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We like to attribute a number of electrons to spatial domains (atoms, bonds, . . . ). However,

as a rule, the number of electrons in a spatial domain is not a sharp number. We thus

study probabilities for having any number of electrons (between 0 and the total number of

electrons in the system) in a given spatial domain. We show that by choosing a domain

that maximizes a chosen probability (or is close to it), one obtains higher probabilities for

chemically relevant regions.

The probability to have a given electronic arrangement, – for example, by attributing a

number of electrons to an atomic shell – can be low. It remains so even in the "best" case,

i.e, if the spatial domain is chosen to maximize the chosen probability. In other words, the

number of electrons in a spatial region significantly fluctuates.

The freedom of choosing the number of electrons we are interested in shows that a

"chemical" question is not always well-posed. We show it using as an example the KrF2

molecule.
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1

ar
X

iv
:2

20
5.

09
36

5v
1 

 [
ph

ys
ic

s.
ch

em
-p

h]
  1

9 
M

ay
 2

02
2



CONTENTS

I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

A Chemical introduction to the subject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

B Quantum mechanical introduction to the subject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II How numbers are obtained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

A Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1 Choosing the relevant quantities to be obtained . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Computing P(n,Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Sensitivity to the choice of the wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

B Spatial domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1 MPDs are not basins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Known spatial regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Shape optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Partial optimization of the domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Describing the spatial domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Multiplicity of MPDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

III What the numbers tell us: comforting and disturbing results . . . . . . . . . . . . . . . . . . . . . . . . . 15

A Comforting results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1 Conceptual advantage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Producing reasonable numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Different structures, similar MPDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Selecting the relevant region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 The effect of the Pauli principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B Disturbing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1 Low probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2



2 Strong fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Choosing the relevant object of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

IV Questions of attitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1 Three practical questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Do we need MPDs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

V Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A Mathematical definition of the Maximum Probability Domains . . . . . . . . . . . . . . . . . . . . . . 27

B Details of the underlying computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3



Friday 20th May, 2022 at 00:32

I. INTRODUCTION

A. Chemical introduction to the subject

When speaking about chemical bonding, it is useful to make a distinction between effects that are

discussed at the collective (molecular, crystalline) level, and those associated to a fragment. For

example, the energy lowering obtained when atoms form a molecule is providing information that

we qualify here as collective. However, there are many quantities that are obtained when looking

at pairs of atoms forming a molecule, for example:

• lines drawn connecting atoms, e.g, C-H, since the 19th century.

• the energy attributed to a pair of them (e.g., that of the CC or CH bonds in saturated hydro-

carbons),

• nearly invariant distances between types of atoms, e.g., the length of the CH bond,

• patterns to understand spectra, e.g., attributed to the CH stretching frequency,

• . . .

In this paper we are interested in describing grouping of electrons in some spatial domain, Ω. We

use quantum mechanical calculations, and start with the Schrödinger equation. The Hamiltonian

gives a natural partitioning, and it is reasonable to use it (see, e.g.1,2), as well as an energy parti-

tioning resulting from it. In many cases the physical origin of the formation of groups is the Pauli

principle. This directs us toward analyzing the wave function. Due to the complicated structure

of the wave function, its reduction to three-dimensional objects is desired. It is worth mentioning

in this direction the work of Artmann3 and that of Daudel4. Using the electron density, ρ , as pro-

posed by Bader for the Quantum Theory of Atoms in Molecules (QTAIM)5 had, and still has a

great success. The Pauli principle is hidden in the density. It is made more explicit6 in the Electron

Localization Function (ELF) of Becke and Edgecombe7. The Maximum Probability Domains,
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MPDs8 (or their simplified variants), of interest in this paper, originate from Daudel’s idea of par-

titioning 3D space (into so-called "loges"), using the wave function squared. However, instead of

making a partition of the whole molecular (or crystalline) space, with MPDs one concentrates on

specific spatial regions, thus reducing the computational effort, and avoiding the propagation of

errors produced in a region different from that of interest.

B. Quantum mechanical introduction to the subject

We speak about having two electrons in a bond, eight electrons in the valence shell of Ne, atomic

charges, and so on. The operator that gives the number of electrons in a spatial domain, Ω, is

N̂(Ω) =
∫

Ω

ρ̂(ri− r)dr (1)

where

ρ̂(r) =
N

∑
i=1

δ (ri− r) (2)

is the density operator, N the total number of electrons in the system, δ is Dirac’s δ function, ri are

the positions of the electrons, and r refers to an arbitrary position in the three-dimensional space.

The eigenfunctions of the Hamiltonian operator are not, in general, eigenfunctions of N̂Ω.9 As a

result, we cannot specify a given number of electrons in Ω. However, we can specify a probability

to have a given number of electrons in Ω.

In this paper we choose a number of electrons, n. It is provided by chemical intuition, e.g., of

having eight electrons in the valence shell of the Ne atom. We are interested in the spatial region

that maximizes the probability of having that chosen number of electrons in it. This is a Maximum

Probability Domain (MPD, see appendix A for details). Note that the probabilities of finding an

arbitrary number of particles can be obtained for any spatial region, Ω, for example in the basins of

the electron density as provided by QTAIM5, or those of the electron localization function, ELF.10

Note that an error produced by an approximation to a MPD produces only second order errors in

the probabilities, because the probability is maximal for an MPD.

As with localized orbitals one may consider electron pairs, and obtain spatial regions that can be

associated to one or more nuclei (lone pairs, two-center bonds, three-center-bonds, dots). However,

the number of electrons considered for an MPD, n, can be adapted to the question of interest. For
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example, one may want to search for a given ion in a crystal and choose n equal to the number of

electrons in that ion.11 Furthermore, one may consider spatially disconnected regions, for example

when considering spin couplings of electrons on different centers.

The definition of the probabilities and the MPDs use the wave functions squared. Thus, there is no

restriction to ground states. The same definitions can be applied to time-dependent processes.12

One can consider probabilities for multiple domains, e.g., establish connections to resonant struc-

tures.13,14 It is possible to define a joint probability (of having nA electrons in ΩA, and nB electrons

in ΩB), or a conditional probability (of having nA electrons in ΩA given that there are nB electrons

in ΩB).4,15–18

II. HOW NUMBERS ARE OBTAINED

A. Probabilities

1. Choosing the relevant quantities to be obtained

Traditionally, one looks at the population of a spatial region. We can see from Eq. 1 that the

expectation value of the number of particles in the domain Ω is just its population,

〈Ψ|N̂(Ω)|Ψ〉=
∫

Ω

ρ(r)dr (3)

Ψ is the wave function of the system, ρ its one-particle density, and N the number of electrons in

the system. Being a mean value, we can express it in terms of probabilities.

µ(Ω) = 〈Ψ|N̂(Ω)|Ψ〉=
N

∑
n=0

nP(n,Ω) (4)

P(n,Ω) is the probability to have n electrons in Ω. Its expression is given in appendix A.

In the same way, we can express the variance,

σ
2(Ω) =

N

∑
n=0

(n−µ)2P(n,Ω) (5)

It is tempting to indicate just µ and σ . If the distribution of probabilities were normal, µ and

σ would be sufficient to recover all information about the distribution of probabilities. However,
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FIG. 1. Probability distribution for the atomic (QTAIM) basins of O and H in the water molecule (dots) and

the normal distributions (dashed lines) with the same µ and σ .10 The results for H are in red, for O in blue.

the distribution is not normal. As n is always an integer, we do not have a continuous probability

distribution, so it cannot be a normal distribution.

To avoid this argument, we can argue that we use only a Gaussian function of a real n, but read it

only at integer values of n to obtain the values of the probabilities. In many cases, this is expected to

work well (cf. Ref.19). However, there is also another aspect to consider with normal distributions:

a normal probability distribution function is non-zero for arguments that extend to negative values

and to values larger than N. This is physically impossible. We should restrict the reading on the

Gaussian curve only to values n = 0,1, . . . ,N. Let us take as a numerical example, where Ω is an

atomic basin (QTAIM) in the water molecule, Fig 1.10 Choosing just points for integer values on

a normal distribution gives the absurd interpretation that there is a significant probability (≈ 0.2)

to have -1 electron in the H atom basin. Furthermore, there is a similar probability to have 11

electrons in the O atom basin (10 being present in the water molecule).

Fig. 1 can induce us to believe that the probability to find n electrons in Ω could be read (up to

a precision of about 0.1) at admissible values of a normal probability distribution function with
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the same mean and variance as provided by the physical probability distribution . However, let

us consider now the dissociation of the H2 molecule. The covalent (ground state) dissociation

produces for Ω being the half space containing a H atom, P(n= 1,Ω)= 1, yielding µ = 1,σ = 0. In

this case, indicating µ and σ is sufficient. A different situation arises when we consider a state that

dissociates into the ionic form, H+ . . . H−↔H− . . . H+. We get P(n= 0,Ω) =P(n= 2,Ω) = 1/2,

P(n = 1) = 0. The mean (the population) is the same as for the covalent case, µ = 1, while the

variance is different, σ2 = 1/2. A Gaussian form with the mean at µ = 1 yields a maximum (0.56)

at n = 1, where P is 0, and too low estimates at n = 0,2, namely, 0.21 instead of 0.5.

In statistics, more information from probability distributions is summarized by introducing higher

order (standardized) moments, e.g the third power of (n−µ) (skewness) or the fourth power (kur-

tosis). However, if we look at the data, we see that the number of cases where the probabilities

P(n,Ω) significantly differs from zero is small, and already contains all the relevant information.

Thus, we may use directly the significant P(n,Ω) instead of using statistical summaries. If needed,

the latter can be easily obtained once the P(n,Ω) are known, as, for example, in Eqs. (4) and (5).

2. Computing P(n,Ω)

For Slater determinants (as obtained from Hartree-Fock or Kohn-Sham calculations), P(n,Ω) can

be computed from the overlap integrals

Si j(Ω) =
∫

Ω

φi(r)φ j(r)dr (6)

φi,φ j are the orbitals present in the Slater determinant.8,20 Note that here the integration is not

performed over R3, but over Ω ⊂ R3. For large systems, it is convenient to use localized orbitals

in order to neglect Si j between distant orbitals (that do not overlap in Ω).

Multi-determinant wave functions can be also used.16,21,22 Quantum Monte Carlo calculations

are very flexible in the choice of wave functions and are convenient for estimating P(n,Ω).23

Moreover, computing the probabilities with samples drawn from a Monte Carlo sampling of the

squared wave function is particularly simple: one simply counts the number of electrons present

in Ω for each configuration generated during the calculations. The ratio between the number of

configurations presenting n electrons in Ω and the total number of configurations is an estimator of

P(n,Ω). As a rule, the number of configurations needed to obtain a reasonable probability is much
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lower than that for obtaining a reasonable energy simply because the number of digits needed is

much lower for probabilities.

3. Sensitivity to the choice of the wave function

All the interpretative methods raise the question whether the refinement of the method (such that

the change of the basis set) significantly changes the conclusions. The simplest wave function

capturing the physics should be sufficient. In the case we discuss, the Pauli principle is already

described by a single determinant wave function, so methods like Hartree-Fock or the Kohn-Sham

method should be sufficient in most cases. For example, it is known that the density can be reason-

ably obtained with relatively low level methods (defining atomic basins in QTAIM). As a counter-

example, consider |∇ρ|/ρ . It is a good detector of the shell structure in atoms, but its topology is

sensitive to the (Gaussian) basis set used.24

In many cases, using a correlated wave function does not change significantly the probabilities.

MPDs show often little sensitivity to the wave function used – as long as the Pauli principle is

the underlying cause of the property studied. Nevertheless, there are cases (of near-degeneracy)

when correlation effects are felt, and multi-determinant wave functions that describe correctly the

situation should be better used. For example, at dissociation, the H2 molecule yields at Hartree-

Fock level P(n = 1,Ω) = 1/2, where Ω is the half-space defined by a plane perpendicular to the

H-H axis, at the midpoint between the nuclei. Correlation effects can be seen also at equilibrium

distance. For example, let us consider the F2 molecule. We divide again the space between the

two atoms by choosing a plane perpendicular to the molecular axis, at equal distance from the

two nuclei. For the correlated wave function, we obtain for Ω corresponding to the half-space

P(n = 9) = 0.61, P(n = 8) = P(n = 10) = 0.19, while from the Hartree-Fock we find a higher

importance of the ionic functions, P(n = 9) = 0.47, P(n = 8) = P(n = 10) = 0.25.

Details concerning the wave functions used below can be found in appendix B. Some of the wave

functions used are at Hartree-Fock level, some can be considered quite accurate. We do not expect

qualitative changes in our discussion by further improvement of the wave function.
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B. Spatial domains

1. MPDs are not basins

When using ρ , or ELF one has functions defined in 3D. The spatial regions are obtained by con-

structing basins.5,25 To obtain MPDs one directly constructs the spatial regions, by choosing to

maximize the probability to have n electrons in it.

2. Known spatial regions

There are limiting cases where MPDs are known.

• The probability to have all N electrons in Ω is maximal when Ω is the whole space. We are

sure that all electrons are in it, P = 1.

• When the volume of Ω is vanishing, we know that there are no electrons in it. In this case,

P→ 1.

• Spatial regions can be equivalent by symmetry. If we have determined the MPD for one of

the elements that are equivalent by symmetry, we can obtain all the others by performing

symmetry operations.

• If we have determined the MPD for a given n, Ωn, the MPD for N − n electrons is the

remaining space; P(n,Ωn) = P(N−n,R3\Ωn).

3. Shape optimization

Algorithms to deform Ω to maximize the probability exist (see, e.g., 20 and 26). Such (shape-

optimization) algorithms even allow having spatial regions that are not connected. One starts with

a given spatial domain, Ω, and computes P(n,Ω). Ω is slightly deformed to increase the P(n,Ω),

until the latter is maximized. Unfortunately, there are some drawbacks.

• The programs to compute the MPDs are not widely distributed.
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• The algorithms are computationally demanding, in spite of the fact that Ω has to be consid-

ered in a restricted region of space.

• For algorithms based on quantum Monte Carlo sampling, there are difficulties when the

number of configurations is low at the separation surface or Ω, introducing some uncertainty.

One may treat the last two problems by using smooth boundaries instead of having sharp bound-

aries. The smoothing functions can depend on parameters that could be optimized directly. One

should keep in mind that smoothing the borders can lower the probabilities.18 At first, this may

seem counter-intuitive. To understand it, one can imagine smoothing the boundaries of the MPD

for n electrons, Ωn, as mixing to some degree spatial regions for which P(n,Ω) is lower.

4. Partial optimization of the domain

Recall that – when we are close to the maximizing domain, Ωn – the errors in P(n,Ω) are only of

second order in the change between Ω and Ωn. Thus, instead of smoothing the boundaries, we can

stop before reaching the full optimization of Ω.18

One way to do it is to define specific shapes, and optimize a reduced number of parameters. Let us

give some examples of such incomplete optimization.

• In a molecule, the atomic core is not identical to the spherical one obtained for the isolated

atom. However, we can assume that it can transferred from the atom. In all cases treated so

far, the difference observed is at most in the second decimal of the probabilities.

• One can define points in space that are used to define "centers" around which the MPDs are

constructed as Voronoi cells. The positions of the centers can be varied, in order to maximize

the probabilities. More flexibility may be gained by modifying the definition of distances,

e.g., by introducing weights.

• Often, one can use a good guess for MPDs, e.g., ELF basins.

Let us take as an example the construction of domains in the H2O molecule. We first determine

the core domain, by maximizing the probability to have 2 electrons within a sphere around the
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FIG. 2. Spatial domains that maximize the probability for a domain associated to the OH bond electron pair

(orange), or the O lone pair (brown), by excluding a region associated to the O core, and by defining Voronoi

cells with moving centers. The positions of the nuclei are indicated by small spheres (red: O, white: one of

the H atoms, the other being hidden behind the orange surface).

O nucleus. For a radius of 0.36 bohr, we obtain the maximal probability 0.73. We choose four

points; two are in the plane defined by the plane of the nuclei, two are in the plane perpendicular

to the previous one. For example, we may start with a tetrahedron having two vertices on the H

nuclei, and the O nucleus in the center. The centers define Voronoi cells. We further exclude the

core domain, and compute the probability of having 2 electrons in one of the regions containing a

H atom. We now change the positions of the points, respecting the symmetry of the molecule, to

maximize the probability. The maximum is reached with P = 0.45. We can repeat this procedure

for maximizing the probability of having two electrons in the region that corresponds to one of

the lone pairs (one of the centers in the plane perpendicular to the HOH plane). The maximum is

reached with P = 0.41. The probabilities obtained this way do not differ by more than 0.01 from

those obtained after full optimization. The domains obtained are shown in Fig. 2.

It is also interesting to consider several spatial regions, e.g., for analyzing statistical correlations

between them15–17 or electrons distributed over disconnected spatial regions.27 A problem that ap-
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pears when considering joint probabilities is that they are lower than that of the individual ones.

Recall that for independent events, the probability of the joint event is the product of probabili-

ties; as the probabilities are between 0 and 1, their product is lower than each of the individual

probabilities. In this context, it is more reasonable to consider conditional probabilities, e.g., the

probability to have nA electrons in ΩA given that there are nB electrons in ΩB
4,15,17,18,

PA|B =
PA∩B

PB
. (7)

5. Describing the spatial domains

Of course, the spatial extension of the MPD can be graphically shown, and this is consistent with

the pictorial attitude existing in chemistry. Some numbers can also be used to describe them when

the parametrization of the domain is simple. For example, the core region of the Ne atom can be

represented by a sphere of radius r maximizing the probability of having two electrons, and the

valence region is the complement. The probability is maximal for r ≈ 0.27 bohr. Similarly, for

diatomic molecules a single number is sufficient to describe the position of the plane perpendicular

to the molecular axis, which defines the boundary between the two atomic domains.

6. Multiplicity of MPDs

For a given molecule, the MPDs are defined by indicating a number n of electrons in them, and

are obtained by optimization of the spatial domain. The latter process can lead to several solutions

(several local maxima may exist). In this respect, the MPDs behave in a way similar to localized

orbitals: equivalent solutions exist.

There are trivial cases. For example, if we search in the H2O molecule for a MPD for n = 2

electrons, we can find a domain corresponding to the core, or to any of the OH bonds, or any of

the two lone pairs. Note that some of these solutions have chemically different significance, e.g.,

core vs lone pairs. Other solutions may be equivalent by symmetry e.g., the MPDs corresponding

to the two OH bonds.

Notice the analogy to localized orbitals. These also can lower the symmetry, and equivalent so-

lution exist. A simple example is that of the π orbitals in benzene, where one has three localized
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orbitals for a six-fold axis.

Sometimes one needs a moment of reflection to discover this effect. For example, in trans-HSiSiH

one has three electron pairs connected to the two Si atoms. However, the system is invariant under

the inversion operation (r→ −r) that is lost once a set three MPDs are found; the symmetry

operation produces another equivalent set.23

In general, we expect a displacement of the MPD to lower the probability associated to it. For

example, transforming the MPD into another Ω by inversion through the position of the C nucleus

lowers the probability from 0.55 to 0.36. However, an infinite set of equivalent solutions can

be produced by symmetry. This also presents an analogy to localized molecular orbitals.28,29

For example, in the HCCH molecule, we can find a banana bond between the two C atoms, but

cylindrical symmetry dictates that any rotation around the molecular axis yields an equivalent

solution. The same type of situation appears in atoms, e.g., the Ne atom. When searching for a

pair of electrons we will find a domain avoiding the core region and resembling to an sp3 hybrid,

pointing into an arbitrary direction. However, any rotation with the center on the Ne nucleus

produces an equivalent MPD. In the uniform electron gas, any translation produces equivalent

MPDs. One expects that in metals deformations of the MPD have little effect on the probability. A

study of the Kronig-Penney model gives a hint in this direction.27

Methods like ELF give in such cases solutions that average out the effect of different solutions:

one gets a single bonding region for the CC bond in acetylene, a valence shell for the Ne atom, a

constant value through the uniform electron gas. However, in the case of HSiSiH discussed above,

this "averaging out" produces four basins. This is disturbing, because there are only three bonds.23

In the case of MPDs, one can consider larger groups, e.g., n = 6 electrons for the triple CC bond

in HCCH, or n = 8 electrons for the valence shell of Ne.
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III. WHAT THE NUMBERS TELL US: COMFORTING AND DISTURBING RESULTS

A. Comforting results

1. Conceptual advantage

The MPDs are simple to explain, applicable to simple or complicated wave functions. As the

number of electrons in a spatial domain is user-defined, one is not compelled to study a given

object. For example, one can use MPDs to find electron pairs, bonding regions in diamond, as with

ELF30, or to find ions in crystals, as with QTAIM11. In many instances it gives results that are

consistent with those obtained with other methods, such as QTAIM or ELF. This can be seen, for

example when looking at crystals in rock salt structure (when recognizing ions)11, or at crystals

with diamond structure (for covalent bonds)30. This is very encouraging, taking into account the

wide success of QTAIM and ELF.

2. Producing reasonable numbers

We are used to look at populations (as defined in Eqs 3,4). While numbers obtained with different

approaches can slightly differ, there is some consensus about what we should expect from some

populations: that of "standard" bonds should be close to 2, that of atomic shells, etc.

The population cannot be used to define a spatial region; one cannot define atomic shells by

requesting that the number of electrons integrate to a specified number. For example, we can

find in Be an infinity of spherical shells, between rmin ∈ (0,rcore) and rmax ∈ (rcore,∞), where

rcore ≈ 1 bohr, just requesting that the integral of the density between rmin and rmax equals two.

One may ask whether all methods give equivalent results. For example, it would not be worth

computing the MPD if ELF and the Laplacian of the density would give the same result. Very

often, the MPDs are close to other spatial regions, e.g., the ELF basins when searching for regions

characterizing electron pairs. However, it is known that the shell structure of atoms is not always

correctly reproduced by the Laplacian of the density; for example, the last shell of the Zn atom is

merged with the penultimate shell.5 ELF separates them, but the population of the valence shell

is 2.2 instead of 2.31 With MPDs, the difference between the expected population of the valence
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shell and that obtained is at the second decimal, 1.96 with the Hartree-Fock wave function. (This

is also roughly the accuracy we expect for the data discussed in this article.) The last shell is also

separated in atoms like Nb, or Mb yielding in these cases a population of 1.0.8.

In molecules like CH4 or H2O, MPDs define regions of space that are conventionally attributed to

the bonding or the lone pairs. The populations are very close to the expected number, 2. Even

when the electrons are "crowded", like in the N2 molecule, the population is not too far from 2 (it

is 2.2).

There can be also qualitative differences, between, say, ELF and MPD results, in particular when

several alternative classical bonding situations exist23. Differences may appear because ELF is

producing spatial domains that respect symmetry, e.g., the spherical shells in atoms, while there

may be several ways MPDs can be produced. In this respect, MPDs resemble localized orbitals.

3. Different structures, similar MPDs

Fig. 3 shows MPDs for C2H2 and Si2H2. Some of the MPDs are not shown for clarity; they can

be easily obtained by symmetry operations. We know that the most stable structure of C2H2 is

linear, while for Si2H2 we have a "butterfly" structure32. With MPDs, however, we get a different

perspective. In both cases, we find three electron pairs between the heavy atoms, and one electron

pair pointing out from the other heavy atom. In C2H2, the first three correspond to the three

"banana" bonds, and the last to the CH bond. In Si2H2, the first three correspond to the two three-

center SiHSi bonds, and one SiSi bond, while the latter corresponds to a lone pair. It is as if electron

pairs like a tetrahedral arrangement, and nuclei arrange to fit into it. The probabilities are 0.4 for

the bent bond regions (CC and SiSi), and 0.5 for the regions corresponding to the other electron

pairs. Apparently there is an extra localization provided by the protons.
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FIG. 3. MPDs in acetylene C2H2, top, and Si2H2, bottom. The MPDs containing the H nuclei are silver-

colored; one of the triple banana bond MPDs in C2H2 is shown in purple; the lone pair of Si is shown dark

blue while the bent Si-Si bond MPD is shown in red.
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4. Selecting the relevant region
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FIG. 4. Probability to have 2 electrons in the lower (or upper) half-space (blue), or left (or right) half-space

(red) as function of the deformation of the rectangular arrangement of the nuclei; on the abscissa the ratio

of the sides of the rectangle.

During a chemical reaction MPDs evolve. Let us consider, for example, the potential energy

surface of the following reaction

H − H
...

...
...

...

H − H

−→
H − H

| |

H − H

−→
H . . . . . . H

| |

H . . . . . . H

(8)

For a rectangular arrangement of the nuclei, we divide the space symmetrically into a region con-

taining the upper two H nuclei, Ωup, and one containing the lower two H nuclei, Ωdown. We can

also divide it into a left and right region (Ωleft,Ωright). The probability to find two electrons for the

region where the H nuclei are closer to each other is higher than that for the other division. For

the first structure indicated above on the left, we have P(n = 2,Ωup) = P(n = 2,Ωdown) > P(n =

2,Ωleft) = P(n = 2,Ωright) while for the structure shown on the right, P(n = 2,Ωup) = P(n =

18



2,Ωdown) < P(n = 2,Ωleft) = P(n = 2,Ωright) The transition between the two "best" choices oc-

curs at the square arrangement. The evolution of probabilities is shown in figure 4. It shows that

passing through the square region can be associated with a change of the chemical description.

5. The effect of the Pauli principle

P(n,Ω) can be significantly larger than that obtained using a binomial distribution,

Pind(n, p) =
N!

n!(N−n)!
pn(1− p)N−n (9)

This distribution is obtained when considering that each of the N electrons would have the proba-

bility p to be in Ω. For some choices of n and Ω,

P(n,Ωn)> max
p

Pind(n, p)

i.e., the wave function produces a larger probability than the largest that could be produced by

statistically independent particles. The main reason behind it is the Pauli principle.

Let us consider as an example the Be atom. We separate it into two regions, an inner sphere,

corresponding to the core, and the rest of the space, corresponding to valence. All interpretative

models give the sphere a radius of≈1 bohr. Fig. 5 shows the probability distribution obtained when

making a core/valence separation with the MPDs. It is compared with that would be obtained for

independent particles, namely that obtained with a binomial distribution (producing the highest

possible outcome for 2 electrons in each of the regions, p = 1/2). One clearly sees a higher

probability of having 2 electrons in each of the shells when using the Hartree-Fock wave function,

that satisfies the Pauli principle.

B. Disturbing results

In addition to the potential of providing "chemical" answers using quantum mechanical calcula-

tions, the more detailed character given by the probability distributions raises also some questions.
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FIG. 5. Probability distribution for the MPD corresponding to the valence shell of Be (full circles) compared

to that of independent particles (empty circles).

1. Low probabilities

When we define a spatial domain, Ω ∈ R3, quantum mechanics tells us that electrons can cross its

limits. Even when the average number of electrons in the region corresponds to our expectation,

we know that electrons can get into the domain, or out of the domain. In most cases, there is a

non-negligible probability to find a number of electrons different from the chemically expected

one. Let us recall the procedure used. When constructing an MPD we consider P(n = n,Ω)

where n corresponds to chemical intuition, and find Ωn, the region that maximizes P(n,Ω). For

example, choosing n = 2 we can find in the methane molecule a region for a CH bond, that gives

P(n = 2,Ω2). Although this is the best (highest) number we can get for the probability, we find

numerically, even for good wave functions, that it is only slightly above 1/2. This means that

quantum mechanical fluctuations induce almost the same probability to have a smaller, or a larger

number of electrons in this spatial domain. The dominating contribution comes from having n±1

electrons in Ωn.

In the water molecule, the probability to have two electrons in the lone pair (or the OH bond) is
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even smaller than 1/2 (the probability to have a number of electrons <2, or >2 is larger than that of

having just 2 electrons in it). Nevertheless, the population of the MPD is close to 2, because the

probability to have n < 2, electrons, or n > 2 are nearly equal.

However, the Slater determinant can be built from orbitals having nodes in the same spatial domain.

When we cut out a spatial region, say, a spherical shell in an atom, it is possible to different orbitals

to coexist. For example, the 3d orbitals can penetrate the region mainly occupied by the 4s orbitals,

and this can explain increasing fluctuations between the M and N shells in Zn. Let us look closer

at the numbers.

2. Strong fluctuations

Let us construct the MPD of an atomic valence shell, i.e., find Ω as extending from some radius to

infinity, such that P(n = Nval,Ω) is maximal, Nval being the expected number of electrons in the

valence shell.
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FIG. 6. Probability distributions for the MPDs corresponding to the valence shells of noble gas atoms (full

circles). For comparison, the probability distributions for independent particles obtained for 8 electrons in

the valence shell bring able to exchange electrons with the next deeper shell (empty circles).
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Let us consider the noble gas atoms, Fig. 6. For Ne and Ar, only the probability of having Nval = 8

electrons in the valence shell is clearly higher than that for independent particles. This changes for

Kr and Xe: we note that finding Nval ± 1 electrons in it is more probable than what one expects

for independent particles (exchanging with the deeper shell). We can attribute the increase in

P(n = 8±1,Ω8) to the penetration of the d orbitals of the deeper shell into the valence shell. The

Pauli principle is satisfied not by spatially separating the electrons into regions, but within the same

region of space.
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FIG. 7. Probability to have a number of electrons equal to the expected one (red), larger by one (blue), or

smaller by one (black) in the MPD corresponding to the valence shell of atoms with nuclear charge Z ≤ 54;

H, He, and Pd (Z = 0,1 or 46) are not shown, as the results correspond to trivial expectations: the MPDs

correspond to the whole space (for 1sn), or vanish (5s0).

Let us analyze the probability of having Nval±1 electrons in the periodic table (Li-Xe) for Hartree-

Fock wave functions33, cf. Fig. 7. One notices a certain symmetry of the distribution: the prob-

abilities of having Nval − 1 or Nval + 1 electrons are, in general, quite close. If one considers the

probability to have not only Nval − 1, or Nval + 1 electrons, but n < Nval , or n > Nval electrons,

one obtains in the worst case studied (Xe) an almost equal number for the three probabilities:

P(N > Nval)≈ P(N < Nval)≈ P(Nval). As the MPD is the spatial region yielding the highest pos-
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sible value for P(Nval) this casts a shadow of doubt on our image of spatially separated valence

shells.

In analogy with valence bond, let us consider the atom formed by a core, C, and a valence shell V .

In this spirit, one could write:

C+V−↔CV ↔C−V+↔ . . .

to indicate that electrons can quit and enter a specific region. The charges indicated are produced

by the separation into shells. In contrast to valence bond methods, this does not invoke chang-

ing orbital occupancies as in valence bond methods. (Recall that our results are obtained from

a Hartree-Fock wave function with a prescribed orbital occupancy.) In analogy to valence bond

methods it is possible to indicating weights. Here these are given by the probabilities, e.g., that for

C+V− is P(Nval +1,ΩNval). For example, we see in Fig. 6 that the probability to have 9 electrons

in the valence shell of Kr is around 1/4, that we can interpret as a "weight" of C+V−.

Such stronger fluctuations do not occur only in atoms. For example, the values for the probabilities

obtained for the MPDs corresponding to the six electrons of the triple bond in HCCH or N2 are

quite comparable to those obtained for the valence shell of Xe. In HCCH the probability to have

six electrons between the two C atoms is around 1/3, while that to have five (or to have seven)

electrons in the same region is around 1/4.18 In the N2 molecule, the probability to find 2 electrons

in the lone pair is around 0.45, and in a banana bond only 0.34. The probability to have only one

electron in the banana bond is slightly lower (0.32), and that of having three electrons in it 0.17.

3. Choosing the relevant object of study

Sometimes chemical intuition guides us well in guessing a good number of electrons. For example,

when we are interested in describing an atom, we know its nuclear charge, and it seems natural to

choose the same numbers of electrons. However, would it not be better to sometimes choose an

ion? Let us consider the KrF2 molecule. For the Kr atom, we should choose n = 36, while for Kr–,

Kr+, Kr++ we should choose n = 37,35, or n = 34, respectively. We take two planes perpendicular

to the molecular axis, at equal distance z from the Kr nucleus.34 Figure 8 shows the probabilities

to have n = 34,35,36 or 37 electrons between the two planes. We see that there is no clear-cut

preference for choosing Kr as a reference: the best (the highest probability) we can get is not better
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FIG. 8. Probabilities to have n= 34,35,36, or 37 electrons in the domain associated to Kr++ (blue, rhombus),

Kr+ (yellow, triangle), Kr (green rhombus), Kr– (orange, square); points are connected by lines to guide the

eye.

than the one obtained for the separation into Kr+, or Kr++. Once we have made the choice, the

answers are different. If we choose the Kr domain, we obtain a probability of 0.36 to describe the

region as a Kr atom (n = 36), and 0.22 as a Kr+ ion (n = 35). If we choose the Kr+ domain, we

obtain a probability of 0.40 to describe the region as a Kr+ ion, and 0.28 as a Kr atom.

IV. QUESTIONS OF ATTITUDE

1. Three practical questions

• Are MPDs ready for "mass production"?

To obtain MPDs there is a need for new algorithms and programs. Progress is made, but

slowly. Furthermore, the existing programs take some time for the optimization of the spa-

tial domain, and this is opposed by all those who think that it is worth having a long quan-
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tum mechanical calculation, but not for producing an interpretation using it. Evidently, the

present authors do not share this opinion.

• How much input is needed from the user ?

Some methods (QTAIM, ELF), just let the program work (maybe with a little help). With

MPDs, the users have to specify the number of particles they are interested in, an initial

guess of the region where the MPD is of interest.

• When is an interpretative method that we, theoreticians, propose successful?

When experimentalists use it. With MPDs we are not yet so far.

2. Do we need MPDs?

We could imagine that our computers could give, e.g., by machine learning all the answers to the

questions we would like to ask. Would it be sufficient? One would like the interpretative methods

give tools to let us think independently of the computer.

The next question is whether we should accept the computer help us to think about chemistry.

Maybe a common answer is that given by Prof. C. Pisani (University of Torino) when he criti-

cized ELF: “With MO theory, you can help yourself using the back of an envelope”. Here is a

philosophical support for this attitude of independence of external support.

Socrates. At the Egyptian city of Naucratis, there was a famous old god, whose name

was Theuth [Toth]; . . . he was the inventor of many arts, such as arithmetic and cal-

culation and geometry and astronomy and draughts and dice, but his great discovery

was the use of letters. Now in those days the god Thamus [Amun] was the king of

the whole country of Egypt . . . . To him came Theuth and showed his inventions,

desiring that the other Egyptians might be allowed to have the benefit of them; he

enumerated them, and Thamus enquired about their several uses, and praised some

of them and censured others, as he approved or disapproved of them. . . . But when

they came to letters, This, said Theuth, will make the Egyptians wiser and give them

better memories; it is a specific both for the memory and for the wit. Thamus replied:

. . . this discovery of yours will create forgetfulness in the learners’ souls, because
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they will not use their memories; they will trust to the external written characters and

not remember of themselves. The specific which you have discovered is an aid not

to memory, but to reminiscence, and you give your disciples not truth, but only the

semblance of truth; they will be hearers of many things and will have learned nothing;

they will appear to be omniscient and will generally know nothing; they will be tire-

some company, having the show of wisdom without the reality.

Plato, Phaedrus35

The present authors are full of admiration for those who are able to use only the back of the

envelope. However,

• experience accumulated using computers may help developing such methods,

• nowadays, we live with Wikipedia in our pocket and it is a good starting point for our think-

ing; the computers can give us ideas we can think about.

V. CONCLUSION

The present paper considers the probabilities to have a chosen number of electrons in a spatial

domain. If these domains are optimized in the sense of maximizing the probability, they can be

associated to classical chemical concepts. For example, one would consider two electrons for

defining a region of a lone pair, or that of a single bond. As the probabilities

i are not needed to high accuracy, and

ii have second order errors when the departure from the optimal domain is of first order,

high accuracy in optimization is not needed.

Sometimes the chemical question is not well set. For example, should we define an atomic region,

and look at the probability of having a number of electrons different number of electrons in it, or

should we start by first defining an ionic region? The results obtained are not the same. Further-

more, the highest probability to have a chemically significant electron number in a given spatial
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domain is often not far away from that of having a different number of electrons in the same region.

In some cases the probability is higher. For example, the probability of having 2 electrons in the

core and the rest in the valence for the atoms decreases from 0.9 to 0.7 from Li to Ne. However,

one is used to consider a statistical event relevant if the probability is higher than 0.95 (≈ 2σ for

a normal distribution). This was never observed in the systems presented here. Does this mean

that we should give up the chemical concepts associated to a given number of electrons in a spatial

region? The main argument for not doing so is the success of the chemical concepts. Did we not

look at the right quantities? Finally, they seem to be recovered in an average sense, because the dis-

tribution of probabilities are often symmetric around the maximum, mean values, i.e., populations,

are most often used in discussions. However, we should not forget the quantum nature produces

more information, and it may be worth looking into it its implications.
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Appendix A: Mathematical definition of the Maximum Probability Domains

Maximum Probability Domains (MPDs) are spatial regions that maximize the probability of hav-

ing a chosen number of particles, n, in them.8 For discussing the chemical bonding in molecules

(see, e.g., 15), crystals (see, e.g.,30) the particles considered are the electrons. However, there are

applications, where the particles have different nature, e.g., for solvation, the particles considered

may be atoms, ions, molecules, . . . .36

For Slater determinants, in the limiting case that the localization of orbitals is perfect (no overlap

between them), the MPDs are identical37 to the spatial domain where these orbitals are localized,

or the basins25 of the electron localization function, ELF7. The probability to find n electrons in
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the spatial region Ω is given by:

P(n,Ω) =

 N

n

∫
Ω

d1d2 . . .dn
∫

Ω̄

dn+1 . . .dN |Ψ |2 (A1)

Here, Ψ is the wave function of the system and N the number of electrons. The integration over

the region Ω is performed for the first n electrons. The integration is performed over the remaining

space, Ω̄, for the other N− n electrons. The prefactor arises because the electrons are not distin-

guishable: any other choice of n electrons contributes (by the same amount) to P(n,Ω). The MPD

is the spatial region that maximizes, for a given n, P(n,Ω),

Ωn = argmax
Ω

P(Ω,n) (A2)

Note that Ωn may be a collection of spatially disconnected domains.

Obtaining P(n,Ω) seems difficult, except for Quantum Monte Carlo calculations where one has

only to count how many times n electrons are in Ω.23 An algorithm for computing P(n,Ω) using

only the overlap between occupied orbitals, can be found in20, and extensions to multi-determinant

wave functions exist.21 One can also work with models, e.g., the Hubbard model.38

Maximizing the probability can be done by different algorithms. One can divide space, define

a collection of these spatial elements for Ω and add or eliminate spatial elements to reshape the

spatial domain to maximize the probability.39 There are more refined methods, like the level set

method.20

Appendix B: Details of the underlying computations

The atomic calculations were performed using the Hartree-Fock wave functions of ref. 33. The

calculations for Si2H2 were performed at the Hartree-Fock level with the energy-consistent pseu-

dopotentials (and corresponding basis sets) of the Stuttgart/Cologne group40.

For F2, H2O, C2H2 and KrF2 we used the electron configurations generated for Ref 18. These were

obtained by sampling wavefunctions generated with the CIPSI algorithm in the valence full CI

space.
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TABLE I. Geometries and energies for the potential energy curve of H4←→ 2H2

n r1 (Å) r2 (Å) Energy (au) EFCI (au)

0.00 1.2760 1.2760 -2.10783 -2.10786

0.25 1.2422 1.4236 -2.13344 -2.13345

0.50 1.2084 1.5713 -2.16824 -2.16826

1.00 1.1407 1.8665 -2.22134 -2.22136

2.00 1.0055 2.4571 -2.28642 -2.28644

3.00 0.8702 3.0476 -2.32775 -2.32779

4.00 0.7349 3.6381 -2.34459 -2.34460

In the geometries used for H4, the H-H bond lengths (in Å) are obtained as

r1 = 1.276−0.135275n (B1)

r2 = 1.276+0.590525n (B2)

where n = 0 corresponds to the transition state and n = 4 corresponds to a geometry optimized

at the CAS(4,4)/cc-pVDZ level. At each geometry, the wave function was computed with the cc-

pVTZ basis set close to the full configuration interaction (CI) level (E−EFCI < 10−4 au) using a

wave function made of determinants selected with the CIPSI algorithm. The energies are given in

table I.

The CIPSI calculations were made using the Quantum Package program41, and the electron con-

figurations were sampled with the the QMC=Chem code42.
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