any j, as it is zero, and we have E[Dj+1|Hj ] = Dj , where Hj is
the history of the experiment after the j-th state is sent through the channel. This makes Dj a martingale. We also note that
|Dj+1 −Dj | ≤ 1 for any j, such that we can apply the Azuma-Hoeffding inequality, giving:

Pr(|Dj | ≥ γ) ≤ 2 exp

(
−γ

2

2j

)
(D29)

Now we note that DN+1 = (N + 1) · (R− t(Ē |Φi))− 1 + tr, such that by taking j = N + 1 we get:

Pr
(−γ+1−tr

N+1 ≤ R− t(Ē |Φi) ≤ γ+1−tr
N+1

)
≥ 1− 2 exp

(
− γ2

2(N + 1)

)
(D30)

Now considering 0 ≤ 1− tr ≤ 1, and taking the relative difference we get:

Pr
( |R−t(Ē|Φi)|

R ≤ γ+1
K+1

)
≥ 1− 2 exp

(
− γ2

2(N + 1)

)
(D31)

such that by taking x = γ2

2(N+1) > 0 we get the following bound with probability at least (1− 2e−x):

|∆1| =
|R− t(Ē |Φi)|

R
≤ δx(R,K) (D32)

where δx(R,K) = 1
K+1 +

√
2x

R(K+1) . This straightforwardly gives the inequality in (D22):

t(Ē |Φi) ≥ τx(R,K) (D33)

where τx(R,K) = R (1 − δx(R,K)). Note that as the value of x can be chosen arbitrarily, we can take the same value as in
Proposition 3, which will simplify the notation.
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To show the bound (D21), we now assume (D32) such that |∆1| ≤ δx(R,K). We note that one can re-write Φ̄o using the
states Φk and transmissivities tk:

Φ̄o = (Ē ⊗ I)[Φi]/t(Ē |Φi)

=
( 1

N + 1

N+1∑
k=1

(Ek ⊗ I)[Φi]
)
/t(Ē |Φi)

=
( 1

N + 1

N+1∑
k=1

tkΦk
)
/t(Ē |Φi)

(D34)

We pick a projector P that allows to express the trace distance between Φ̄o and Φ̄t:

D(Φ̄t, Φ̄o) = Tr(P (Φ̄t − Φ̄o))

=

N+1∑
k=1

( Tk
K+1 −

tk
(N+1)t(Ē|Φi)

)
Tr(PΦk)

≤
(∣∣∣∣N+1∑

k=1

( t(Ē|Φi)
K+1 −

1
N+1

)
TkTr(PΦk)

∣∣∣∣+

∣∣∣∣N+1∑
k=1

Tk−tk
N+1 Tr(PΦk)

∣∣∣∣)/t(Ē |Φi)
(D35)

Let us call the second term in parenthesis |∆2| and bound the first term:∣∣∣∣N+1∑
k=1

(
t(Ē|Φi)
K+1 −

1
N+1

)
TkTr(PΦk)

∣∣∣∣ =

N+1∑
k=1

TkTr(PΦk)

∣∣∣∣ t(Ē|Φi)
K+1 −

1
N+1

∣∣∣∣
≤ (K + 1)

∣∣∣∣ t(Ē|Φi)
K+1 −

1
N+1

∣∣∣∣
=

∣∣∣∣t(Ē |Φi)−R∣∣∣∣
≤ R δx(R,K)

(D36)

In order to bound |∆2|, we make the exact same proof as for |∆1|, taking Tr(PΦk) · Tk in place of Tk and Tr(PΦk) · tk in
place of tk, when defining Dj in equation (D28). This new sum of variables D̃j is still a martingale such that |D̃j+1−D̃j | ≤ 1.
Therefore it still verifies equation (D29), and D̃N+1 = (N + 1)∆2 − Tr(PΦr)(1− tr) such that:

Pr
(−γ+Tr(PΦr)(1−tr)

N+1 ≤ ∆2 ≤ γ+Tr(PΦr)(1−tr)
N+1

)
≥ 1− 2 exp

(
− γ̃2

2(N + 1)

) (D37)

As 0 ≤ Tr(PΦr)(1− tr) ≤ 1 we can simplify:

Pr

(
|∆2| ≤ γ̃+1

N+1

)
≥ 1− 2 exp

(
− γ̃2

2(N + 1)

)
(D38)

such that by taking γ̃2

2(N+1) = x we get the following bound with probability at least (1− 2e−x):

|∆2| ≤ R δx(R,K) (D39)

This way, coming back to (D36) we get:

D(Φ̄t, Φ̄o) ≤
2R δx(R,K)

t(Ē |Φi)
≤ 2 δx(R,K)

1− δx(R,K)
(D40)
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Now we use a comparison between fidelity and trace distance 1−
√
F ≤ D in order to bound the Bures’ angle distance between

Φ̄t and Φ̄o:

A(Φ̄t, Φ̄o) = arccos
√
F (Φ̄t, Φ̄o) ≤ ∆x(R,K)

where ∆x(R,K) = arccos 1−3 δx(R,K)
1−δx(R,K)

(D41)

Finally, we point out that this bound is true with probability (1− 2e−x) and at the condition that bound (D32) holds, which
also happens with probability (1 − 2e−x), such that both bounds hold with probability (1 − 2e−x)2. This ties up the proof of
Proposition 4. �

This proposition highlights the purely statistics-induced error on states and transmissivities. It is mostly due to the fact that
Alice and Bob only have access to a finite number of states, in a non-IID setting. Most importantly, as the channel is allowed
to be lossy, these states only give information on a sample of the different expressions Ek|[k−1] that it might take during the
protocol, causing more uncertainty than when certifying a source of state without channel. This error must be included in the
bounds in order to derive the protocol’s security. Also note that we can use this theorem when applying the injection map
ΛB ⊗ ΛA2 defined in the previous subsection to both states, as we always have:

F
(
(ΛB ⊗ ΛA2)[Φ̄t], (Λ

B ⊗ ΛA2)[Φ̄o]
)
≥ F (Φ̄t, Φ̄o) (D42)

This is fundamental to derive the final security bound for our protocol. Finally, we give some insight on the dependence of
this error on the different parameters of the problem. First we notice that this error can be made arbitrarily small by measuring
a large enough number K of states, which still needs to be limited for practical applications. The error tends to increase with
the confidence level, such that we need more states K in order to ensure a smaller error with reasonable certainty. Similarly, the
more lossy the channel is, i.e. the smallerR, the bigger the error. Therefore having a lossy channel also imposes to measure more
states in order to accurately certify the protocol. We give an idea of the evolution of that error in Fig. 9, for different confidence
levels and different channel transmission ratios R. We see that with a transmission ratio R = 50%, corresponding to telecom
light propagating in a 15km-long optical fiber or ideal quantum teleportation, we can ensure an error ∆x(R,K) ≤ 0.015 with
a confidence level of 99.5%, by measuring a reachable number of states K ≈ 1010.

(a) For different minimum confidence levels, with a transmission
ratio R = 50%.

(b) With a minimum confidence level 99.5%, and for different
transmission ratios R.

FIG. 9: Minimum statistics-induced error ∆x(R,K), as a function of the number of states measured K.
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4. Certifying the output state of the protocol

Combining the last three subsections allows us to extract a bound for the fidelity of the expected output state ρ̄o to the input
state ρi up to isometry. We assume that Alice prepared N states with fidelity F i to a Bell state, that Bob received K of those
states during the protocol, and that they measured an ε-close to maximum violation of the steering inequality. First, they can
use Lemma 5, implying that there exist isometries Γi, Γo, ΓA1 , ΓA2 , and ΓB, giving the result from (7):√

1− F
(
(ΛB ⊗ ΛA2)[ρ̄o], ρi

)
≤
√

1−F�(Ēi,o, E0)

= C�(Ēi,o, E0)

≤ 2 CJ(Ēi,o, E0)

≤ 2 sin
(
arcsin

(
Ci/t(Ē |Φi)

)
+ arcsin(Co)

)
(D43)

Now we fix x > 0 in order to apply Proposition 4, such that we have both:

t(Ē |Φi) ≥ τx(R,K) (D44)

arccos
√
F
(
(ΛB ⊗ ΛA2)[Φ̄t], (Λ

B ⊗ ΛA2)[Φ̄o]
)
≤ arccos

√
F (Φ̄t, Φ̄o) (D45)

≤ ∆x(R,K) (D46)

with probability at least (1− 2e−x)2, where τx and ∆x are functions detailed in paragraph D 3. In that case, we can apply the
triangular inequality to arcsin(Co):

arcsin(Co) ≤ arcsinC
(
(ΛB ⊗ ΛA2)[Φ̄t],Φ+

)
+ ∆x(R,K) (D47)

and bound t(Ē |Φi) in order to get:

arcsin
(
Ci/t(Ē |Φi)

)
≤ arcsin

(
Ci/τx(R,K)

)
(D48)

We can then bound C((ΛB ⊗ ΛA2)[Φ̄t],Φ+) using Proposition 3, with probability (1− e−x):

arcsin
(
C((ΛB ⊗ ΛA2)[Φ̄t],Φ+)

)
≤ arcsin

√
αfx(ε,K) (D49)

Combining (D43), (D47), (D48), and (D49) we can bound the input-output fidelity up to isometries:√
1− F (ρ̄o, ρi) ≤ 2 · sin

(
arcsin

(
Ci/τx(R,K)

)
+ arcsin

√
αfx(ε,K) + ∆x(R,K)

)
(D50)

where α and f are given in Proposition 3. This way, for any x > 0 we can bound the output state fidelity to the input state with
probability at least (1− e−x) · (1− 2e−x)2:

F (ρ̄o, ρi) ≥ 1− 4 · sin2

(
arcsin

(
Ci/τx

)
+ arcsin

√
αfx(ε,K) + ∆x

)
(D51)

5. Input state certification and full device independence

In protocol 2 Alice does not trust her measurement setup anymore, nor the source of input state Φi. However we still make
the IID assumption on that source. In that case we deduce the following theorem from a previous work [44]:

Proposition 5. When Alice measures an average violation of Bell inequality 2
√

2−η onM identical copies of Φi with untrusted
measurement apparatus, then for any x > 0 we can bound the fidelity of Φi to Φ+ up to isometries, with probability (1− e−x),
meaning that there exists two isometries ΓA1 and ΓA2 on L(HA1

) and L(HA2
) such that:

F
(
(ΛA1 ⊗ ΛA2)[Φi],Φ+

)
≥ 1− α · gx(η,M) −→

M→+∞
1− α · η (D52)

with ΛA1 [·] = TrA1(ΓA1 [·]), ΛA2 [·] = TrA1(ΓA2 [·]), α = 1.19, and gx(η,M) = 8
√

2x/M + η.
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Then, if Alice and Bob measure K states at the output of the channel with untrusted measurement apparatus, and witness an
average violation of CHSH inequality of 2

√
2 − ε, we can bound the fidelity of the average state Φ̄t to a maximally entangled

state Φ+, up to isometries, with probability at least (1− e−x), meaning that there exist isometries ΓA2 and ΓB on L(HA2
) and

L(HB), such that:

F ((ΛB ⊗ ΛA2)[Φ̄t],Φ+) ≥ 1− α · fx(ε,K) −→
K→+∞

1− α · ε (D53)

with ΛA2 [·] = TrA2
(ΓA2 [·]), ΛB[·] = TrB(ΓB[·]), α = 1.19 and fx(ε,K) = 16

√
2x
K + 3ε

4 + ε+(4+2
√

2)/K
4+4/K .

Thanks to the IID assumption made on the probe-state source, we still consider all input probe states to be equal to Φi, so the
first part of Proposition 5 enables Alice and Bob to certify the quantity F i once, for the whole protocol. This way, compared
to Proposition 3 for protocol 1, we bound Ci ≤

√
αgx(η,M), and replace the expression of fx and α. We also multiply the

confidence level by (1−e−x) to account for the confidence on the input bound, due to the finite numberM of input state tested.
This straightly gives the bound:

F (ρ̄o, ρi) ≥ 1− 4 · sin2

(
arcsin

(√
αgx(η,M)/τx

)
+ arcsin

√
αfx(ε,K) + ∆x

)
(D54)

with confidence level at least (1− e−x)2 · (1− 2e−x)2 for any x > 0, therefore showing the security bound for protocol 2. We
show the corresponding certified fidelity with examples of experimental parameters in Fig. 10.

(a) R = 50% (b) R = 70% (c) R = 90%

FIG. 10: Minimum certified fidelity of the output state of Protocol 2, to the state sent through the channel, as a function of the
deviations η, ε from maximum violation of CHSH inequality. We set x = 7 for a confidence level > 99.4%, M = K = 1010,
and different ratios of transmission R = K/N .

Appendix E: Details on the Experimental Protocol

1. Probe State Source

Here we give a few details on the probe state source. We first provide an example of the polarization state of photon pairs,
reconstructed via quantum state tomography. This state Φi was measured for the protocol implementation with heralding effi-
ciency ηs = 0.444, and shows a fidelity F (Φi,Φ+) = 99.43%± 0.05% to the maximally-entangled state |Φ+〉 = |HH〉+|V V 〉√

2
.

As the imaginary part of the density matrix is negligible, we display the real part only, on Fig.11.

We also performed a continuous measurement of the quantum state via quantum state tomography, over an 8−hours time
span, in order to evaluate the stability of the quantum state during a protocol run. As we show in Fig. 12, the low standard
deviation and drift in the fidelity to Φ+, as well as in the photon detection rate, motivate the IID assumption we make on the
probe state during the protocol.
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(a) Real part. (b) Imaginary part.

FIG. 11: Density matrix reconstructed by tomography of the probe quantum state emitted by the Sagnac source, in one
iteration of the protocol. Real and imaginary parts are not at the same scale.

FIG. 12: Features of the source measured over an 8-hours time-span. The 1-hour gap at the end of the data series is due to a
cooling cycle of the detectors. (a) Biphoton detection rate R2. (b) Fidelity of the source’s state to a Bell state.
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2. Detailed Protocol Results

The main results for the certification of lossy honest quantum channels are displayed in Fig. 5 in the main text, but we do
not detail the different measurements which were performed during this protocol. In the following Fig. 13, we display the
results for the two main experimental measurements, namely the probe state’s fidelity to a Bell state and the steering inequality
violation, that we feed in our main result (7) in order to bound the transmission fidelity. In particular, note that the correlations
we measure are always more than ε-close to maximum violation of steering inequality with ε = 0.015. Yet we witness a drop
in the probe’s state fidelity to a maximally entangled state, for the second point on the graph. This causes the corresponding
points in Fig. 5 to deviate from the average curves, and is purely due to experimental mishandling, causing some misalignment
during one iteration of the protocol.

FIG. 13: Measured probe-state fidelity F i to a maximally-entangled state, and close-
to-maximum violation of steering inequality 2− ε.

3. Detectors Model in Experiment

We now detail the assumptions taken on the players’ detection systems, in order to perform our proof-of-principle exper-
imental protocol, as well as the consequences on the protocol’s results. We focus on the detectors used in order to certify
the output probe state in the one-sided device independent protocol, and therefore omit the system that Alice uses in order to
certify the input state Φi. Both Alice and Bob each possess a local measurement apparatus, ideally made of 2-outcome POVMs
{MA2

l|q }l=0,1 and {MBl|q}l=0,1, for q = 0, 1. In reality, these detectors have non-unit efficiency, meaning they only return a
result with a certain probability which may depend on the parameter q, the outcome l, or even the quantum state ρ. This way
we adopt a similar description as that of [47], such that we get the probabilities of returning outcome l, when measuring ρ with
measurement parameter q:

PA(l|q, ρ) = tr(ρMA2

l|q ) · ηA(l, q, ρ) (E1)

PB(l|q, ρ) = tr(ρMBl|q) · η
B(l, q, ρ) (E2)

where ηA and ηB are the efficiencies. For a bipartite state, the probability of getting outcomes (lA, lB) with parameters (qA, qB)
becomes:

P(lA, lB|qA, qB, ρ) = tr
(
ρ ·MA2

lA|qA ⊗M
B
lB|qB

)
· ηA(lA, qA, ρA) · ηB(lB, qB, ρB) (E3)

where ρA = trB(ρ) and ρB = trA(ρ) are the local states, such that the efficiencies are local. In the following we focus on
the assumptions made on these efficiencies in our protocol, and the consequences on the results. First, in a one-sided device
independent scenario, we assume that Alice fully characterizes her measurement apparatus, and proves her efficiency to be
independent of the state ρ and the measurement parameter q, such that:

ηA2(l, q, ρ) = ηA2(l) (E4)

The values of ηA2(l) are accessible to Alice, as part of her detectors’ characterization. This way, for l+ and l− such that
ηA2(l+) > ηA2(l−), Alice can ignore the outcomes l+ with probability 1 − ηA2(l−)/ηA2(l+) in order to effectively equalize
the efficiencies of the two outcomes. In that case the efficiency on Alice’s side is a constant ηA2 , such that

ηA2(l, q, ρ) = ηA2 (E5)
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On Bob’s side, we first make the weak fair sampling assumption [47], stating that we can factorize the efficiencies due to
classical parameters from those due to quantum states:

ηB(l, q, ρ) = ηBC(l, q) · ηBQ(ρ) (E6)

We then make a form of strong fair-sampling assumption, stating the efficiency does not depend on q, such that:

ηB(l, q, ρ) = ηBC(l) · ηBQ(ρ) (E7)

Now we could assume the state-dependent efficiency to be unit, which leads to an unbalanced-outcomes homogeneous fair-
sampling assumption, and leaves the protocol more vulnerable to attacks. Another solution is to consider ηBQ(ρ) as a part of the
quantum channel being tested, as shown in Fig. 14. In that case our protocol is more secure but certifies a different channel,
the output of which is necessarily measured by Bob measurement apparatus. This would require further investigation if the
quantum communication is followed by another protocol which does not involve Bob’s measurement apparatus. In both cases,
we can neglect the state-dependent efficiency, such that

ηB(l, q, ρ) = ηBC(l) (E8)

is an efficiency which a priori depends on the result l. The detection probability then becomes

PB(l|q, ρ) = tr(ρMBl|q) · η
B(l) (E9)

FIG. 14: Schematic representation of Bob’s measurement apparatus, taking our
assumptions into account. The apparatus first displays some state-dependent trans-
missivity ηQ, that we can include inside the channel E . Bob then measures the
observable Bq , the result l ∈ {0, 1} of which is filtered with efficiency η(l).

Similarly to [47], we now show that even though the efficiency ηB slightly varies with the outcome l, we can still use the
measured outcome without any correction on Bob’s side, and still get a good evaluation of β = |〈A0B0〉 + 〈A1B1〉|. By
definition we have:

〈AqBq〉 = 〈MA2

0|qM
B
0|q〉+ 〈MA2

1|qM
B
1|q〉 − 〈M

A2

0|qM
B
1|q〉+ 〈MA2

1|qM
B
0|q〉 (E10)

With their imperfect detectors, Alice and Bob approximate that quantity by measuring the following:

AqBq =
n0,0|q + n1,1|q − n0,1|q − n1,0|q

n0,0|q + n1,1|q + n0,1|q + n1,0|q
(E11)

where nlA,lB|q is the number of times the measurement of a pair gave the outcome (lA, lB), when Alice and Bob both measured
with parameter q. When measuring a big number of state N we approximate

nlA,lB|q = N · P(lA, lB|qA, qB, ρ) = N · tr(ρ ·MA2

lA|q ⊗M
B
lB|q) · η

A · ηB(lB) (E12)

so we can rewrite the evaluation of 〈AqBq〉, symplifying the constant terms N and ηA:

AqBq =
tr
[
ρ · (MA2

0|q ⊗M
B
0|q −M

A2

1|q ⊗M
B
0|q)
]
· ηB(0) + tr

[
ρ · (MA2

1|q ⊗M
B
1|q −M

A2

0|q ⊗M
B
1|q)
]
· ηB(1)

tr
[
ρ · (MA2

0|q ⊗M
B
0|q +MA2

1|q ⊗M
B
0|q)
]
· ηB(0) + tr

[
ρ · (MA2

1|q ⊗M
B
1|q +MA2

0|q ⊗M
B
1|q)
]
· ηB(1)

=
tr
[
ρ ·Aq ⊗

(
MB0|q · η

B(0)−MB1|q · η
B(1)

)]
tr
[
ρ ·
(
MB0|q · ηB(0) +MB1|q · ηB(1)

)]
(E13)
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Then we take ξ such that ηB(1)/ηB(0) = 1 + ξ, and we get

AqBq =
tr
[
ρ ·Aq ⊗

(
MB0|q −M

B
1|q · η

B(1)/ηB(0)
)]

tr
[
ρ ·
(
MB0|q +MB1|q · ηB(1)/ηB(0)

)]
=
〈AqBq〉 − tr

[
ρ ·Aq ⊗MB1|q

]
· ξ

1 + tr
[
ρ ·MB1|q

]
· ξ

(E14)

Considering ηB(1) ≈ ηB(0), such that |ξ| � 1, we can approximate the difference between the expected correlation 〈AqBq〉
and the measured correlation AqBq , at first order:

AqBq − 〈AqBq〉 ≈ −tr
[
ρ ·Aq ⊗MB1|q

]
· ξ − 〈AqBq〉 · tr

[
ρ ·MB1|q

]
· ξ

= (1− 〈AqBq〉) · tr
[
ρ ·MA1|q ⊗M

B
1|q
]
· ξ − (1 + 〈AqBq〉) · tr

[
ρ ·MA0|q ⊗M

B
1|q
]
· ξ

(E15)

Provided Alice and Bob witness a close-to-maximum violation of steering inequality, we also have (1 − 〈AqBq〉) � 1 and
tr
[
ρ ·MA0|q ⊗MB1|q

]
� 1. This way, that difference is doubly negligible, such that even noticeable unbalance between the

detectors efficiencies should not significantly deviate the measured correlation from the expected correlation. We therefore
assume AqBq ≈ 〈AqBq〉, such that the value of β can be accurately measured even without correction for the detectors
efficiency. In our experiment, we measure the relative efficiency between Bob’s detectors, for each protocol iteration. This
way we get ξ . 0.03, while witnessing a close-to-maximum violation of steering inequality, legitimizing the approximation.
We still compute the violation that would be measured if detectors were perfectly balanced, and ηB(1) = ηB(0), by correcting
the data with the relative efficiencies. The difference between the corrected and uncorrected data is included in the error bars
displayed in Fig. 5 in the main text.
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