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We study the almost sure convergence of bilateral ergodic averages for not necessarily integrable functions and relate it to the ones of the forward and backward averages, hence complementing results of Wo± and the second named author. In the case of convergence, using results of Furstenberg on double recurrence, we prove oscillations of the bilateral ergodic averages around the limit.

Introduction

For a stationary random sequence, time running from -∞ to +∞, without any assumption of integrability, a question arises: what could be the link between convergence of symmetric bilateral averages, from time -n to time +n, and convergence of unilateral averages, from time 0 to time n, usually considered in the ergodic theorem or the law of large numbers. The present paper is devoted to this question.

Birkho's ergodic theorem asserts that on a measure preserving dynamical system (X, X , µ, T ) the averages

A + n f = 1 n n-1 i=0 f • T i of f ∈ L 1 converge µ a.e.
. Still these averages converge too for many nite measurable functions which are not integrable. Their characterization is dicult since it cannot depend only on distributions. Assuming µ(X) = 1, and the transformation T invertible and ergodic as we shall always do in this paper, it was proved by Wo± [W86] that backward averages A -

n f = 1 n n-1 i=0 f • T -i
of a measurable function, not necessarily integrable but nite, converge a.e. to a nite limit if and only if forward averages A + n f do and the limits are the same. This result was given a new approach in [D10] where furthermore it was shown that this equivalence fails if innite limits are considered:

lim A + n f = +∞, lim sup A - n f = +∞, lim inf A - n f = -∞ a.
e. may coexist. Here, in the same context, bilateral averages

B n f = 1 2n + 1 n i=-n f • T i
are considered for nite measurable functions. We prove that convergence a.e. of bilateral averages B n f is equivalent to convergence of forward and backward averages, A + n f and A - n f together, the limit being the same, nite or not. This result holds even if we know the convergence of B n f a priori only on a subset of X of positive measure. In all other cases lim sup B n f = +∞, lim inf B n f = -∞ a.e.. In [H10] another approach of the comparison of forward, backward and bilateral averages when they have nite limits on X, is presented.

In the last part the phenomenon of innite oscillations around the limit, well known for unilateral averages ( [H76], see also [K85], [P83], [D10]) is established also for bilateral averages; this uses elements of Furstenberg's multirecurrence theory [F77].

Somehow these results show the absence of extra-eect of symmetry or compensation between future and past for a stationary sequence, even though the same statistical behavior occurs in both directions.

Preliminary approach

A rst diculty appearing in the study of the convergence of symmetric bilateral averages

B n f = 1 2n + 1 n i=-n f • T i = 1 2n + 1 [f + n i=1 (f • T -i + f • T i )],
with f a nite measurable function, is the problem of the convergence of the residual terms

1 n (f • T -n + f • T n ), 1 n (f • T -n -f • T n+1 ).
The convergence to 0 of the rst one is a necessary condition for the convergence of the Cesàro averages dening B n f. The convergence to 0 of the second one is a necessary condition for the invariance of the limit of B n f, if it exists, since

B n f -B n f • T = 1 2n + 1 (f • T -n -f • T n+1 ). Thus the problem of the convergence of 1 n f • T n is also present.
Because of the invariance of the measure the convergence in µ-measure of these residual terms to 0 is obvious hence for this type of convergence the invariance of the set of convergence and the invariance of the limit of averages are easy. The same is true for the lim sup in µ-measure sense (that is always dominated by the lim sup a.e.). But for a.e. convergence these questions are not obvious, in particular the invariance of the set of convergence of the sequence B n f . As will be shown by Lemma 3.5 below, using Rokhlin towers it is not dicult to build, for any sequence l(n) increasing to +∞, a non negative measurable function f such that lim sup

1 l(n) f •T n = +∞ a.e.;
even with i.i.d. random variables, averages may converge in probability to 0 although the limsup and liminf are innite. If a priori the convergence a.e. of B n f is known on a non null subset U ⊂ X, the convergence holds also in measure on U hence the sequence B n f must converge in measure to a constant on the whole space X by ergodicity. Therefore the limit a.e. of B n f on U must be this same constant. Yet, at this point the divergence a.e. on U c is not ruled out since the invariance of the set of convergence a.e. of the sequence B n f remains to be proved. If lim B n f exists and is nite a.e. on U then lim 1 n

(f •T -n +f •T n ) = 0 a.e.

on

U ; if, at this point, we knew that this convergence implies lim

1 n f • T n = 0
a.e., the invariance of lim 1 n f • T n being obvious, the invariance we wish for the set of convergence of B n f would follow. But this implication also requires a proof; it will be given in Part 4.

To overcome this diculty in the next part, we shall use a direct close analysis of a typical trajectory of the dynamical system. Such a method was suggested by Benjamin Weiss to the second named author in a conversation some years ago; it is somehow similar to Wo±'s method to prove Theorem 2 in [W86].

Before going further we recall briey here the results of [D10] that we shall need or extend.

We use the usual notation f + = max(f, 0) and f -= (-f ) + .

Proposition 0. Let f be a nite measurable real function dened on

X. If F = sup n>0 n-1 i=0 f • T i < ∞ a.
e. the following equality, called "lling scheme equation" in [1], holds:

f = -F -+ F + -F + • T a.e..
From this equality the following Statements are deduced (we use the numbering of Part 4 in [D10]):

(b) if lim sup |A + n f | < ∞ a.e. then lim A + n f = lim A - n f a.e. (c) if lim sup A + n f = c ∈ R and lim inf A + n f = -∞ a.e. then lim inf A - n f = c and lim sup A - n f = +∞ a.e. (d) if f ≥ 0, either lim 1 n f • T n = 0 a.e. or lim inf 1 n f • T n = 0 a.e. and lim sup 1 n f • T n = +∞ a.e. (e) if lim sup A + n f = +∞, lim inf A + n f = -∞ a.e. it is possible that lim A - n f = +∞ a.e.. Remark.
In [D10] Statement (e) was shown only for systems having a Bernoulli factor, using properties of sequences of i.i.d. random variables. Proposition 3.4, below, will show it for any ergodic dynamical system.

Main results

To begin with, here is an elementary lemma of additive combinatorics that we need in the sequel.

Lemma 3.1. Let a be a positive integer and ∆ a set of integers with ∆ ⊂ [a, 5a) . If card ∆/4a > 7/8 then every integer i ∈ [5a/2, 3a)can be written as i = j -k with j, k ∈ ∆ and j -2k ≥ a.

Proof. Consider i ∈ [5a/2, 3a) and the couples (x, x + i) with x ∈ [a, 5a) and x + i -2x = i -x ≥ a. These inequalities yield at once :

a ≤ x ≤ i -a < a + i ≤ x + i ≤ 2i -a < 5a.
Thus the two intervals [a, i -a] and [a + i, 2i -a] are disjoint, included in [a, 5a) , with the same length i -2a + 1. If i could not be written as claimed by the lemma, ∆ would contain at most one term of each couple

(x, x + i), hence i -2a + 1 integers of the interval [a, 5a) would be excluded from ∆; we would get card ∆ ≤ 4a -(i -2a + 1) < 7a/2, thus card ∆/4a < 7/8.
Now a key idea of the paper appears in the next lemma.

Lemma 3.2. Let f be a nite measurable function. If the set of points

x such that B n f (x) ≤ 0 for n large enough has positive measure, i.e. if µ [∪ N >0 ∩ n>N {B n f ≤ 0}] > 0 then sup n>0 n-1 i=0 f • T i < ∞ a.
e. on the whole space X.

Proof. Let us consider

V = ∩ n≥N {B n f ≤ 0} with N large enough to get µ (V ) > 0. By ergodicity for an integer p large enough, µ (∪ p≥i≥0 T -i V ) > 7/8. Let us denote by W(x) the set of passage times in (∪ p≥i≥0 T -i V ) of the orbit of x ∈ X.
By the ergodic theorem

lim n 1 n card (W(x) ∩ [0, n)) = µ (∪ p≥i≥0 T -i V ) for a.e. x ∈ X. For such an x, lim a 1 4a card (W(x) ∩ [a, 5a)) = µ (∪ p≥i≥0 T -i V ) > 7/8.
Now assume that three integers a, k and j are such that a > N + 4p, k and j ∈ W(x) with a ≤ k < j < 5a and j -2k ≥ a. By denition of W(x) there exist two integers r and s between 0 and p, depending on k and j respectively, such that T k+r x ∈ V and T j+s x ∈ V. By denition of V, since k ≥ a > N + 4p, we have for any integer ζ such that |ζ| ≤ 2p :

( * ) k+r+ζ i=-k-r-ζ f • T i T k+r x = 2k+2r+ζ i=-ζ f (T i x) ≤ 0. Put ξ = j -2k + s -2r -ζ -1; since j -2k ≥ a, we get ξ ≥ N and: ( * * ) ξ i=-ξ f • T i T j+s x = ξ+j+s i=-ξ+j+s f (T i x) ≤ 0.
Since -ξ+j+s = 2k+2r+ζ +1, adding the two previous inequalities ( * ) and ( * * ) we get ξ+j+s i=-ζ f (T i x) ≤ 0 where ξ

+ j + s = 2(j -k) + 2(s -r) -ζ -1. Now we can choose ζ = 2(s -r) ∈ [-2p, 2p] and we get 2(j-k)-1 i=-ζ f (T i x) ≤ 0.
Then using Lemma 3.1 for a such that

1 4a card (W(x) ∩ [a, 5a)) > 7/8
and a > N +4p, we obtain for every n ∈ [5a/2, 3a) two integers k and j with the properties required above and n = j -k, which leads to the inequalities

2n-1 i=0 f (T i x) ≤ 2p i=-2p f (T i x) and 2n i=0 f (T i x) ≤ |f (x)| + 2p i=-2p f (T i+1 x) .
When a increases to ∞ the intervals [5a/2, 3a) cover a half-line of integers and the desired result follows at once since p depends only on the set V .

Theorem 3.3. Let f be a nite measurable function. If lim sup B n f < +∞ a.e. on a set of positive measure then lim

A + n f = lim A - n f = lim B n f = c a.e.
on the whole space X i.e. these three sequences converge a.e. to the same constant c which may be -∞.

Proof. Consider a nite constant K such that µ {lim sup B n f < K -} > 0 with > 0. Applying Lemma 3.2 to the function f -K and the transformations T or T -1 we get lim sup

A + n f ≤ K and lim sup A - n f ≤ K a.e.. If lim sup A + n f = c > -∞ then either lim A + n f = c or lim inf A + n f = -∞
a.e. by Statement (b). In the rst case lim A - n f = c a.e. for the same reason, hence lim B n f = c a.e.. The second case is impossible here since

lim inf A + n f = -∞ would imply lim sup A - n f = +∞ a.e. by Statement (c). If lim A + n f = -∞ a.e.

two cases are again possible by Proposition 3.4 below (improvement of Statement (e)). Either lim A

- n f = -∞ a.e. or lim sup A - n f = +∞ and lim inf A - n f = -∞ a.
e.. In the rst case obviously lim B n f = -∞ a.e., and again the second case is here excluded, so the theorem is proved.

Before describing the possible behavior of the three sequences

A + n f, A - n f,
B n f we shall give a complement to Statement (e) of [D10] recalled in Part 2, with a better argument valid for any non trivial ergodic dynamical system (avoiding the properties of stable probability laws used in [D10]).

Proposition 3.4. On any non atomic ergodic system (X, µ, T ) there exist measurable functions f such that lim sup

A + n f = +∞, lim inf A + n f = -∞a.e. but lim A - n f = +∞ a.e..
For the proof we need the following lemma.

Lemma 3.5. On any non atomic ergodic system (X, µ, T ) and for every increasing sequence of integers l(n) there exist measurable functions v ≥ 0 such that lim sup

1 l(n) v • T n = +∞ a.e..
Proof. By Rokhlin's lemma (see [P83, p. 48]), for every integer n we can build a tower of height n 2 with basis U n and complementary part

V n such that n µ(V n ) < ∞ : the sets T i U n are pairwise disjoint for 0 ≤ i ≤ n 2 and V n = (∪ 0≤i≤n 2 U n ) c . Put g n = nl(n 2
) on the roof of the n th tower T n 2 U n and g n = 0 elsewhere. Put v = n g n ; it isnite a.e. by Borel-Cantelli lemma since µ(U n ) ≤ n -2 . Again by Borel-Cantelli, a.e. x ∈ X belongs to all the towers except a nite number of them since n µ(V n ) < ∞. If x belongs to the n th tower there is an integer i ≤ n 2 such that T i x ∈ T n 2 U n ; thus max j≤n 2 v(T j x) ≥ max j≤n 2 g n (T j x) ≥ nl(n 2 ). Therefore l(n 2 ) -1 max j≤n 2 v(T j x) ≥ n a.e. for n large enough, thus lim sup 1 l(n) max j≤n v(T j x) = +∞ a.e.. Since the sequence l(n) is increasing, this implies at once the desired result.

Proof of Proposition 3.4. An example of a function f having the desired properties will be given by f = u + v -v • T where u and v are non negative functions such that udµ = +∞ and lim sup

1 n v • T n -A + n u = +∞ a.e.. Indeed, in this case we get lim A - n f = lim(A - n u + 1 n v • T n ) = +∞ a.e.. but lim sup A + n f = lim sup(A + n u - 1 n v • T n ) = +∞ a.e. (recall that since v ≥ 0 is nite a.e. lim inf 1 n v • T n = 0 a.e.) and lim inf A + n f = -lim sup 1 n v • T n - A + n u = -∞ a.e..
Let us build two functions u and v with these properties. By Lemma 3.5 there is a function

v ≥ 0 such that lim sup n -2 (v • T n ) = +∞ a.e..
Let u be a non-negative function such that u / ∈ L 1 but

√ u ∈ L 1 . By Birkho's ergodic theorem we know lim 1 n n-1 0 √ u • T i = l nite a.e.. Now for a non negative sequence x i , if 1 n n-1 0 x i -→ l, then x n n -→ 0 and 1 n 2 n-1 0 x 2 i ≤ max i≤n x i n 1 n n-1 0 x i -→ 0.
Thus lim

1 n 2 n-1 0 u • T i = 0 a.e..
For these two functions u and v, lim sup

1 n 1 n v • T n -A + n u = +∞ a.e.
and a fortiori lim sup

1 n v • T n -A + n u = +∞ a.e.. So f = u + v -v • T satises our claim.

Now we can describe synthetically the possible asymptotic behaviors of the sequences

A + n f, A - n f, B n f, considered together.
Theorem 3.6. On any ergodic dynamical system (X, µ, T ), for a nite measurable function f there are only two typical situations:

1) lim A + n f = lim A - n f = lim B n f = c a.
e., i.e. the three sequences converge a.e. to the same constant which may be ±∞.

2)

       with c any real value or + ∞ lim sup A + n f = c, lim inf A + n f = -∞ lim sup A - n f = +∞, lim inf A - n f = c lim sup B n f = +∞, lim inf B n f = -∞ a.
e. (of course the situations derived from 2) by symmetry or sign changing can also occur).

In particular we see that the sequence of bilateral averages B n f converges a.e. to a nite or innite limit if and only if the two sequences of unilateral averages A + n f and A - n f converge to the same limit. Moreover when the sequence B n f does not converge it cannot have a nite lim sup or lim inf, contrarily to A + n f or A - n f. If the system is non atomic taking two well chosen nonnegative functions u and v we have case 2) for f = u -u • T + v • T -v with c = +∞ and the convergence in measure to 0 of the three sequences.

The proof of Theorem 3.6 is an easy application of Theorem 4 together with results of [D10] recalled in Part 2.

Complementary results

It is natural to consider also asymmetric bilateral averages

B q n f = 1 2n + 1 + q n+q i=-n f •T i with q a xed integer. Recall that a priori the convergence of 1 n f • T n is unknown. Lemma 3.
2 can be reformulated for the asymmetric averages B q n f with an entirely similar proof. Thus we get the following result parallel to Theorem 4: Theorem 4.1. Let f be a nite measurable function. If lim sup B q n f < +∞ a.e. on a set of positive measure then

lim A + n f = lim A - n f = lim B n f = lim B q n f = c
a.e. on the whole space X with c ∈ R or c = -∞. Convergences a.e. of B n f and B q n f are equivalent. Let us consider now the "residual" terms. A priori the invariance of the set of convergence a.e. of B n f was a problem since the convergence to 0 of

1 n (f • T -n -f • T n+1
) was unknown even on a part where the convergence of B n f could have been established. Now we can prove the following propositions. Proposition 4.2. For a nite measurable function f and a xed integer q, if lim sup

1 n |f • T -n -f • T n+q | < +∞ a.e. on a set of positive measure then lim 1 n f • T n = 0 a.e. on X. Proof. Consider B q-1 n (f -f • T ) = 1 2n + q (f • T -n -f • T n+q ). Then the result follows from Theorem since A + n (f -f • T ) = 1 n (f -f • T n ).
It appears less direct to get the same conclusion starting with

1 n (f • T -n + f • T n ).
We do not know how to deduce directly the next proposition from the results of Part 3. We shall give a proof similar to the one of Lemma 3.2. First we need a lemma similar to Lemma 3.1 and even simpler, so we skip its proof.

Lemma 4.4. Let a be a positive integer and ∆ a set of integers with ∆ ⊂ [2a, 3a) . If card ∆/a > 3/4 then every integer i ∈ [a/4, a/2) can be written as i = j -k with j, k ∈ ∆.

Proof of Proposition 4.3. With M and N large enough put

V = ∩ n>N 1 n |f • T -n + f • T n | < M and take p such that µ (∪ 0≤i≤p T -i V ) > 3/4. The set of passage times W(x) of the orbit of x in (∪ 0≤i≤p T -i V
) has an asymptotic density greater than 3/4. Assume that three integers a, k and j satisfy: a > N + p, k and j ∈ W(x) with 2a ≤ k < j < 3a. By denition of W(x) there exist non negative integers r, s ≤ p such that T k+r x ∈ V and T j+s x ∈ V. For integers ζ and ξ > N we have

f (T k+r-ζ x) + f (T k+r+ζ x) < ζM and f (T j+s-ξ x) + f (T j+s+ξ x) < ξM.
The solutions ζ and ξ of k + r

+ ζ = j + s + ξ and j + s -ξ = 2(j -k), are ξ = 2k -j + s > a > N and ζ = ξ + j + s -k -r > a -r > N.
Hence the dierence of the terms appearing in the two previous inequalities yields:

f (T 2(r-s) x) -f (T 2(j-k) x) < (ζ + ξ)M < (6a + 3p)M since k + r -ζ = 2(r -s) and ζ + ξ < 6a + 3p.
By Lemma 4.4, since density of W(x) > 3/4, for all a large enough every n ∈ [a/4, a/2) can be written as n = j -k with k, j ∈ W(x) and 2a < k < j < 3a. Thus for such an n we get

1 n f (T 2n x) < 4 a (6a + 3p)M + 2p i=-2p f (T i x) .
When a increases to ∞ the intervals [a/4, a/2) cover a half-line of integers and we obtain

lim sup 1 n f • T 2n < 24M < ∞ a.e.
since p depends only on the set V . By Statement (d), the desired result follows.

To conclude this part we extend to symmetric bilateral sums the (wellknown) result that sup n≥0 | n i=0 f • T i | < +∞ a.e. implies that f is a "bounded coboundary", that is f = g -g • T with g a bounded measurable function. Since a precise reference seems dicult to give, we mention here that this result follows easily from Proposition 0: from

sup n≥0 | n i=0 f • T i | < +∞ a.e.
we deduce f = -F -+F + -F + •T a.e.; then lim A + n f = 0 a.e. yields F -= 0 and F + must be bounded since, otherwise, sup Proof. Let K be large enough for µ sup 

n≥0 n i=-n f • T i < K > 0.
+ n f = 1 n n-1 i=0 f • T i it
is well known that innite oscillations around the limit must occur; this was rst established for L 1 -functions ( [H76], see also [K85] 1.6.3 or [P83]). In [D10] it is proved for any measurable function for which the averages converge: the problem is rst reduced to the case where f is a coboundary, that is of the form f = g -g • T with g measurable, and then the result is an easy by-product of Poincaré's recurrence theorem. Here, for bilateral ergodic averages B n f , we shall follow the same method but the conclusion will require some results of double recurrence due to Furstenberg [F77].

Theorem 5.1. Let f be a nite measurable function. If lim B n f = c a.e. with c nite, then the sequence B n f oscillates innitely often around c a.e. (in the wide sense; that is the dierence B n f -c cannot be ultimately strictly positive or ultimately strictly negative on a set of positive measure).

Proof. Put c = 0. By Theorem 4, lim A + n f = 0 a.e.. Ad absurdum, suppose that for a.e. x in a set of positive measure, there exists N such that B n f (x) < 0 for all n > N. Then by Lemma 3.2, we get

F = sup n>0 n-1 i=0 f • T i < ∞ a.
e. on X and by Proposition 0, f = -F -+ F + -F + • T a.e.. Since 0 = lim A + n f = -F -dµ we obtain F -= 0 a.e.. Therefore f must be a coboundary:

f = F + -F + • T and B n f = 1 2n + 1 [F + • T -n -F + • T n+1 ].
But in this case it appears a contradiction with the following theorem, that we shall prove next, which completes the proof of Theorem 5.1. This last theorem does not depend on the previous results, and might be of independent interest. Theorem 5.2. Let f be a measurable function on an ergodic invertible dynamical system (X, µ, T ). The set of points x for which the strict inequality

f (T -n x) < f (T n x) holds for all n large enough, is negligible, that is µ[∪ N >0 ∩ n>N f • T -n < f • T n ] = 0.
The same statement holds for inequalities f (T -n x) < f (T n+q x) with q xed. Before giving the proof we recall the elements of Furstenberg's multirecurrence theory for T and T 2 that we shall need ( [F77], see the rst three parts).

On an ergodic dynamical system (X, µ, T ) the averages

1 n n-1 i=0 (u • T i )(v • T 2i ) converge in L 2 (µ)
for every u and v bounded; to represent the limit the notion of maximal Kronecker factor is introduced. A factor of the ergodic dynamical system (X, µ, T ) is a Kronecker factor if it is a system (G, m, α) where G is a compact abelian "monothetic" group, m its Haar measure and α ∈ G acts on G by translation τ α : x → x + α, the sequence (nα) n>0 being dense in G. For the maximal Kronecker factor there exists a positive linear operator

π of L 2 (X, µ) onto L 2 (G, m) with π(f • T ) = π(f ) • τ α ,
preserving the integral, such that for every bounded u, v and w the following identity, called Furstenberg's identity, holds:

lim n 1 n n-1 i=0 X u(x)v(T i x)w(T 2i x)dµ(x) = G×G πu(z)πv(z + z )πw(z + 2z )dm(z)dm(z ).
Then Haar measure properties yield :

G ϕ(y) G ψ a (z)(1 -ψ a (2y -z))dm(z)dm(y) = 0.
Now we shall argue by contradiction. Suppose µ(E) > 0, which implies m {ϕ > 0} > 0. Since 0 ≤ ϕ and 0 ≤ ψ a ≤ 1, for m-a.e. y ∈ {ϕ > 0} we get ψ a (z)(1 -ψ a (2y -z)) = 0 for m-a.e. z ∈ G. Hence ψ a (z) > 0 implies ψ a (2y -z) = 1, that is {ψ a > 0} ⊂ (-A a ) + 2y where we denote {ψ a = 1} = A a . Thus m({ψ a > 0}) = m(A a ) and ψ a = 1 A a m-a.e.; moreover A a = (-A a ) + 2y. In other words A a is invariant by the map z → 2y -z for m-a.e. y ∈ {ϕ > 0} . Taking dierences A a is invariant by translations by elements of the set (2 {ϕ > 0}) -(2 {ϕ > 0}) and also of the generated subgroup . This subgroup is 2H = θH if we denote by H the subgroup generated by the set {ϕ > 0}-{ϕ > 0} . By our supposition m {ϕ > 0} > 0, the set {ϕ > 0} -{ϕ > 0} is a neighborhood of 0 in G, so H is an open subgroup of G. At this point to deduce that the subgroup 2H is also open, a little digression is necessary.

The endomorphism θ : z → 2z being continuous, its image 2G is a compact subgroup. Since G is monothetic the index of the subgroup 2G in G is 1 or 2 : G = (2G)∪(α+2G) the two classes being compact and equal or disjoint. Hence 2G is open. The subgroup H being open there is a smallest positive integer j such that jα ∈ H and the sequence (njα) n is dense in H, hence H is also monothetic. Since θ is also an endomorphism of H the subgroup 2H is open in H hence in G.

The index This is a contradiction since the subgroup 2H depends only on the set E and not on a, and, as was put at the beginning, µ {f ≤ a} can be positive and arbitrarily small. Therefore µ(E) = 0.

If instead of f (T -n x) < f (T n x) we consider inequalities f (T -n x) < f (T n+q x) with q xed, the proof has to be slightly modied.

The set E is replaced by

E q = ∪ N >0 ∩ n>N f • T -n < f • T n+q
and the sets E a N by E a N,q = ∩ n>N (T n {f ≤ a} ∪ T -n-q {f > a}).

  Proposition 4.3. Let f be a nite measurable function. If lim sup1 n |f • T -n + f • T n | <+∞ a.e. on a set of positive measure then lim 1 n f • T n = 0 a.e. on X.

  n≥0 |F + -F + • T n | = +∞ a.e. by ergodicity. Proposition 4.5. Let f be a nite measurable function. If sup n≥0 n i=-n f • T i < +∞ a.e. on a set of positive measure then there exists a bounded measurable function g such that f = g -g • T .

  Following the same argument as in Lemma 3.2 we get for a.e. x ∈ X and all n large enough2n-1 i=0 f (T i x) < 2K + 2p i=-2p |f (T i x)| , where p is independent of x and n. Hence sup n≥0 | n i=0 f • T i | < +∞ a.e. on X.Then the conclusion follows from the result we just recalled above. 5 Innite oscillations around the limit For unilateral ergodic averages A

  [G : 2H] of the subgroup 2H in G is nite since 2H is open and G is compact, and m(2H) = 1/[G : 2H]. The set A a is invariant by 2H hence it is union of classes of 2H and we obtain µ {f ≤ a} = m(A a ) ≥ 1/[G : 2H].
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Here 2z = z + z denes a continuous endomorphism of the group G that we'll denote θ. The unique ergodicity of the Kronecker system is essential (see [F77] part 3, especially Lemma 3.4).

Proof of Theorem 5.2. If µ {f = ess sup f } > 0 the result is easy. Indeed by ergodicity T -n x ∈ {f = ess sup f } for innitely many n and a.e. x; for them

Therefore we may assume µ {f = ess inf f } = 0 or f unbounded below. In both cases there exist a ∈ R for which the sets {f ≤ a} have positive and arbitrarily small µ-measure.

Now let us take a xed value a ∈ R with 0 < µ {f ≤ a} < 1 (for the conclusion at the end of the proof we shall have to let µ {f ≤ a} → 0).

Let E be the set considered in the statement :

For every n > N, using the invariance of the measure we get :

Now we shall write Furstenberg's identity with

The identity together with the preceding equality yield:

for every integer N.

Now put

the sequence (E a N ) N being increasing, we have

The key equality

with ϕ q = π1 Eq , since in Furstenberg's identity we have to replace 1 {f ≤a} = w by 1 {f ≤a} • T q hence ψ a = πw by ψ a • τ qα . The analysis of this new equality remains almost the same: instead of {ψ a > 0} ⊂ (-A a ) + 2y we get {ψ a > 0} ⊂ (-A a )+2y+qα and when we take dierences of transformations z → 2y + qα -z, the term qα disappears. So Theorem 5.2 is completely proved.

Remarks. If the system is weakly mixing a shorter proof of Theorem 5.2 is possible. In Theorems 5.1 and 5.2 the strict inequalities cannot be replaced by wide ones. As an example consider the group

In this work the assumption of ergodicity was only a simplication. For a non ergodic measure preserving dynamical system dened on a Lebesgue space, the results of this paper are easily reformulated using the ergodic decomposition of the invariant measure; in particular, without any change, Theorem 5.2 still holds.