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Abstract

We consider a general class of birth-and-death processes with state
space {0,1,2,3, ...} which describes the size of a population going even-
tually to extinction with probability one. We obtain the complete spec-
trum of the generator of the process killed at 0 in the large population
limit, that is, we scale the process by a parameter K, and take the limit
K — +00. We assume that the differential equation dz/dt = b(x) —d(z)
describing the infinite population limit (in any finite-time interval) has
a repulsive fixed point at 0, and an attractive fixed point z, > 0. We
prove that, asymptotically, the spectrum is the superposition of two spec-
tra. One is the spectrum of the generator of an Ornstein-Uhlenbeck
process, which is n(b'(z.) — d’(z.)), n > 0. The other one is the spec-
trum of a continuous-time binary branching process conditioned on non-
extinction, and is given by n(d’(0) — '(0)), n > 1. A major difficulty is
that different scales and function spaces are involved. We work at the
level of the eigenfunctions that we split over different regions, and study
their asymptotic dependence on K in each region. In particular, we
prove that the spectral gap goes to min {¥'(0) — d'(0), d'(z.) — b'(x.)}.
This work complements a previous work of ours in which we studied the
approximation of the quasi-stationary distribution and of the mean time
to extinction.

Key-words: Ornstein-Uhlenbeck process, quantum harmonic oscillator,
binary branching process, Jacobi operators, Dirichlet form, spectral gap,
Fréchet-Kolmogorov-Riesz compactness criterion, discrete orthogonal
polynomials, quasi-eigenvectors, quasi-stationary distribution.
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1 Introduction, heuristics, and main result

1.1 The context

We consider a class of birth-and-death processes (X/);>0 with state space
Z-,* which describes how the size of a single population evolves according to
birth and death rates of the form

A = Kb (%) and p© = Kd <%) (1.1)

where n > 1, and K € Z., is a scaling parameter, which can be for in-
stance interpreted as the ‘carrying capacity’ in the logistic model. We sup-
pose that 5(0) = d(0) = 0, implying that 0 is an absorbing state for the
process, modeling extinction, and our assumptions are such that the proba-
bility to reach this state is equal to one. The unique stationary distribution
is the Dirac measure at 0, so a relevant distribution to look for is a quasi-
stationary distribution. A probability measure v*) on the positive integers is
a quasi-stationary distribution if, for all ¢ > 0 and for all subsets A C Z.,,
one has P, (XK € A|T§™ > t) = v (A), where T§™ is the extinction
time, that is, the smallest ¢ > 0 such that Xt(K) = 0. In other words, a
quasi-stationary distribution plays the role of a stationary distribution when
conditioning upon non-extinction. We refer to [6, 11] for more informations
about quasi-stationary distributions.

When K — +o0, the trajectories of the rescaled process (K71X2K>)t>0
converge in probability, in any fixed time-window, to the solutions of the dif-
ferential equation

dzx

i b(z) — d(x) (1.2)
if the initial condition state is for instance of the form | Kz | for a given xy > 0.
We assume that the functions b and d only vanish at 0, and that

d'(0) — ¥ (0) <0

meaning that the fixed point 0 is repulsive. We also assume that there is a
unique attractive fixed point z, > 0, that is

b(z:) = d(zs) and b'(z.) —d(z4) <O0.

We will give the complete set of assumptions on the functions b and d later on
(see Section 2).

A famous example is the so-called logistic process for which b(z) = Az,
d(x) = z(p + x), where A and p are positive real numbers. We assume that
A > p and we have z, = A — L.

'We denote by Z ., the set of non-negative integers, and by Z., the set of positive integers.



In [5] we obtained the precise asymptotic behavior of the first eigenvalue
of the generator Ly of the process killed at 0, and also of the law of the
extinction time starting from the quasi-stationary distribution (among other
results). Here we go further and obtain the complete spectrum of the generator
of the killed process, in the limit X — +o0. In particular, the knowledge of
the spectral gap allows us to obtain the time of relaxation for the process
conditioned on non-extinction to obey the quasi-stationary distribution.

1.2 Notations for basic function spaces

We denote by
* 9 the space of C*° C-valued functions with compact support on R;
* cqo the space of C-valued sequences with finitely many nonzero values;

* (2 the space of square-summable C-valued sequences equipped with the
standard scalar product.

o L? the space of square-integrable C-valued functions with respect to
Lebesgue measure on R.

We will define several operators on cpg and will consider their closure on 2.
For simplicity, we will use the same notation for an operator and its closure.
As we will see later, there is no ambiguity on the extensions.

1.3 Heuristics

The fundamental object in this paper is the spectrum of the following operator
that we momentarily define on cyg:

(Lxv)(n) =259 (v(n+1) —v(n)) + pii? (v(n — Dy —o(n))  (1.3)

for n € Z.,. The idea is to ‘localize’ this operator either around n = |Kx, |
or n = 1, which corresponds in the dynamical system to the fixed point z, or
the fixed point 0. A natural idea would be to ‘cut’ the operators in order to
differentiate these two dynamics. However the main difficulty is that the two
different pieces involve different scales and different function spaces. Since we
don’t know how to cope with this problem at the level of operators, we work
at the level of the eigenfunctions that we will split on different regions, and
study their asymptotic dependence on K in each region.

To have an idea of the different scales involved in the problem, let us
first study the asymptotic behavior of the birth and death rates. By Taylor
expansion around Kz, we have

)\gf) = Kb(:v*) + (n— Kxy) b’(aj*) + 0O <(n—}l((sc*)2>
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and

w9 = Kd(z.) + (n— Ka,) d (z,) + O (WW) :

K
Taking v (n) = u((n — Kz.)/VK ) with u € 2, we get

(Liv™) (n) = Osu <”—\/§x> o ( \/1? >

OU. f(2) = bla) f" (@) + (V(2,) — d () 2f () (1.4)
is the generator of the Ornstein-Uhlenbeck process on IR which satisfies the
stochastic differential equation dX; = (V' (z.) — d'(x)) Xy dt + /2b(x.) d By,
where (B¢)¢>0 is a one-dimensional Brownian motion. It is well known (see
Remark 3.1) that the spectrum of OU, is —S;, where

where

Sy = (d'(z) =V (22)) Zso (1.5)

(d/(z*)*b/(z*)xQ

in the space L2< %@igm*) e 2b(zx) d:z:).

Now we look at n near 1. By Taylor expansion, we have

AN =n (b’(O) + O (%)) and p) =n (b'(O) + 0O (%)) :
If v € cpo, then we get

01
||LK’U — Qo’UH@ S [(()

where
(Qov)(n) =b'(0)n (v(n+1) —v(n)) +d'(0)n (v(n —1) Lg,s1y — v(n))

which is the generator of a (continuous-time) binary branching process killed
at 0. We shall prove later on (see Theorem 7.1 in Section 7) that, in a suitable
‘weighted’ ¢? space defined below, the spectrum of Qg is —S2 where

Sy = (b'(0) — d'(0)) Zs. (1.6)

The previous observations suggest that the limit of the spectrum of the
generator of the birth-and-death process (X."’);>¢, in an appropriate space,

(d'(0) =¥ (0))Zo | (¥ (24) — d/(24)) Zso.

Notice that all the elements of this set are negative and this is not a disjoint
union in general. The logistic model is an example illustrating this, since
d'(0) —v'(0) = V(xx) — d'(xx) = pu — A, so we will have asymptotic double
eigenvalues in this case.



We will prove that the limit of the spectrum of L is obtained from the
explicit spectra of the above two operators. Notice that one limit is a differ-
ential operator whereas the other one is still a finite-difference operator. We
look for the asymptotics of (a part of) the spectrum of a discrete operator in
terms of the spectrum of a differential operator. This is a reverse approach
with respect to numerical analysis where the spectra of limiting differential
operators are obtained from the knowledge (computation) of the spectrum of
finite-difference operators. See for instance [4].

1.4 Main result
For each K € Z.,, the sequence of numbers

)\<1K> . ..)\<K>1 1

(K) . n— (K) . _

n = W, n Z 2 and Usi =T w® (17)
1 n

M 1

T,

naturally shows up in the study of birth-and-death processes. We will give
below a set of assumptions on the functions b and d, defining the differential
equation (1.2), ensuring that the process reaches 0 in finite time with probabil-
ity one, that the mean-time to extinction is finite, and that the quasi-stationary
distribution exists and is unique.

Let £2(7™)) be the space of C-valued sequences (v;,),>1 such that

Z lv(n) 27 < o0
n>1

This is a Hilbert space when endowed with the scalar product

(vw) (k) = Z o(n)w(n)r.

n>1

From [5, Theorem 3.1], we have the following properties. The operator L
(defined in (1.3)) is closable in £2(7). The closure (which we denote by the
same symbol) is self-adjoint and has a compact resolvent, hence its spectrum is
discrete, composed of simple eigenvalues which are negative real numbers, and
the corresponding eigenvectors are orthogonal. (More precisely, Theorem 3.1
in [5] states that the maximal eigenvalue is simple, but in the proof we actually
show that all eigenvalues are indeed simple.) We normalize these eigenvectors
and we can assume that they are real (since they are defined by a second-
order real recurrence relation whose solution is determined by choosing the
first element). We write

Ly = —pi ™ (1.8)

where we order the eigenvalues —p;K) in decreasing order as j increases. To
emphasize that all operators considered in this paper are negative, we have
decided to write their eigenvalues under the form —p, with p > 0.



As shown in [5], the quasi-stationary distribution exists, is unique, and
given by
U (n)
(W5, L rco
where 1 = (1, 1,...). Note that it also follows from Theorem 3.2 and Lemma
9.3 in [5] that there exists D > 1 such that for all K € Z.,, we have D! <
) < D. Therefore, the Hilbert spaces ¢2(v)) and ¢2(7") are isomorphic.
Let S f(n) := E, <f(XéK))]1{TéK)>t}> (t > 0) be the semigroup of the
killed process, where n € Z., and f € £°°. The following result justifies that
we look for the spectrum of Ly in ¢2(7),

v ({n}) = ,n € Ly 1.9)

PROPOSITION 1.1. The semigroup (S;");>0, defined on coo, extends to a Co-
contraction semigroup on (*(vX)).

We refer to [18] for definitions and properties of Cp-contraction semi-
groups.
PROOF. We follow the argument of Proposition 8.1.8 p. 162 in [3]. Since v*
is a quasi-stationary distribution, for f € cop and ¢ > 0, we have

(K) £12q,,(5) (K) (K)y|2
15 Paver < [ ave ), (1O g0, )
= o / P,

Therefore
(),

o
2 [ fle@uy, t20.

1S5 fll 20y < €7
Since cqp is dense in £2(v%)), we get

(K) P(()K)t
HSt ||ZQ(V(K)) S e 2 ) t 2 0.

This implies that (S{™);>0 extends to a contraction semigroup in ¢2(v%)).
Now, since Pn(XLfK) = m7TéK) > t) = Op,m, as t — 0, then for any f € cqo,
Sém f — [ pointwise, hence by dominated convergence we obtain S]EK) f—=7f
in /2(vX)) as t — 0. The proposition follows from the contraction property
obtained above and the fact that cog is dense in £2(vX)). R

Observe that the same result holds in #(v*) for any 1 < p < 400 (with
a similar proof). In the case p = 2, see also [7], Theorem 5.2.1 for the Cj

property.

Recall from [5] that we also have

()
P (Tg) >t) =e 0 1 t>0



and the mean-time to extinction starting from v is
E, 0 [T5"]
Tx M
o vz (k[ Tefga) (1ro( (29"
= e a b(x.) <\/b(1/1<) _ \/d(l/K)) KH"(x,) VK |

d(1/K) b(1/K)

(See the next section for the definition of /.) In the logistic model this gives
(recall that z, = A — p)

E,u [T"] =

o o)

Thus pi*’ is exponentially small in K, and we also proved in [5] that the
‘spectral gap’ satisfies (see Theorem 3.3 in [5])

This lower bound goes to 0 as K — 400, so it suggests that the spectral gap
could vanish in the limit. Actually, this is not the case, as Corollary 1.3 shows.
As a matter of fact, we can compute explicitly the spectral gap in the limit.

In fact we will fully describe the asymptotics of all eigenvalues, which is
the content of our main theorem. To state it, we need to order S| U S5 to
take care of possible multiplicities. Recall that S; and S have been defined in
(1.5) and (1.6) and that they are positive sequences. This is done through the
definition of a non-decreasing infinite (positive) sequence (7, ),>0. Let 79 = 0.
We construct this sequence recursively as follows.

o If n, € S1ASs, then 7,41 = min {77 e STUSy:n> nn}.

o If n, € S1 NSy, then
o If ,_1 =y, then 1,41 = min{n neSLIUSy > nn}.
o If n,_1 < np, then 0,11 = .

The main result of this paper, whose assumptions will be stated in Section
2, is the following.

THEOREM 1.2 (Convergence of the spectrum).
The spectrum of Ly in £2(70) converges pointwise to (—ny,)n>0 when K tends to
infinity. In other words

KI—IBEQO i =1j, Vi € Zso.



COROLLARY 1.3. When K — +00, the spectral gap p\" — p{* converges to

min {¥'(0) — d'(0), d'(z.) — ' (24) }

EXAMPLES. In the logistic model, we have d'(0) —b'(0) = V' (x4) —d'(x4) = p— A
(asymptotic double eigenvalues), and the spectral gap is equal to A — L.

Another example is the Ayala-Gilpin-Ehrenfeld model [1] defined by b(z) = Az,
d(z) = z(p + 2%) where 0 € (0,1) is a parameter, and X > . In this case,
d0)—b(0) =p—\ 2 = (A—p)o, and V' (z:) — d'(z:) = 0(i — \), so the
spectral gap is O(\ — p).

Yet another example is Smith’s model [17] defined by b(x) = Az /(1 + x), d(x) =
(x(p+x))/(1+x), where X > . One easily findsd' (0)—b'(0) = p— A\, . = A—p,
and b/ (x,)—d' (zs) = (u—=X)/(L+X—p), so the spectral gap is (N— )/ (1+X—p).
A last example is Nisbet-Gurney model [12] defined by b(x) = Aze'=%/¢, d(z) = pz,
where \, i, c > 0 and i < e\. We have d'(0) — b'(0) = p— e\, . = ¢(1 —
log(p/N)), and V' () — d'(z.) = p(log(u/N) — 1). Hence the spectral gap is equal
to 11(1 — log(p/ X))

1.5 Consequences on relaxation times

Recall that the spectral gap is the inverse of the relaxation time to the quasi-
stationary distribution, namely for ¢ € (2(7%)), ¢t > 0 and K € Z., we
have

(1O _pH0Y

(K) —
[0 = . D W), < Wl €A

£2(r(K)

From Corollary 1.3, it turns out that the relaxation time converges to a
finite limit as K tends to infinity.

We can also characterize the decay of correlations for the so-called -
process, namely the birth-and-death process conditioned on survival. Recall
that the ()-process is the irreducible Markov process with state space Z.,,
defined by the semigroup

(K)

1
(K) , __ t (K) (K)
R,™g = e (%) Sy (977[}0 )

0

It satisfies RéK)]l{nzl} = 1{,>1). Denoting by (R;K))T the adjoint operator
to R, the unique invariant distribution m*) of the Q-process, defined by
(Rém)Tm(m = m, is related to v by m*9(g) = v (45" g) where v
has been defined in (1.9). Indeed we have g € £2(m™) if and only if ¥§'g €
2(r#), and

146912

(e, 1) )

HQHEQ(m(K))

Hence, we get the following result.



PROPOSITION 1.4. Let g € (?>(m") and K € Z-,. Then for allt > 0

_(,E)_ (K)
HR1(5K>Q—< ((]K)71>“(K>m(K)(g)H£2(m(K)) < HgHﬁz(m“{))e (p1" " =pg )t.

Furthermore, for g1, g2 € £2(m'™)) and for all t > 0, we have

‘/Rimm - gy dm) —/91 dm<K>/g2 dm

K K
O—pf)e.

< g1l 922y ¢

As before, it follows from Corollary 1.3 that the rate of decay of correlations
converges when K goes to infinity.

1.6 Organization of the paper

The proof of Theorem 1.2 relies on two results stated in Section 3. Theorem
3.5 ensures that the set 57 U S7 is contained in the set of accumulation points
of the eigenvalues of L, when K tends to infinity. More precisely, we will not
work with Ly in £2(7%)), but with the conjugated operator £, on the ‘flat’
Hilbert space 2. The proof is based on the construction of quasi-eigenvectors
and is given in Section 5. The second result is Theorem 3.7 which ensures that
all the previous accumulation points are contained in S; U Sy taking care of
eventual multiplicities. Its proof, given in section 5, relies on two propositions.
The first one (Proposition 4.1) is the splitting of the eigenvectors of Ly into
two dominant parts, one localized near the origin, the other one near | Kz, |.
The second (Proposition 4.5) relies on compactness arguments of each piece
of the previous splitting. Section 6 collects various auxiliary results (some of
more general nature).

Let us emphasize that one of the main difficulties of the proof is that the two
pieces of the spectrum correspond to limiting operators which are obtained at
different scales and live in different function spaces.

2 Standing assumptions

We work under the assumptions of [5] which we recall for convenience. Part
of them were already stated in the introduction.

The functions b,d : R4 — R4+ defining the differential equation (1.2) are
supposed to be such that

b(0) =d(0) =0

and the functions z +— b(x)/z and = — d(z)/z are defined on R, and as-
sumed to be positive, twice differentiable and increasing (in particular the
sequences (\;"),>1 and (uy")p>1 defined in (1.1) are increasing for each
K).

We start by the biologically relevant assumptions:

10



. d'(0) > 0 and b/'(0) > d'(0) (i.e., births prevail at low density).

. There is a unique x, > 0 such that b(z,) = d(x.), so z, is the only
positive fixed point of (1.2).
limg g oo % = 0 (i.e., deaths prevail over births at large densities).

We assume that V' (x,) # d'(z,) (genericity condition). The remaining (tech-
nical) assumptions are the following:

Ml d(@) 1
. ﬂ* Ay < toc and sup,.g <W — 5) < +o0.
5

. The function xz — log % is increasing on R

. The function H : Ry — R defined by H(x) = fi log % ds is three

times differentiable, and sup,cp, (1+2?)|H" ()| < +o0.

The assumptions imply that 0 is a repulsive (or unstable) fixed point of (1.2),
whereas z, is an attractive (or stable) one, that is, V'(z.) < d'(z.). It also
follows that H”(z,) > 0. These assumptions are satisfied for many, if note all,
classical examples. We gave four examples above (see end of Subsection 1.4).

As explained in [5], the above conditions imply (for each K € Z.,) the
following properties (where 74 is defined in (1.7)):

-1 1 . i,
e D > ( %K)Wﬁ{)) = 400, which is a necessary and sufficient condition
for the process to reach 0 in finite time with probability one.

« D s T < 400, which implies finiteness of the mean time to extinc-
tion.

-1 S
e > s (AROTY) D isnil 7" < 400, which is a necessary and suf-
ficient condition for existence and uniqueness of the quasi-stationary
distribution.

We add a last condition to the previous ones, namely

log b logd
i 080 _ oy, losd@) 2.1)

Tr—+00 X Tr—+00 xX
We could avoid it, but it makes our life easier and we don’t have any natural
example which does not satisfy it. As the above examples show (see right after
Corollary 1.3), b and d are usually polynomial or rational functions, so (2.1)

is amply satisfied.

11



3 Proof of Theorem 1.2

3.1 Some useful operators

Instead of working with the operator Ly (defined in (1.3)) on the weighted
Hilbert space ¢*(7), we find more convenient to work on the ‘flat’ Hilbert
space /2. We thus introduce the conjugated operator

L, — (H”‘))%LK (Huo)—%
where I denotes the multiplication operator
O%v(n) = 7v(n)
for v € ¢gg and n € Z.-,. One can check that

(Lxv)(n)

= A v+ 1) + /N i v(n = 1) Ty — (AFO + pi9) v(n)

for n € Z.,. We denote also by L its closure in £2 and by Dom(L) its
domain, and we have
L = —pi " (3.1)

where the eigenvalues —p;.K) are that of L (see (1.8)), and ¢%) = (H(K)) %w(K).
To capture the behavior of the eigenvectors of £ near | Kz, | at scale vK, we
are going to embed ¢? into L2. For this purpose we define for each K € Z.,
the functions

el (z) = K1 ]ll’,(lK)(x), reR, ne€Z,

n

where

—0.5 n+0.5
I = n _«’17*\/%7 - _1"*\/E|:
" VK VK
(K)

The functions e;,") are orthogonal and of norm one in L2. They form a basis
of a sub-Hilbert space % of piecewise constant functions in L?. We define
two maps denoted by Qx and Py as follows:

Qx : 02— L27 Qru(z) = Zu(n) eizK) (z)

n>1

and
Py :L? = (%, Pyf(n)= /f(:z) el (x)dz ,n € Zso. (3.2)

We will use the following properties of Py and Q) stated as two lemmas.

12



LEMMA 3.1. The two maps Py and Qx are continuous. For each K € 7., the
map Q. is a surjective isometry between (% and H;. The map Py is the adjoint of
Q. Moreover

PiQyx =1dpe and QP = P

where P is the orthogonal projection on 7 in L.

The only non trivial point is the continuity of Pj. It follows from the
identity

/fQ(x)dx:
;/f,ﬁm <f(f6)—m111<)’/]w fly)dy > de+ > I<K < 0 f(y)dy>2.

n>1
The proof of the other statements is left to the reader.

LEMMA 3.2. Let f € C1(R) and assume that there exists a > 0 and A > 0 such
that
|f(@)] + [ f'(z)] < Aeelel 4 e R.

Then
(1) limpg 400 Hf - QKPKfHL2 =0.
(i) Tmg qoo |[Pef||,e = || £l 2 -

PROOF. Let us prove (i). We have Qx Py f(x) = (K) feif((;) y)dy

for ( (z )*0-5)/\/>*$* <z < (n( )+0.5)/\Ff:n*. We get from our
hypothesis

Qi P f(x) = f(z) + O(K—%) o—alzl

and the result follows.
We now prove (ii). From the isometric property of (), on the space of piece-
wise functions J7, we get

1P fllz = lQucPic ] 2

and the result follows from (i). W

We now introduce the operator
Lx = QxLx Py

with domain QxDom(Ly) @ ;. It is left to the reader to prove that this
operator is closed (using the relations of Lemma 3.1). Since .Z) when acting
on 7 is conjugated to Ly, we have

(K) (K) ,(K)

13



where <p;K) =Q K(;S;K), and the qb;-K)’s are defined in (3.1). We will prove in the
next proposition that the operator % converges pointwise in L? on a subset
of functions, when K — +o0, to the operator

9, f(x) = (3.3)

2f(x ’w*—’w*z ") — b (24
e S - ib(azl:)( L)+ L)

PROPOSITION 3.3. Let f € C3(R) and assume that there exist a > 0 and A > 0
such that

3
Z ‘f(j)(x)} < Aell zeR.
§=0

Then
Jim [ Zef 3.8 2 = 0.

PROOF. By the assumption made on f, it follows easily that

lim |1y 5 g0g )2y Haf][ 12 = 0.

K—+o0
We have
o) =3 e;“(m)( A a8, / () £(9) dy (3.4)
A(KH ) Linsy / dy — (A9 + pl©) / eif’(y)f(y)dy)-

It follows easily from the assumption made on f and assumption (2.1) that

A L5 00 2y Zic [l 2 = 0

Therefore we only have to consider |z| < (log K)2. Note also that for such
an z, the sum in (3.4) reduces to one element for K large enough, namely
n =n(r) = |[Kz. + VKz +0.5]. For 2 € R, we have

L f(x) = e;:a«)(x) ( n( x)“ e )+1 / SE; W fy)dy
N [ e o) dy

()\“(“) ) / 0 W) (9) dy>

1

(K) (K)
1
N \/ﬁ / (1) < > d
n(z)—1 H n(a: \/? Y

14



~O ) [ e st an).

Now we have

where the error term is uniform in z. Similarly

/6,‘@) () f (y + \/1?) dy
= [ w iy —= [0, £
+ o | ey @) ") dy + o(m)

—Kif <n($)_\/;$*> + K f (T’(x)_\/;m)

. 13K*3f,, <n(aj) - Kx*> +O(K )

VK
)\;K):Kb(%> and ,u(K)—Kd(K)

»Mﬂ

Recall that

hence

MO = Kb(zy) + (n— Kz) V' (z4) + O ((n_;;x*)Q)

and

K

After a tedious but straightforward computation, we obtain that

L f(x) =9, f <7””($)\/}(M> +O(E)

=H.f(z)+O (K—i (log K)4>
and the error term is uniform in |z| < (log K)2. We get

|Lg) 1<qog )2y (L — FHuf) || :O(K‘i(log[()‘?)

and the result follows. W

pi) = Kd(zy) + (n — Kzy) d'(z4) + O ((”‘W) :

15



REMARK 3.1. Let us recall the relationship between the generator of the Ornstein-
Uhlenbeck process (1.4) and the operator (3.3) which is, up to a minus sign and
a shift, the Schridinger operator for the quantum harmonic oscillator. We refer to
e.g. [2, Chapter 3] or [13, Sections 4.4 and 4.9]. In L?, the eigenvalues of H. are
—(d'(@4) =V (@4))1, 0 € Zso, and the corresponding eigenfunctions are

Yn(z) =

1
N
1 (d'(z) —'(2) | " ), 2 d(z.) — V(@)
2nn! 27b(z4) 2b(x.)

where (Hy,)y, is the family of the physicists’ Hermite polynomials defined by

dn
Hy(z) = (—1)"e" "’dmne v
One can check that 3, is conjugated to the generator of the Ornstein-Uhlenbeck pro-
) _ (@ (@) =b (@) 22

cess (1.4) acting on L2< % e 2b(zx) d:v) in the following way:
Wy Ha(tof) = OUS.

In Proposition 3.4 we prove that the operator £, converges pointwise in
22 on ¢qg, when K tends to infinity, to the operator My defined for v € ¢y by

(Mov) (n) = (3.5)
VU (0)d'(0)n (n+1)v(n+1) + /b'(0)d(0)n(n — 1) v(n — 1) L,sy
—n(b ()+d’( )v(n)).

Here again we denote the operator on ¢ and its closure by the same letter.

PROPOSITION 3.4. Letu € cog. Then

lim Lxu = Myu
K—+o0

where My is defined in (3.5).

PrOOF. Follows from the fact that for each fixed n

(K) — p/ ) — d'(0
e =POnand e = d O

16



3.2 Steps of the proof of Theorem 1.2

The proof of Theorem 1.2 relies on the following two theorems whose proofs
are postponed to Section 5. Recall that for any fixed K, the spectrum Sp(Lx)
is discrete, and let

+oo
G: U (p‘(jK))acc
j=0

(K) ) acc

where (pj is the set of accumulation points of (pg-K)) when K — 4-o0.

THEOREM 3.5. We have
S1US, Cc @G

where S1 and Sy are defined in (1.5) and (1.6).
This theorem is proved in Section 5.1.

COROLLARY 3.6. For every fixed j we have

lim sup p;-m < +o00.
K—+o00

PrROOF. We proceed by contradiction. Assume that there exists jo such that

lim sup p'™) = 4-00.

K—+400 Jo

Let jo = min{0 < £ < jo : limsupg ., o pém = +oo}. Hence there exists
a < +oo such that limsupg ., p;-fll = a. By definition of j., there exists a
diverging sequence (K}),>1 such that lim, | p}fp) = +o0. Let p € S1 U5,
such that p > a.

If j < je—1, we have limsup,_, | p;Kp) < limsup,_, o p}f@l
For all j > j., we have liminf, , | p;-K”) > liminf, p;-fp) = +o00. This
implies p ¢ G, contradicting Theorem 3.5. W

<a<op.

THEOREM 3.7. We have
S1USy; OG.

Moreover, for each j € Z, let (Kp)p>1 be a diverging sequence such that

lim pt"? =
p——+0o0 pj P

where p,. is finite by Corollary 3.6. Then
1) If p. € S1AS2 then

.. . (Kp)
i i {57

(Kp)

Pj—1 — Px

)

} > 0. (3.6)

Moreover there are only two cases:

17



(a) If p« € Sy then there exists a diverging sequence of integers (po)¢>1 such that
2
Qx,, qb;Kp‘) L, ©x, where py and p, are such that Hy,pe = —psupx.

(B) If px € Sa then qb;Kp) f—) ¢b«, where p, and ¢, are such that Moo, =
— P P

2) If p. € S1 NSy then we have the following two assertions:

(a) There exists a diverging sequence of integers (p)e>1 such that:

either ZEE]OO p;-iplw =pe o E?oo p;}ipf) = ps.
(b) We have
lim inf min{}pﬁﬁ) — s, )p}f"f — s } =0 (3.7)
and
lim inf maX{’p}i’i) — psls ‘pﬁ”f — ps } > 0. (3.8)

Note that (3.6) means that if p, € S1AS> then —p, is a simple asymptotic
eigenvalue, and either —p, is an eigenvalue of H, if p. € Si, or of My if
px € Sa. In addition, (3.7) and (3.8) mean that if p, € S; N So, then —p, is a
double asymptotic eigenvalue which is an eigenvalue of both I, and M.

PrOOF OF THEOREM 1.2. The proof is recursive. For j = 0 it follows from

[5] that lim g 400 pBK) = 0. Let j > 0 and assume that for ¢/ < j (if any)
limg 400 p = 7. We now prove that limg ;o p;.i)l = nj+1. There are

several cases to consider.

o If n; € S1ASy, we claim that liminf, p;-ffl > nj+1. Otherwise,

by Theorem 3.7 and the recursive hypothesis, there would exist K, —

400 such that p(ipl) — 1x < Mj+1. Since by the recursive hypothesis

J
limg 100 p;.KP ) = 75, we have 7, > n;. From the first statement of
Theorem 3.7 it follows that 1, = 7;. This contradicts 1) of Theorem 3.7.
We now claim that limsup,_, .. p;i)l < nj+1. Otherwise, by Theorem
3.7 and the recursive hypothesis, there would exist K}, — +oo such that
p;ipf — 1s > nj+1. This implies that 1;11 € G, contradicting Theorem
3.5.

Hence, in this case, limy_, o p}i)l = Mj+1-
e If n; € 51 NSy (which implies 7 > 0), we have two cases:

- If nj_1 = n;, then we claim that liminf,_, P;‘T1 > 1nj+1. Other-
wise, by the same argument as before, there would exist K, — 400
(Kp)

such that Pif1 = M contradicting (3.8) in Theorem 3.7.

We now claim that limsup, ., ., P;‘[-& < 1nj4+1. Otherwise, as be-
fore, this would contradict that ;1 € G.

. . . () _
Hence, in this case, limg ;o Pjy1 = Mj+1-

18



- If n;_1 < n;, then we obviously have liminf, | p;i)l > n;. If
limsup, p;f_)l > 1), then there exists K, — +oo such that
p;-i”l) — 1% > 1), contradicting (3.7) in Theorem 3.7.

Hence, in this case, limy_, 1 p;i)l = Nj+1.

Therefore we limg_, P;i)l = 7j+1. As announced, the proof of Theorem
1.2 follows recursively.

4 Properties of the eigenvectors

In this section, we prove that, for K large enough, the eigenvectors qﬁé-K) of
Ly (see (3.1)) are functions whose representation is sketched in the figure.
An eigenvector is ‘negligible’ outside the union of a neighborhood of 1, and a
neighborhood of Kz,. It is ‘non-negligible’ in at least one of these neighbor-
hoods.

AN
K
4
O(VK)
«—>
<>
o(1)
0= 1 1 1 ) U k >
7’29 ’I”ILZ ﬁr ﬁdKl.’l:* n

Figure: Schematic representation of one of the three possible ‘shapes’ of the eigen-
vectors (;ﬁé.K) (scales are not respected).

To separate the different behaviors, we introduce a ‘potential’ defined by

Val(K) = A 4 ulf — MO — A Ly (D)
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Forn > 0, let ng(K,n) and ng(K, 1) be integers such that [ng (K, n), nq(K, n)]
is the maximal interval containing Kz, /2 such that

inf Va(K) —n) > 0.
TLE[[ng(KJ]),nd(Kun)]]( )

Let ny(x) = L(log K)QJ and n,(K) = LKI‘* K3 log KJ. It follows from our
assumptions that for K large enough

Kux,
1< ng(K,m) < ng(i) < == < () < na(K, 1)-

PROPOSITION 4.1. For anyn > 0, there exists a,, > 0, and K,) > 0 such that, if
K > K, and if ¢ is of norm one in (* and satisfies

Lxdp=—pod where p<n

then

wp o] < eI
ne(K)<n<n,(K)

PROOF. Let us consider an eigenvector ¢ of norm one in ¢2 satisfying L ¢ =
—p .

If p(ng(K,n)) # 0, define 7y (K,n) = ng(K,n) and if needed, change the
sign of ¢ such that ¢(ng(K,n)) > 0. If ¢(ng(K,n)) = 0, define ng(K,n) =
ng(K,n) + 1 and if needed, change the sign of ¢ such that ¢(ng(K,7)) > 0
(note that ¢(ng(K,n)) = ¢(ng(K,n)+ 1) = 0 contradicts the normalization
since ¢ solves a second-order recurrence relation). Then, changing the defini-
tion of ng(K,n) if necessary, we can assume that ¢(ng(K,7n)) > 0.

Thanks to the local maximum-minimum principle (see Proposition A.2)
we only have four cases.

1) ¢(ng(K,n)+1) > ¢(ng(K,n)) and ¢(n) is increasing on [ng (K, 1), nq(K, n)].

2) ¢(ng(K,n)+1) < ¢p(ng(K,n)) and ¢(n) is decreasing and stays nonnega-
tive on [ng(K,n), na(K, n)].

3) ¢(ng(K,n)+1) < ¢(ng(K,n)) and ¢(n) has a minimum in the interval
Nmin(K) in [ng(K,n)—1, nq(K, n)—1] and ¢(nmin(k)) > 0. Note that ¢(n)
is decreasing on [ng (K, 1), nmin(K)] and increasing on [nmin(K), ng(K, 1)].

4) ¢(n) is decreasing on [ng(K,n), nq(K, n)] and ¢(nq(K, n)) < 0.

We first observe that since b/'(0) > d’(0) we have

(K)  (K)
. An—l Hn
lim sup

K
T [ ] M b = = N
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b'(0) &'(0)

S0 1 d0) - O a0

We also observe that there exists ¢ > 0 such that for K large enough, and any
n € [ny(K), nq(K, n)], we have

(K), (K)
An P 1
<

= c(n—Kzy)2"'
M+ == A e I e

The result follows by inspecting the monotonicity in the different cases and
using the last part of Proposition (A.1). W

PROPOSITION 4.2. Let ¢ € Dom(Ly) C (2 of norm 1, satisfying

Lyp=—po
for some real p. Then there exist C(¢) > 0 and an integer v(¢) such that for all
n > r(¢) we have
[p(n)] < C(g)27".
Moreover, (¢(1))y>r() does not vanish and is of constant sign.

PrOOF. It follows from our hypothesis that for any K > 1 there exists an
integer ro(k) such that, for all n > ry(k), we have

)\%K)IUI(K)
+1
v “ <

1
SN N I

0<

We can assume that (¢(n)), is a sequence of real numbers and ¢(ro(x)) > 0.
We start by proving that (¢(n)), is positive and decreasing for n > ry(K).
There are only the following four possibilities.

1. ¢(ro(k) + 1) > ¢(ro(x)). It follows from Proposition A.3 that ¢ is in-
creasing for n > 7y(k), contradicting that ¢ has norm 1.

2. ¢(ro(K) + 1) < ¢(ro(K)), and there exists r’ > ry(K) such that ¢(r') < 0
and ¢ decreases on [ro(k),r’], and ¢ > 0 on [ro(k),7” — 1]. Then
by Proposition A.3, ¢ is decreasing for n > 7/, contradicting that ¢ is
normalized.

3. ¢(ro(x) + 1) < ¢(ro(K)), and there exists 7’ > ro(K) such that ¢(r') <0
and ¢ is not monotonous on [ry(k),r'], and ¢ > 0 on [ro(x),r" — 1].
Then there exists "/ < r’ such that ¢ is decreasing on [ro(k), "], and
such that ¢(r” + 1) > ¢(r"). If ¢(r”) > 0, then we are in case 1. If
é(r" +1) > 0, it follows from Proposition A.3 that ¢ is increasing for
n > r” + 1, contradicting that ¢ has norm 1. If ¢(+"" + 1) = ¢(r"") =0
then ¢ is the null sequence as solution of a second order equation, which
leads to a contradiction.
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4. ¢(ro(x) + 1) < ¢(ro(K)), ¢ > 0. Suppose that there exists a local min-
imum at 7/ (finite). Then if ¢(r"”" + 1) > ¢(r"’) > 0, we are in case
1. If (""" + 1) > ¢(r"") = 0, then it follows from Proposition A.3 that
¢ is increasing for n > 7"’ 4+ 1, contradicting that ¢ has norm 1. If
o(r" + 1) = ¢(r") = 0 then ¢ is the null sequence, which leads to a
contradiction.

Therefore ¢ is strictly positive and monotone decreasing. The result then
follows by using the last part of Proposition A.1.
|

Let us now prove two key lemmas.

LEMMA 4.3. Let 9" € Dom(Ly) be a normalized sequence such that
£K¢<K> — _p<K)¢(K)'
Assume that there exists a diverging sequence (Kp) such that

0< lim p%» = p, < 400
p——+o00

and

limsup || "7 L. <m0} |2 > 0.
p—>+00

Then p, € S and there exists a diverging subsequence (Kpé)e>1 such that the limit

lim ¢Ere) = ¢,

{—+00
exists in 02, ||« ||z > 0 and ¢ is an eigenvector of Mo with eigenvalue —p..

PROOF. Let (p;);>1 be a diverging sequence of integers such that

R R TN P b sup [P 1 <y ay o

For each i, we define a normalized sequences in ¢2 by

pi(n) = :
|6 Fr) 1. <y (i, 03| 2

It is easy to verify using Proposition 4.1 that ¢); € Dom(Mj) and
O(1)(log Ky, )? e~ 1% K
R N .

| Mo + pEPepi 2 <

The first result follows from Proposition B.1 since the right-hand side goes to
zero.

The second result follows from Proposition B.2 since the spectrum of My
is discrete and simple by Theorem 7.1.
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LEMMA 4.4. Let $) € Dom (L) be a normalized sequence such that
LidF) = —pF) g,
Let us assume that there exists a diverging subsequence (Kp)p>1 such that

0< lim p(KP) = Py < 400
p—r+00

and
lim H¢(Kp) ]1{‘2”7"(Kp)}H82 > 0.

p—+oo

Then p, € Sy and there exists a diverging subsequence of integers (pg)s>1 such that

Kp
Qu 00

1 —
40 | Queyy 6570 |[o

exists in L2, |[1).|| 12 = 1, and 1) is an eigenvector of H, with eigenvalue —p..
PROOF. We define for each p a normalized sequence in ¢ by

¢ (n) Ly (10,1

(BKp) () = ’
PP (n) Hqs(Kp) ﬂ{.zn,.(Kp)}Hﬁ

It is easy to verify using Proposition 4.1 that 1)(X») € Dom (Lk,) and

K, e—a(log Kp)?

H['Kplﬁ(Kp) + p(Kp)¢(Kp)"€2 <0(1) (4.2)

|65 L >l

From Proposition 4.2 it follows that, for each p, 1)(5?) decays exponentially fast
at infinity. We apply Proposition 6.6, Lemma 6.2, Lemma 6.3, and Theorem
6.1 to conclude that there exists a diverging sequence of integers (p;);>1 such
that the sequence of functions QKPiw(KPi) converges in L? to a normalized
function ..

Let u € 2. We have from (4.2)

lim <PKpiuu EKpi w(Kpi) + p(Kpi) w(Kpi)>£2 =0

i——+00

hence, since PKpi u € Dom (E Kpi)’ we obtain

lim <£Kpi PKpiua sz)(Kpi)>52 = —Px l—lg-noo <PKP¢U’ ¢(Kpi)>€2'

i—~400

From the isometric property of () (see Lemma 3.1) we get

lim (Qk,,Lx,, Pr,u, Qr, ")),

i——+00
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) K,
= —p lim (Qu,, P, u, Que, ) 1o
In other words

. K . K,
eglfoo <$eru’ QKP@¢( pz)>L2 = TP« él}inoo <QKWPKWU7 QKpéw( pg)>L2'

Using the convergence in L? of (QKPg¢(KpZ))E>1 to 1), Proposition 3.3, and
Lemma 3.2, we get -

<}C*ua'¢*>L2 = —p*<u, ¢*>L27 Vu € 2.

Since 7 is dense in the domain of the self-adjoint operator J(,, we conclude
that 1), is an eigenvector of J(,. W

REMARK 4.1. Another method to separate the eigenvectors in their dominant compo-
nents is to use the so-called IMS localization formula. See for example [15]. In [10)],
convergence of the spectrum of a discrete operator to the spectrum of a continuous one
was investigated using discrete pseudo-differential calculus.

We now state three key propositions.

PROPOSITION 4.5. Let j be fixed and let (Kp)p>1 be a diverging sequence such
that

Let qﬁEKp) be a normalized eigenvector of Ly, with eigenvalue —p;Kp). Then there
exists an infinite sequence of integers (p;)i>1 such that

2
. ¢§-Kpi) L cnp(xy )y £, O, where ¢, is either the null sequence or an eigen-
vector of Mo with eigenvalue —p., namely p, € Sa.

2
* Qk,, ¢§-Kpi) Li s, (xp)) EaN Vs, Where . is either the null function or an
eigenvector of I, with eigenvalue —p., namely p, € S.

Moreover, ||¢*|]§2 + ”SD*||%2 =1

PrOOF. We have either

. (Kp)
lim H% P <ng(,))

p——+00 £2

or there exists an infinite sequence of integers (p;);>1 such that

> 0.

tim (6" 1 a6,

1—>+00 02
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The first statement of the proposition follows from Lemma 4.3 applied to the
diverging sequence (K, );>1. Similarly, either

EQ

tim |68 1 2,0y

p—r+o0

or there exists an infinite sequence of integers (p;);>1 such that

> 0.
02

. (Kp;)
Jim {05100 0,0
The second statement of the proposition follows from Lemma 4.4 applied to
the diverging sequence (K, );>1. The last statement follows from the normal-

ization QSSKP ) and Proposition 4.1. W

PROPOSITION 4.6. Let p € So. Then there exists a normalized vector v, €
Dom(Ly) with eigenvalue —p such that

Kl_l)r_ri_loo | Lxvp + pupllez = 0.

Moreover

oL oyl =0

PROOF. Let v, be a normalized eigenvector corresponding to the eigenvalue
—p for the operator My in the space ¢?. From the assumptions we have for
n < [log K|

log K
A0 =80+ 0 (5] a0+ 0

log K
% )

Since Moyv, + pv, = 0, the reader can easily check that

log K
1Lxvp + pvpllezzoonp,log k1) < O ( I ) :

Now using Theorem 7.1 we have

i) = v (50 " p(n)

where P is a certain polynomial. Hence there exists ¢, > 0 such that for any

n € Lo, [vp(n)| < ¢y (%)Z. By (2.1) there exists ¢ > 0 such b(z) +d(z) <

ce” for all z > 0. This implies that A%KP) < cK, e"/Ep and /A;—LKP) < cK, e/ Kp,
The reader can easily check that

d’(O)) KN

1£5vp + pVpllezzsoniiog K J+1,00)) < O(1) <b’(0)

25



It follows that v, € Dom(Lx), and (remember that &'(0) > d’(0))

Kl_lg_loo | Lxvp + pvpllez = 0.

The other statement follows at once from the exponential decay of v. W

PROPOSITION 4.7. Let p € S1. Then there exists a sequence of normalized vectors
(V5 1 C 02 such that ¢S € Dom(Ly), and

Jm €t 4 g =0

Moreover
m [ 4570 <n, el 2 = 0.

PROOF. Let ¢, be a real normalized eigenvector of H, corresponding to the
eigenvalue —p (in L?). Since @, is a (rescaled) Hermite function (see [2] or
Remark 3.1), it satisfies the hypothesis of Proposition 3.3, hence

Am (| Lo, + oyl 2 =0
Using Lemma 3.2 we get

lim “gKSDp +p QKPKSOPHLQ =0

K—+o00
and then
A |Lx Pipp + p Picop| o = 0
and
A [Pyl = 1.

The first statement follows by letting 15" (n) = (Px,)(n), where Py is de-
fined in (3.2). The other statement follows from an exponential bound on the
decay of ¢,. B

5 Proofs of Theorems 3.5 and 3.7

5.1 Proof of Theorem 3.5

The proof of Theorem 3.5 is an immediate consequence of the following two
propositions.

PROPOSITION 5.1. We have So C G.
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PROOF. The proof is by contradiction. Let p € Sy and assume p ¢ G. Then
there exists 7 > 0 be such that for K large enough, [p—n,p+n|NG = 0.
It follows from Proposition 4.6 that there exists a normalized vector v in (2,
such that v € Dom(Lx), and

KETM |Lxv + pvll2 = 0.

Therefore, using Proposition B.1, we obtain a contradiction. This ends the
proof. W

PROPOSITION 5.2. We have S1 C G.

PROOF. The proof is by contradiction. Let p € S; and assume p ¢ G. Then
there exists 7 > 0 such that, for K large enough, [p —n,p+ 1] NG = (. It
follows from Proposition 4.7 that there exists a sequence of normalized vectors
() 1 C £2 such that ™ € Dom(Ly) and

e+ %] =

Therefore, using Proposition B.1, we obtain a contradiction. This ends the
proof. W

5.2 Proof of Theorem 3.7

The first statement follows at once from Proposition 4.5.
The proof of (3.6) is by contradiction. Assume
b =o.

Assume p, € S1\S2 and let (p¢) be a diverging sequence of positive integers
Py

such that pEK”) — px and pgfl ) p« (where i = j or i = j — 1). Let quK”)
be a normalized eigenvector of L, corresponding to the eigenvalue — png).

We define qﬁgj:’f‘ ) similarly. We claim that

lim inf min{‘p;.’jrpl) — el ‘P;Iipl) ~

p——+00

= 0.
02

thupH(bi pe ]l{'<"e(er)}
f—+00

Otherwise Proposition 4.5 would imply that p, € Si, a contradiction. By
Proposition 4.1 we have

= 1.

(Kop,)
O " L (|

lim ‘
{—~+00
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This implies 1-a).
By a similar argument, we have

Kpy)

(
Pit1 Lisnnrp)y|[,, = 1

lim ‘
{—~+00

K?

By Proposition 4.5, there exists a diverging sequence of integers (¢,.) such that

— 0

HQK% <¢EK%) ]1{.>nr(xph)}) — @],

where ¢, € Dom(%H,) is a normalized eigenfunction of }, corresponding to
the eigenvalue —p,. By Proposition 4.5 again, there exists a diverging sequence
of integers (75)s>1 such that

(Ko, )

where ¢/, € Dom(%,) is a normalized eigenfunction of 3, corresponding to

)

. . (K, Koy, ) .9 .
the eigenvalue —p.. Since ¢; ™ and ¢; | " are orthogonal in %, it follows
from the previous estimates that

By Lemma 3.1 we have

(Fap,. ) vy,

<QK%(¢i Vs (rpy,, ) QKp,, <¢zfl ]1{~>nr<z<pg,\s>})>L2 T O

In other words, (¢, ¢, )2 = 0. This is a contradiction since p, and ¢/, are
normalized eigenfunctions of J{, corresponding to the same eigenvalue —p,
which is simple.

The case p, € S5\ S is similar (using again Proposition 4.5), so it is left
to the reader.

Let us now assume that p, € S1NS>. We now prove (3.7) by contradiction.
So we assume that there exists 6 > 0 such that

} > 0.

Since p, € S and from Proposition 4.7, there exists a sequence of normalized
vectors (wp* ”))p >1 C £? such that w(KP € Dom(Ly,) for all p, and

(Kp)

Pi — P«

9

lim inf mln{‘ Kp)
p—+00 p]+1 P+

lim ‘EKP — p*w(KP

p—+0o0

(Kp)

We also have (since P;

— py) that

=0.
02

lim

p——+00

)['Kp (Kp) _ png) gi(p)
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For each p, let qb;.Kp ) be a normalized eigenvector of Ly, corresponding to the

eigenvalue —p§K” ), By using Proposition B.2 with A = Ly, we deduce that

there exists a sequence of real numbers (6,), such that

- 0. (5.1)

lim le(){(p) _ e19p¢§Kp) p

p——+o00

Since p, € S2 and from Proposition 4.6, there exists a normalized vector
vp, € Dom(Ly,) for all p such that

pEI}—lOO ||‘C’vap* + p*/Up* ”EQ = 0

We also have

lim ‘,CKPUP* + png)Up _

p——+o00

*

02
By using Proposition B.2 with A = L, we deduce that there exists a sequence
of real numbers (6;,),>1 such that

=0. (5.2)

i0;, ¢(AKP)
J 02

lim Hv —e
p—+0o0 P

Moreover, from Propositions 4.7 and 4.6, it follows that

. K .
Jlim |55 <y, =0 and tim [op Lol = 0

which implies (using Proposition 4.1) that

: (Kp) —
pEI-fI—lOO</l/)p* 7Up*> - 0
This is a contradiction with (5.1) and (5.2). Finally, we prove (3.8) by con-
tradiction. So we assume that there exists a diverging sequence of integers
(pe)e>1 such that
(Kpy)

lim ‘ 4 —
L—r+00 p]Jrl P

(Kpy) _

+ ‘pjfl ps| = 0.

We now apply Proposition 4.5 with j and K,,. Hence there exists a diverging
sequence of integers ({5)s>1 such that

(Kpy,) 2
¢j o ]l{'<”£(Kpgs)} — Px1

and o, ) ,
L
QKMS ¢j " ]l{'znr(szs)} 7 Pl

and we have [|¢. 1% + [|¢s1]|7. = 1.
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We now apply Proposition 4.5 with j — 1 and K),, . Hence there exists a
diverging sequence of integers (s, ),>1 such that

(KP,ST) 02
651" U<y, )} — Be2

and o )
Pes, L2
QK,,,_,ST ¢j,1/ ]l{.zn,,.(x%r)} 7 Px2
and we have [[¢.2]7 + [[@xall72 = 1.
We now apply Proposition 4.5 with j + 1 and K, . Hence there exists a
diverging sequence of integers (r;),>1 such that

KPZSTq) 02
d’j—i—l ]l{. <n@(erSTq ) ¢*,3

and
(ersrq ) L2
QK%TQ ¢j+1 ]1{'2nT(KPZs b} T Px,3
Tq

and we have H@g\@ + HSD*,3”%2 =1.

(Kpp, ) (Kpy, ) (Kp, )
M . ¢ Tq . Tq Tq
oreover, since i—1 s

g @it are pairwise orthogonal, we
have
<¢*,mv ¢*,m’>g2 + <‘P*,ma ‘P*,m’>L2 =0, Vm# m'. (5.3)

The linear subspace of /2 spanned by Ox1, P« 2, @ 3 is of dimension at most
one because they are eigenvectors of My for the same simple eigenvalue —p.
The linear subspace of L? spanned by ¢, 1, ¢« 2, ¢« 3 is of dimension at most
one because they are eigenfunctions of J{, for the same simple eigenvalue —p..
Therefore the subspace of /2 @ L? spanned by the three vectors (¢s1,¥x1),
(D42, ¢x.2), (P43, 943) is of dimension at most two. However, these three
vectors are normalized and pairwise orthogonal by (5.3). We thus arrive at a
contradiction.

6 Fréchet-Kolmogorov-Riesz compactness criterion and
Dirichlet form

6.1 Fréchet-Kolmogorov-Riesz compactness criterion

We recall the Fréchet-Kolmogorov-Riesz compactness criterion in L.

THEOREM 6.1. Let (f,), be a normalized sequence in L? such that the following
two conditions are satisfied.

(i) There exists g > O such that there exists a function R(€) > 0 on (0, eo) such
that
Sup/ }fp(:ﬁ)‘zdx <e.
P J{lz|>R(e)}
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(i) There exits a positive function « on |0, 1] satisfying

lim « =0
Lim (y)

and such that for any p and y € |—1, 1]
1o +9) = fyfa) e < ally).

Then one can extract from (f,), a convergent subsequence in L.

We refer to Remark 5 on page 387 in [9]. The following lemmas provide
expressions for R(¢) and a(y) in our case. Recall that the potential V,,(K)
and n,(K) have been defined in Section 4 (see (4.1)).

LEMMA 6.2. Let C > 0. Let Fc, i be the set of normalized sequences (¢p(n)),, in
0% such that (n) = 0 for anyn < n,(K) and

“+oo

Y (1VVu(K)))é*(n) < C.

n=n,(K)

Then, for any ¢ € Fc K, the function v — Qx¢(x) satisfies condition (i) in
Theorem 6.1 with

Jorany0 < e < 1.

PROOF. We are going to prove that there exist Ryp > 1 and Ky > 4 such that
for any K > Ky, any R > Ry and any ¢ € ¢

/ (QK(;S(:L’))Zda: < g
{|2|>R} R

We observe that

rd(x 2d:1:_ 2(n).
/“DR}(Q 6(z))*de < 3 #*(n)

{n:ln—Kz«|>RVEK—1}

Our aim is to prove that the right-hand side of the above inequality is bounded
above by C'/R.

It follows from the hypotheses on \j;"’ and s} that there exist constants
Ko>4,1>Cy>0,I" > 0and ¢ > 0, such that for any K > K there exists
an integer I'K' > m,(x) > 2 Kz, (hence of order K) such that ,uq(lK) > (n for

any n > my(x) and

mx(K) myx(K)
(IVVW(K)) 6°(n) > Co K1 D (n— Kx.)?¢%(n)
n=n,(K) n=n,(K)
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—+00 “+o0

Y AVVLE) () =Cy > ng’(n).

n=ms(K)+1 n=ms«(K)+1

These estimates imply the following bounds for any integer L > 0

KC
E ¢*(n) < o L2 Lip<m. )y
(e (K)<n<m. (K0} n{ln—Kz.|>L}
C
2
< .
Z ¢°(n) = Co(L V my(x))

{n>m.(K)}N{|In—Kz«|>L}

We now replace L by R+/K — 1 in the above estimates.
Fix K > 4. We distinguish two cases according to the value of R.

1) 1< R< m*(K)/\/E. Then VK — 1 < L < myx) < I'K. Since L =
RVK —1 > RVK/2 (because K > 4), we have

Z ¢2(n)<4c+ C < 4C+CF<Q

~ R? Comy (k) — CQR2 02R2 ~ R

{In—Kz«|>R/K-1}
if R>Cy'(4+ ).
2) R> m*(k')/\/[?. Then L > m. (k). We get

> PSgrmemSh
{In—Kz.|>RVE—-1} 2 RCyvVK

if C3K > 4.
We define Ko = 5 + 402_2 and Ry =1+ 02_1 (4 + I'). The result follows. B

LEMMA 6.3. Let (")) ez, be a sequence of normalized elements of (* such that
¢ (n) =0 forn < n,.(K). Assume also that there exists C' > 0 such that

+00
2
sup 4 Y AR (090 (n+ 1) — 690 (n))
K>1 St

400
+ ) (1VVn(K))(¢<K)(n))2}§C.
)

n=n,(K

Then there exits a positive constant C' such that for any |h| < 1 and any K > 1
[ (@@ + ) - Quo ™ (@] de < alh) = Ch].

Hence, for any (') satisfying the above assumptions, the sequence of functions
(Qx @) >1 satisfies condition ii) in Theorem 6.1 with

a(y) = Cy.
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PROOF. It is enough to consider the case 0 < h < 1. We first consider the
case 0 < h < 1/v/K. We have

[1Qud @) -Queo ™ @)]*de = /I o Q™ (1) Qud™ ()] dr
q>1""4

Since

Qud™ (@) = K7 Y 6" (q) 1,00 (x)

q>1

and since the intervals Iy’ are disjoint, we get
[ [@uo™(w+ 1) - Quo (@)

_ K3 (K)

= K> Z/I(K) <<f> (@) 1,00 (z + h)

g=17"4

+ (b(K)(q + 1) ]lléfi (.%' + h) — ¢(K)(q) ]lléK) (x))Qda:

=33 [ (6@ Lo+ + (6% + D) e+ 1)

q=1""4
+ (699(0)* 10 (@) = 2 (6% (@) 11, (@)1 0 (& + )

= 26%9(q) (0 + 1)1 0 ()11 (2 + 1) )

g+1
Let us consider each term separately. Since [ 0 de =K _%, we have
q
1 2 2
Y [, 0@ =Y 6w)”
g>1"1a g>1

Then we have

K3 Z /I(K) (¢(K)(C,I))2 ]llém (z+ h)dx

qg>1""4a
L+L,x*,h
:K%Z (¢<K)(q))2 VE D 2VE d
=1 TR e
— (1-hK?) Y (6%(e)?

We also have

K% Z/I(K) (Qb(K)(q—F 1))2]11(§K)(x+h) da

+1
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K23 (¢ (g+1))*h

q>1
—Kih PRI
qg>1
Similarly
_9K3 Z/(K ¢(K) ]11((1K)(;r)]1[q(x+h)d$
q>1
1 2
—2(1- hKQ) Z (6" (q))
q=1

and

—2K2 Z/(K) ¢(K) ¢<K>(q+1)]l K)( )]lI(K)(CC-i-h)d

+1
q>1 ?

= —2hK2 Y ()¢ (g +1).

q>1

We rewrite the last term as follows:

—2hVE Y ") 6" (g +1)

q>1

= 2hVE Y (6%@) +20VE Y 6%(q) (6% (q + 1) — 67 (q)).

q=>1 g1

Summing up, we get

JACRECEE QK¢<K> (2))*da
=5 (60@)*+ (1 -hVE) Y (6%9@) + K2R Y (6(q))?

q>1 q>1 q>1

—2(1-hVE) 3 (69()? - 20 VE S (69(q))°

q=>1 q=>1

+2hVE Y 0" (q) (6" (g +1) — 6" (q))

q>1

=20 VK Y 6"(q) (6" (g +1) — 6" (q)).

q>1

It follows from Cauchy-Schwarz inequality that
[ [@uo™ (w4 1) - Qs (@)
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=

< 2nVEK (Z (" (g +1) = 6"(q ) 1611,

q>1
From the assumption of the lemma and using that

(K)  (K)

inf AP S K
nZL%J—l n Fn+1

for some ¢ > 0 independent of K, we get
1/2
C
K (Z (6" (a+1) - ¢<K><q>)2> <\
q=>1

Therefore, since the sequence ¢*) is normalized, we get

[ [@u6 @+ )~ Quo ™ (@] o < 21 \E

We now consider the case 1 > h > 1/V/K. Let r = |hW/K| and b/ = h —
r/v/K. Note that 0 < b/ < 1/+/K. We have

/ (0™ (& + h) — Q™ ()] 2da

- [[5 (0w (o 22) 0o )

J=1

T Quo™ (a: + % + h/) — Qo™ (x " 7“>] QdI

r—1

) , 2
< 2/ ; (Qqu(K) (z n ‘H\/El) — Q™ (m + \/‘%)) ] da
/ [Qwﬁ“‘) (:c +— \F + h’) — Qro™ (x + \/%)] de.

We have already estimated the last term. For the first term we now observe
(K)

that el;") <CL‘ + ﬁ) = e,,;(z). Therefore we can write
r—1 . .
(K) Jj+1 (K) J >
) +i =) - + ==

r—1
(Z«W ) 1(2) = 36 ) sf‘z@:))

n

Jj=1
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<
|
—

(Z e(m ¢<K> p—I—] + 1) gb(K)(p—l—j))

r—1

ef(x) > (8 +i+1)— 0" (p+7)).
=1

1

J

I
=[]

This implies

S0, (54 It w0 (ps I\ 4
[ Do+ 7)o (or )| o
—Z Z (@ +7+1) =" (p+17))

<r Zi (@ (p+j+1) =6 +7)°

p j=1

=23 (6" +1) - ()" <

p

7“2

K

~|Q

as we have seen before. We observe that rz/K < h? < h since h < 1, and the
result follows by taking C' = 2\/? + % u

6.2 Dirichlet form for the operator £,

We need an estimate on the decay at infinity of the eigenfunctions. Note that
since the eigenvalues are real, we can assume that the eigenfunctions are real.

PROPOSITION 6.4. If ¢ is a normalized sequence in Dom(L ) decaying exponen-
tially fast at infinity, then

- <¢7 EK¢>
+oo +00

= 3 MO 60+ 1) = 0m)*+ D ValK)s(m)? — SN g0 0(1)2
n=1 n=1

PrOOF. For any fixed positive integer /N we have

N

> 6(n) (Lxo)(n)

n=1
N
= Al é(n) d(n+1 +Z\/ A 19 3(n) p(n — 1)
n=1
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(AR + 1) d(n)

|
ol - i
M=~

3
Il
—

N
1
My (0(n) = d(n +1))2 4 5 3 (/N 6(n)?
n=1

N N
1 () (1) 2 1 ) 09 2
+2nz::1 Al d(n+1)% — 2;2\/%1% (6(n) — p(n — 1))

+
N | —
M=

N
1
VA o) + 5 > N i o(n = 1)?

=2

[|
N

(N 1) ot

M-

ol

Al ((n) — p(n + 1))

i
I

WE

(3 2 = N~ N Ly ) 60

1
ANHN 1 (V) = 6(N +1))% + S /A i 6(N +1)?
1
= VAR 61 = S\ AN i (V).

Since ¢ € Dom (L), the functions ¢ 1(,,< yy and L (¢1 <) converge to ¢,
respectively £ ¢, in /> when N tends to infinity. The result follows by letting
N tend to infinity, since V,,(K) is positive for n large enough, and since A}’

and 11y are exponential in IV and ¢ decays exponentially fast by assumption.
[

i
I

— N

LEMMA 6.5. There exists & > 0 such that for all K € Z-,, inf, > V,,(K) > —¢.

. K . . .
PROOF. Since ("), is an increasing sequence we have

Va(K) = X9 il — (N — (N0 il 1y

M+ NG

It follows from the general assumptions (see Section 2) that there exists > 1
such that all K € Z., and for all n > KZ we have

A AN 5
—my Sy oand G5 <
0l =5 uo =4
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For all n > K we have V,,(K) > 0. When n < Kz, we write

M+ A 09

( )\7(1K)_ //117(1[())2 )\%K) w0 "

+ (:un Mn+1)
: SR
Now observe that

1
) _ W):K'd<n>—d(n+ >>>_ sup  d'().

The rest of the proof is obvious. W

PROPOSITION 6.6. Let § > 0 and ¢ be a real normalized sequence in Dom (L)
decaying exponentially fast, such that || L + p(]ﬁHe2 < 6. Then

+oo
AU (b(n+ 1) — ¢(n))* + Zu V ValK)) (6(n))*

=1
<1+p+§+5+7MXK(m

The proof is left to the reader. It is a direct consequence of Proposition
6.4 and Lemma 6.5.

7 Spectral theory of M,
Recall that (see (3.5))

(Mov)(n) =
VI (0)d'(0)n (n+1)v(n+1) +/(0) n(n—1uvmn—1)1e
—n(b'(O)er'( ))v(n)).

THEOREM 7.1. The operator My defined on coo is symmetric for the scalar product
of (2. We denote by M its closure which is selfadjoint and bounded above. The
spectrum of My is discrete, all eigenvalues are simple, and we have

Sp(Mo) = (d'(0) — b'(0))Z-o = —Ss.

The eigenvector vy, corresponding to the eigenvalue (d'(0)—b'(0))m, wherem € Z.,
is given (up to a multiplicative factor) by

) =i (h) " Pt 71)
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where Py, is the monic orthogonal polynomial of degree m — 1 associated with the

measure q on 2., defined by
_ (20N
qg(n)=n <b’(0)> . (7.2)

PROOF. It is easy to verify that My is a symmetric operator on cgp, which is
bounded above since from '(0) > d’(0), we have

inf (n (¥'(0) + d'(0)) — /¥ (0) n(n+1) — /' (0) n(n—1) > —oo.

It is easy to verify that M is closable and we denote by M its closure.
Since for any m € Z.,, the sequence v,,,(n) defined by (7.1) decays expo-
nentially fast with n, it is easy to verify that v,, € Dom(Mj). Note also that if
m # m/, vy, is orthogonal to v, in 2,
By a direct computation one checks that Mov; = (d'(0) — '(0))v; (recall
that Py (n) = 1). It is left to the reader to check that

o) = i (40 @i

where Q,, is a polynomial in n in which the coefficient of n™~! is

m (d'(0) — ¥'(0)).

To check that the v, are eigenvectors, we use a recursive argument. Assume
that m > 2andfor1 <k <m-1

Movk =k (d,(O) — b/(O)) Vi-

We can write
Moy, = m (d'(0) — b'(0)) vy + 71m

()

where R,, is a polynomial in n of degree at most m — 2. Therefore

with

T € Span{vl, R vm_l}.

From our recursive assumption, the symmetry of My, and the orthogonality
of the vy (following from the orthogonality of the Pj), we get that for any
1<k<m-1

0 = (vk, MoUm )2 = (Vg T )2
Therefore r,,, = 0. Hence Mov,, = m (d'(0) — ¥'(0)) v, and we can proceed
with the recursion.
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We now prove that the v, form a basis of /2. Assume the contrary, namely
there exists u € £2 of norm one such that for any m

“+oo

> a(n) vm(n) = 0.

n=1

We observe that the sequence

- 35 (49)' o

belongs to ¢?(q), with ¢ defined in (7.2). Therefore our assumption on u
implies that w is orthogonal to all the polynomials in ¢?(q). Let us show
that the set of polynomials is dense in £2(g). It is sufficient to prove that the
measure ¢ is the solution of a determinate moment problem, see [8, Corollary
2.50, p. 30]. Following [16, Proposition 1.5, p. 88], it is enough to prove that
the moments of order m, denoted by ~,, of g, satisfy the following property:
there exists C' > 0 such that, for any m € Z.,,

Vm = ionm“ <Z,/((8))>n <C™ml.

n=1

The proof is left to the reader. Therefore the set of all polynomials is dense
in ¢2(g) implying w = 0 and we get a contradiction with the existence of a u
nonzero orthogonal to all the v, in ¢2. Therefore, the v,,’s form a basis of (2.

We now observe that M is bounded above. The proof is similar to that
of Proposition 6.4 and left to the reader. Since the vy,,’s form a basis of 2, for
any B > 0 we have ker(Mg — B) = {0}. Hence My is self adjoint (see for
instance [14, Prop. 3.9, p. 43]) and the spectrum is given by

Sp(Mo) = (&(0) — 1'(0)) Z-

This ends the proof. W

A Local maximum principle and consequences thereof

We will state and prove a maximum/minimum principle in a form which is
well suited for our purposes. We start with a proposition giving elementary
inequalities following from the order on the real line.

PrROPOSITION A.l. Assumea > 0,c >0 andb > a+ c. Let u,w € R.
Ifv > 0 is such that au+ cw — bv > 0, then v < max{u,w}.
Ifv < 0 is such that au+ cw — bv < 0, then v > min{u, w}.
Moreover, if u > v > w are such that au+ cw —bv > 0, then v < biu.

—C
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PROOF. If v >0Owehave 0 < (b—a—c)v<a(u—v)+c(w—wv)leads to a
contradiction if v > max{u, w}. The case v < 0 is similar. The last statement
is trivial since bv < au+cw <au-+cv. B

PROPOSITION A.2. Let 1 < ny < ng be integers such ny > ny + 1. Let (cv,) be
a finite sequence of strictly positive real numbers defined forn, —1,... no. Let (By)
be a finite sequence of strictly positive real numbers defined for ny, ..., na. Let (uy,)
be a finite sequence of real numbers defined forny — 1,...,ny + 1. Assume that, for
alln1 < n < ng, we have B, > oy + 1.

If apup 1 + apn—1un—1 — Bpuyn > 0, then the sequence (uy,,) has no positive local
maxima forn € {n1 + 1,...,n2 — 1}. Moreover, if there exists some u,, > 0 then
the maximum is attained only at the boundary, that is, on the set {ni,ns}.

If aptng1 + ap—1un—1 — Bpun < 0, then the sequence (uy,) has no positive local
minima forn € {n1 + 1,...,n2 — 1}, and if there exists some u, < O then the
minimum is attained only at the boundary, that is, on the set {ni,na}.

PrOOF. It follows from Proposition A.1. W

PROPOSITION A.3. Let 1 < ny < ng be integers such no > ny + 1. Let (cv,) be
a finite sequence of strictly positive real numbers defined forny —1,... no. Let (Br)
be a finite sequence of strictly positive real numbers defined forny, ... ,no. Let (uy)
be a finite sequence of real numbers defined forny — 1, ... ,no + 1. Assume that, for
all ny < n < no, we have B, > oy + 1.

If apupy1 + apn—1un—1 — Bpn > 0, Up,+1 > 0 and up, 11 > Up,, then the
sequence (uy,) is increasing.

If apupy1 + ap—1un—1 — Bpun < 0, Up,+1 < 0 and up, 11 < Up,, then the
sequence (uy,) is decreasing.

Finally, if (uy,) is a positive sequence then there cannot be two local (positive) minima
separated by a distance larger than one.

ProOF. It follows recursively from Proposition A.1. W

B Quasi-eigenvalues and quasi-eigenvectors of self-adjoint
operators

The following results are used in the proofs of Lemma 4.3, Propositions 5.1
and 5.2, Theorem 3.7

PROPOSITION B.1. Let A be a self-adjoint operator in a Hilbert space 7€ with
domain Dom(A). Assume there exists u € Dom(A) of norm 1, w € R and e > 0
such that

|Au —wul| <e.
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Then
Sp(A) N[w —e,w+e] #0.

PROOF. We will assume that w ¢ Sp(A), otherwise the result is trivial. The
proof is then by contradiction. If R, denotes the resolvent of A at w, we have

u=—R,(Au—wu)

hence
1 <ellRyll-

The result follows from the estimate (a direct consequence of the spectral
decomposition)

1
[Boll < 7%
d(w, Sp(4))
where d denotes the Euclidean distance on the real line. If Sp(A) N [w—¢€,w+
€] = 0, since Sp(A) is closed, then

0= d(w,Sp(A)) > €

and we get

€
1<-<1
-9

which is a contradiction. W

PROPOSITION B.2. Let A be a self-adjoint operator in a Hilbert space 7€ with
domain Dom(A). Assume there exists u € Dom(A) of norm 1, w € R and e > 0
such that

|Au —wul| <e.

Assume A has discrete spectrum with eigenvalues of multiplicity one, and let 6 > 0
denote the minimum distance between two consecutive eigenvalues. Then if e < 6
there is a A € Sp(A) with a normalized eigenvector e such that |w — \| < € and

2€
§—¢€

lu—el <

PrROOF. We will denote by P, the one-dimensional spectral projector of A
corresponding to z € Sp(A).

Since € < ¢, using Proposition B.1 we conclude that there is only one
eigenvalue of A in [w — €¢,w + €] and we denote by A this eigenvalue and by é
one of the corresponding eigenvectors (they all differ only by a phase factor).
Let

v=wu— Au.

Since u = Py\u + (Id — Py)u, we get from the spectral decomposition

A(Ild — Py)u—w(Id — P\)u = (Id — P\)v.
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This implies that
€
§—¢€

Since P, u is proportional to €, we can write

I(Id = Py) ul| <

u=peé+ (Id— P\ u

with § € C. Since u and é are of norm one, and é and (Id — P))u are
orthogonal, we get
L= 8P+ | (1d — Py) u?

which implies
€

5 —
Let 3 = | 3| exp(if), we define ¢ = ¢! ¢, and the result follows. W

1>|p[=1-
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