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ABSTRACT

Image super-resolution techniques exploiting the stochastic
fluctuations of image intensities have become a powerful tool
in fluorescence microscopy. Compared to other approaches,
these techniques can be applied under standard acquisition
settings and do not require special microscopes nor fluo-
rophores. Most of these approaches can be mathematically
modelled making use of second-order statistics possibly com-
bined with a priori regularisation on the desired solution. In
this work, we consider a different paradigm and formulate a
physical-inspired data-driven approach based on generative
learning. By simulating fluorescence and noise fluctuations
by means of a suitable double Poisson-type process, the
unknown distribution of the fluctuating sequence of low-
resolution and noisy images is approximated via a GAN-type
approach where both physical and network parameters are
optimised. In this work, we provide theoretical insights on
the choice of the corresponding cost functionals and gradient
computations, and assess practical performance on simulated
Argolight patterns.

Index Terms— Fluctuation-based super-resolution, fluo-
rescence microscopy, generative learning, inverse problems.

1. INTRODUCTION

Fluorescence microscopy (widefield, confocal) is limited
in resolution by light diffraction phenomena. Among the
many super-resolution methods developed in recent years
[1], super-resolution using molecular fluctuations has the
advantage of not requiring any particular fluorophores or
microscopes, and it is not harmful to the biological sample
under observation. The idea is to record a series of fluores-
cence images at a fairly fast rate (e.g. 100 images per second)
and to achieve super-resolution by analysing the fluctuations
of the fluorescent molecules which are independent in space
and time. Originally proposed in [2] for blinking-type fluc-
tuations in the popularised SOFI (super-resolution optical
fluctuation imaging), various approaches have then addressed
the analysis under more general fluctuation behaviour. Popu-
lar approaches are SRRF based on the estimation of radiality
map [3] or covariance-based methods [4, 5, 6].

Recently we have we considered a physical-inspired data-
driven framework based on generative learning [7] for a de-
convolution problem where only noise fluctuations are simu-
lated. To achieve super-resolution, we consider in this work
a more refined model where both fluorescence and noise fluc-
tuations are modelled by means of a suitable double Poisson-
type stochastic process. The unknown distribution of the fluc-
tuating sequence of low-resolution and noisy images is ap-
proximated via a GAN-type approach where both physical
and network parameters are optimised. The main contribu-
tion of this work is to detail how a suitable cost functional
allowing to manipulate in a handy way the adversarial optimi-
sation process can be defined. We thus provide some insights
on the theoretical modelling and specify the approximation
techniques used to compute gradient updates. The proposed
algorithm is then tested on a small image of a simulated Ar-
golight slide showing the feasibility of the method to achieve
resolution up to 120 nm and first good results.

2. FORMULATION OF THE PROBLEM

We model a sequence of noisy and low-resolution images
with fluctuating intensities acquired over a time interval [0, 𝑇]
by vectors {y𝑡 }𝑇𝑡=1 with y𝑡 ∈ R𝑚1𝑚2 , 𝑚1, 𝑚2 ∈ N for all 𝑡 =
1, . . . , 𝑇 . We interpret such sequence as a set of independent
realisations of a stochastic process Yreal with unknown distri-
bution D which we aim to approximate by a physical-inspired
generator (simulator) drawing samples from a known distri-
bution Dsim parameterised by the super-resolved image we
want to retrieve x ∈ R𝑛1𝑛2

≥0 with 𝑛𝑖 = 𝐿𝑚𝑖 for 𝑖 ∈ {1, 2} and
𝐿 > 0 denoting the super-resolution factor and a space-variant
static background term b ∈ R𝑚1𝑚2

≥0 . Denoting by 𝚿 = DH ∈
R𝑚1𝑚2×𝑛1𝑛2 the matrix modelling the composition of the blur-
ring operator H ∈ R𝑛1𝑛2×𝑛1𝑛2 related to the microscope PSF
with a down-sampling operator D ∈ R𝑚1𝑚2×𝑛1𝑛2 , we thus sim-
ulate fluctuations using the stochastic process:

Ysim (x, b) ∼ Dsim (x, b) := 𝛼P (𝚿P(x) + b) + N. (1)

The parameter 𝛼 > 0 is a gain parameter quantifying the
number of photons/emitter/frame which can be estimated
ahead. For w > 0 we denote by P(w) a multidimensional



i.i.d. stochastic Poisson process of mean and variance w𝑖

w.r.t. the component 𝑖. In (1), such modelling is used both
to describe fluorescence fluctuations (on the 𝑛1 × 𝑛2 fine
grid) and the photon-counting measurement process (on the
𝑚1 × 𝑚2 coarse sensor grid). Note that in (1) vanishing pa-
rameters are excluded by adding a positive parameter 𝜖 > 0.
The additive noise random process N ∼ N(0, 𝜎2I) models
signal-independent electronic noise. In a distributional sense,
the inverse problem can thus be formulated as

find (x, b) ∈ R𝑛1𝑛2
≥0 × R𝑚1𝑚2

≥0 s.t. Dsim (x, b) ≈ D, (2)

where observed and generated samples ({y𝑡 } and
{
ysim
𝑡

}
, re-

spectively) should thus be compared in terms of a suitable
distance between probability distributions.

Standard approaches to (2) overcome the ill-posedness of
the problem by minimising suitable cost functionals defined
as the sum of data-fidelity and regularisation terms. In the
context of fluctuation-based imaging, this has been done us-
ing fitting terms in the co-variance domain possibly combined
with sparsity-promoting regularisations, see, e.g., [8, 9, 4, 6,
10] combined with optimisation-based learning approaches
[5, 11]. While effective, hand-crafted approaches suffer from
high-parameter sensitivity and possible reconstruction arte-
facts which are particularly visible when applied on real mi-
croscopy data characterised by heterogeneous (i.e., being a
mixture of sparse and non-sparse) structures.

3. FLUOGAN MODELLING

Generative Adversarial Networks (GANs) were introduced
firstly in [12]. The objective of a GAN is to approximate the
(unknown) distribution of observed data, in our case D, rely-
ing on training two competing networks, a generator network
𝐺 (·) and a discriminator network 𝐷𝜑 (·) ∈ [0, 1] so that, at
convergence, it is possible to generate samples with distribu-
tion Dsim ≈ D. Generator and discriminator are thus trained
together but with opposite goals. The class of plausible solu-
tions output by 𝐺 can be restricted whenever prior informa-
tion on the underlying physical model is available, thus, in
principle, obtaining more interpretable solutions and less data
to generate them. In the context of inverse problems, this idea
has been firstly used for cryo-EM in [13] and exploited in [7]
deconvolution in fluorescence microscopy. There, only Pois-
son/Gauss noise fluctuations were considered, with no mod-
elling of fluorescence fluctuations of the signal x (i.e., the ap-
proximation P(x) ≈ x was made). Here, under the more
refined generative law (1), we consider the problems:

min
x≥0, b≥0

EYsim [𝐿𝐺 (x, b, 𝜑)], min
𝜑
EYsim [𝐿𝐷 (x, b, 𝜑)],

(3)

where for parameters 𝛾, 𝜆 ∈ R≥0, the functionals read:

EYsim [𝐿𝐺 (x, b, 𝜑)] :=EYsim

[ 𝛾
2
∥Ysim (x, b) − EYreal [Yreal] ∥2

−𝐷𝜑 (Ysim (x, b))
]

(4)

EYsim [𝐿𝐷 (x, b, 𝜑)] :=EYsim

[
𝐷𝜑 (Ysim (x, b)) − 𝐷𝜑 (Yreal)

+𝜆
(
∥∇𝐷𝜑 (Ymix (x, b))∥ − 1

)2
]
. (5)

In the spirit of [14, 15], a gradient penalty is introduced in (5)
to enforce 1-Lipschitz regularity of 𝐷𝜑 on its domain, which,
as shown in [15] corresponds to minimise the Wasserstein dis-
tance between Dsim and D. To do so the penalty is applied on
Ymix (x, b) := 𝜂Yreal + (1 − 𝜂)Ysim (x, b) with 𝜂 ∼ U([0, 1]),
with U([0, 1]) being for the uniform distribution on [0, 1].

Note that in (4) an ℓ2 term enforcing proximity between
the generated data and the mean of the observed ones is in-
troduced. This is unusual in standard GANs, but in [7] it
was showed to stabilise convergence. In the following, we
get better insights on this choice and propose a regularisation
functional encoding physical constraints. To do so, we denote
for simplicity by Z ∼ P(X) the random (since X is) process
simulating fluorescence fluctuations and observe:

EYsim
[
∥Ysim (x, b) − EYreal [Yreal] ∥2]

= EZ
[
EŶsim

[
∥Ŷsim (z, b) − EŶsim [Ŷsim (z, b)] ∥2] ]

+ EZ
[
∥EŶsim

[
Ŷsim (z, b)

]
− EYreal [Yreal] ∥2] , (6)

where Ŷsim is the stochastic process defined, for z ∈ R𝑛1𝑛2

and b ∈ R𝑚1𝑚2 , by:

Ŷsim (z, b) ∼ 𝛼P (𝚿z + b) + N. (7)

The right hand side in (6) decomposes the expectation in the
sum of a variance and a bias term, respectively. As far as the
first term is concerned, we notice that:

EZ
[
EŶsim

[
∥Ŷsim (z, b) − EŶsim [Ŷsim (z, b)] ∥2] ]

= EZ

EŶsim


𝑚1𝑚2∑︁
𝑗=1

(
Ŷsim

𝑗 (z, b) − EŶsim
𝑗
[Ŷsim

𝑗 (z, b)]
)2




= EZ


𝑚1𝑚2∑︁
𝑗=1

Var
(
Ŷsim

𝑗 (z, b)
) = EZ


𝑚1𝑚2∑︁
𝑗=1

𝛼2 (𝚿z + b) 𝑗 + 𝜎2


= EZ

[
𝛼2

𝑛1𝑛2∑︁
𝑖=1

∥𝚿𝑖 ∥1 𝑧𝑖

]
+ 𝛼2∥b∥1 + 𝑚1𝑚2𝜎

2

= 𝛼2

(
𝑛1𝑛2∑︁
𝑖=1

∥𝚿𝑖 ∥1 𝑥𝑖 + ∥b∥1

)
+ 𝑚1𝑚2𝜎

2, (8)

where 𝚿𝑖 , 𝑖 = 1, . . . , 𝑛1𝑛2 denotes the 𝑖-th column of the ma-
trix 𝚿 and computations follow by simple algebraic manip-
ulations, the fact 𝚿𝑖 , b are non-negative and on the property
EZ [Z] = x which holds by definition of Poisson process.



As far as the bias term is concerned we have:

EZ
[
∥EŶsim

[
Ŷsim (z, b)

]
− EYreal [Yreal] ∥2]

= EZ
[
∥𝛼 (𝚿z + b) − EYreal [Yreal] ∥2] = 𝛼2EZ

[
∥𝚿(z − x)∥2]

+ ∥𝛼 (𝚿x + b) − EYreal [Yreal] ∥2. (9)

Denoting by 𝑤𝑖, 𝑗 = (𝚿𝑇𝚿)𝑖, 𝑗 , simple calculations show:

EZ
[
∥𝚿(z − x) ∥2

]
=

𝑛1𝑛2∑︁
𝑖=1

Var(𝑧𝑖 )𝑤𝑖𝑖+2
∑︁
𝑖< 𝑗

Cov(𝑧𝑖 , 𝑧 𝑗 )𝑤𝑖 𝑗 =

𝑛1𝑛2∑︁
𝑖=1

∥𝚿𝑖 ∥2
2 𝑥𝑖 ,

so that combining (8) and (9), we get from (6):

EYsim
[
∥Ysim (x, b) − EYreal [Yreal] ∥2]

= ∥𝛼 (𝚿x + b) − EYreal [Yreal] ∥2

+ 𝛼2

(
𝑛1𝑛2∑︁
𝑖=1

(∥𝚿𝑖 ∥1 + ∥𝚿𝑖 ∥2
2) |𝑥𝑖 | + ∥b∥1

)
+ 𝑚1𝑚2𝜎

2. (10)

Expansion (10) shows that an ℓ1 type regularisation on both
the desired reconstructed image and the background is thus
naturally enforced. However, on x, we notice that the reg-
ularisation weight at each pixel depends on the value of
∥𝚿𝑖 ∥2

2 ≤ ∥𝚿𝑖 ∥1 ≤ 1 as they consist of only a subset of
the elements defining the PSF. This is undesirable as in the
case of large noise a higher regularisation weighting could
be preferable. Moreover, the sparsity constraint on b does
not fit most of the real-world applications where background
encodes smooth intensity variations describing out-of-focus
and/or auto-fluorescence.

To overcome this, we thus make some modifications in
(10) so as to allow for larger sparse regularisation on x and
to encode smoothness on b, while removing the explicit de-
pendence on 𝛼. Recalling (4) and for 𝛾, 𝜆1, 𝜆2 ≥ 0 we thus
consider the functional:

EŶsim [𝐿𝐺 (x, b, 𝜑)] = 𝛾

2
∥𝚿x + b − E[Yreal] ∥2

− EŶsim

[
𝐷𝜑 (Ysim (x, b))

]
+ 𝜆1∥x∥1 +

𝜆2
2
∥∇b∥2, (11)

which we use in (3) together with 𝐿𝐷 in (5) for training. Note
that the last term in (10) can be neglected as we assume 𝜎2 to
be known/estimated in advance.

4. OPTIMISATION INSIGHTS

For the minimisation problems in (3) under the choice (5)
and (11) suitable algorithms can be used. In particular,
due to the convenient structure (11), the computation of
∇xEŶsim [𝐿𝐺 (x, b, 𝜑)] (and similarly of ∇b) can be done by
using standard gradient/proximal operators for all terms but
∇xEŶsim

[
𝐷𝜑 (Ysim (x, b)

]
. To deal with it, we write:

∇xEŶsim

[
𝐷𝜑 (Ysim (x, b)

]
= ∇xEZ [ℎ(z, b)] ,

with ℎ(z, b) := EŶsim

[
𝐷𝜑 (Ŷsim (z, b))

]
, and then follow sim-

ilar arguments as in [7] to obtain:

∇xEZ [ℎ(z, b)] = EZ
[
{ℎ(z + ei, b) − ℎ(z, b)}𝑖=1,...,𝑛1𝑛2

]
,

(12)
where e𝑖 is the 𝑖-th vector of the canonical basis in R𝑛1𝑛2 .
Since by definition (7) there trivially holds:

Ysim (z+ei, b) ∼ 𝛼P(𝚿(z+ei)+b)+N = 𝛼P(𝚿z+C𝑖+b)+N,

with C𝑖 being the 𝑖-th column of 𝚿, we have Ysim (z + ei, b) =
Ysim (z, b + C𝑖). Carrying on calculations in (12) we thus get:

∇xEZ [ℎ(z, b)] = EZ
[{
EŶsim

[
𝐷𝜑 (Ŷsim (z, b + C𝑖))

]
−EŶsim

[
𝐷𝜑 (Ŷsim (z, b))

]}
𝑖=1,...,𝑛1𝑛2

]
=

{
EŶsim

[
𝐷𝜑 (Ysim (x, b + C𝑖))

]
− EŶsim

[
𝐷𝜑 (Ysim (x, b))

]}
𝑖=1,...,𝑛1𝑛2

Proceeding similarly for ∇bEŶsim

[
𝐷𝜑 (Ysim (x, b)

]
, we get:

∇bEŶsim

[
𝐷𝜑 (Ysim (x, b))

]
=

{
EŶsim

[
𝐷𝜑 (Ysim (x, b + e𝑖))

]
− EŶsim

[
𝐷𝜑 (Ysim (x, b))

]}
𝑖=1,...,𝑚1𝑚2

.

Thanks to these computations we can now make precise the
type of algorithms used for minimising (3) under the choice
(5) and (11). We alternate minimisation over (x, b) for (11)
and over the parameter network 𝜑 of the discriminator 𝐷𝜑

for (5). As far as the optimisation of (11), we consider
block-coordinate proximal gradient descent, where the gradi-
ent terms are computed explicitly and using the expressions
above, while non-negativity constraints and, in the case of
x, the sparsity-promoting regularisation is enforced using a
ReLu (i.e. a soft-thresholding operator restricted to the non-
negative orthant). Optimisation of (5) is performed using
ADAM [16].

5. NUMERICAL RESULTS

We validate FluoGAN on a sequence of 𝑇 = 500 of data {y𝑡 }
generated using the SOFI simulator [17], a tool developed to
simulated realistic fluctuations based on a given spatial pat-
tern, see Fig. 1a) for the image ȳ. With the future intent
of testing our model on real Argolight slides, we simulated
a spatial ground-truth spatial pattern x∗ ∈ R𝑛1×𝑛2 composed
by a sequence of parallel lines which are 100 nm wide. The
separation distance 𝑑 (centre-to-centre distance) between the
two middle lines of each set is gradually decreasing from 390
nm up to 120 nm with a rate of 30𝑛𝑚, see Fig. 1b) for a
detail at 𝑑 = 120𝑛𝑚. To simulate realistic acquisitions we
provided SOFI tool with a smoothly varying background im-
age b∗ ∈ R𝑚1×𝑚2 , see 1c). Note that in Fig. 1a) inner lines can
hardly be distinguished at all distances 𝑑. We apply FluoGAN
to reconstruct the small ROI highlighted in red. The physical
inspired simulator (1) requires also the use of physical pa-
rameters describing the microscope PSF, which we estimated



to be of FWHM=318 nm. We fixed an undersampling factor
𝐿 = 4. The standard deviation 𝜎 of the Gaussian noise com-
ponent was provided beforehand. Regarding the structure of
𝐷𝜑 , we consider a convolutional neural network (CNN) with
3 convolutional layers performing convolutions of size 3 with
max pooling and with 32 initial channels. A careful selection
of the step-size parameters 𝜏x, 𝜏b and 𝜏𝜑 must be performed to
guarantee convergence. Regularisation parameters 𝛾, 𝜆1, 𝜆2
was chosen manually. Training is performed for 5000 epochs
with mini-batches of 200 images.

The numerical reconstruction obtained shows that the two
inner lines can be indeed be reconstructed at a distance 𝑑 =

120 nm, up to some reconstruction biases induced by the use
of the ℓ1 norm as a regulariser. Further tests and validation on
more challenging real data have to be performed to assess the
robustness of the approach.

(a) Temporal mean ȳ of fluctuating stack simulated by SOFI tool.

(b) GT, 𝑑 = 120𝑛𝑚. (c) Simulated b∗. (c) FluoGAN result.

Fig. 1: Reconstruction of data generated using the SOFI tool [17]
using Arolight slide-type patterns.

6. CONCLUSION

In this paper we proposed a precise model to generate fluores-
cence fluctuations data by means of a suitable double Poisson-
type stochastic process and use it as a generator in a GAN
approach. The super-resolved image x and the background
image b are estimated to produce samples with a distribution
Dsim close to the experimental distribution D in the Wasser-
stein distance sense. The computation of the objective func-
tion and its gradient is provided and a first numerical result
shows the pertinence of the approach. Further simulations as
well as real data on a real Argolight slide are underway and
will be compared to state of the art methods.
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