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Image super-resolution techniques exploiting the stochastic fluctuations of image intensities have become a powerful tool in fluorescence microscopy. Compared to other approaches, these techniques can be applied under standard acquisition settings and do not require special microscopes nor fluorophores. Most of these approaches can be mathematically modelled making use of second-order statistics possibly combined with a priori regularisation on the desired solution. In this work, we consider a different paradigm and formulate a physical-inspired data-driven approach based on generative learning. By simulating fluorescence and noise fluctuations by means of a suitable double Poisson-type process, the unknown distribution of the fluctuating sequence of lowresolution and noisy images is approximated via a GAN-type approach where both physical and network parameters are optimised. In this work, we provide theoretical insights on the choice of the corresponding cost functionals and gradient computations, and assess practical performance on simulated Argolight patterns.

INTRODUCTION

Fluorescence microscopy (widefield, confocal) is limited in resolution by light diffraction phenomena. Among the many super-resolution methods developed in recent years [START_REF] Huser | Super-resolution microscopy demystified[END_REF], super-resolution using molecular fluctuations has the advantage of not requiring any particular fluorophores or microscopes, and it is not harmful to the biological sample under observation. The idea is to record a series of fluorescence images at a fairly fast rate (e.g. 100 images per second) and to achieve super-resolution by analysing the fluctuations of the fluorescent molecules which are independent in space and time. Originally proposed in [START_REF] Dertinger | Fast, background-free, 3d super-resolution optical fluctuation imaging (sofi)[END_REF] for blinking-type fluctuations in the popularised SOFI (super-resolution optical fluctuation imaging), various approaches have then addressed the analysis under more general fluctuation behaviour. Popular approaches are SRRF based on the estimation of radiality map [START_REF] Gustafsson | Fast live-cell conventional fluorophore nanoscopy with imagej through super-resolution radial fluctuations[END_REF] or covariance-based methods [START_REF] Solomon | Sparcom: Sparsity based super-resolution correlation microscopy[END_REF][START_REF] Dardikman-Yoffe | Learned sparcom: unfolded deep super-resolution microscopy[END_REF][START_REF] Stergiopoulou | COL0RME: Covariance-based ℓ 0 super-resolution microscopy with intensity estimation[END_REF].

Recently we have we considered a physical-inspired datadriven framework based on generative learning [START_REF] Cachia | Fluorescence image deconvolution microscopy via generative adversarial learning (FluoGAN)[END_REF] for a deconvolution problem where only noise fluctuations are simulated. To achieve super-resolution, we consider in this work a more refined model where both fluorescence and noise fluctuations are modelled by means of a suitable double Poissontype stochastic process. The unknown distribution of the fluctuating sequence of low-resolution and noisy images is approximated via a GAN-type approach where both physical and network parameters are optimised. The main contribution of this work is to detail how a suitable cost functional allowing to manipulate in a handy way the adversarial optimisation process can be defined. We thus provide some insights on the theoretical modelling and specify the approximation techniques used to compute gradient updates. The proposed algorithm is then tested on a small image of a simulated Argolight slide showing the feasibility of the method to achieve resolution up to 120 nm and first good results.

FORMULATION OF THE PROBLEM

We model a sequence of noisy and low-resolution images with fluctuating intensities acquired over a time interval [0, 𝑇] by vectors {y 𝑡 } 𝑇 𝑡=1 with y 𝑡 ∈ R 𝑚 1 𝑚 2 , 𝑚 1 , 𝑚 2 ∈ N for all 𝑡 = 1, . . . , 𝑇. We interpret such sequence as a set of independent realisations of a stochastic process Y real with unknown distribution D which we aim to approximate by a physical-inspired generator (simulator) drawing samples from a known distribution D sim parameterised by the super-resolved image we want to retrieve x ∈ R 𝑛 1 𝑛 2 ≥0 with 𝑛 𝑖 = 𝐿𝑚 𝑖 for 𝑖 ∈ {1, 2} and 𝐿 > 0 denoting the super-resolution factor and a space-variant static background term b ∈ R 𝑚 1 𝑚 2 ≥0 . Denoting by 𝚿 = DH ∈ R 𝑚 1 𝑚 2 ×𝑛 1 𝑛 2 the matrix modelling the composition of the blurring operator H ∈ R 𝑛 1 𝑛 2 ×𝑛 1 𝑛 2 related to the microscope PSF with a down-sampling operator D ∈ R 𝑚 1 𝑚 2 ×𝑛 1 𝑛 2 , we thus simulate fluctuations using the stochastic process:

Y sim (x, b) ∼ D sim (x, b) := 𝛼P (𝚿P (x) + b) + N. (1) 
The parameter 𝛼 > 0 is a gain parameter quantifying the number of photons/emitter/frame which can be estimated ahead. For w > 0 we denote by P (w) a multidimensional i.i.d. stochastic Poisson process of mean and variance w 𝑖 w.r.t. the component 𝑖. In (1), such modelling is used both to describe fluorescence fluctuations (on the 𝑛 1 × 𝑛 2 fine grid) and the photon-counting measurement process (on the 𝑚 1 × 𝑚 2 coarse sensor grid). Note that in (1) vanishing parameters are excluded by adding a positive parameter 𝜖 > 0.

The additive noise random process N ∼ N (0, 𝜎 2 I) models signal-independent electronic noise. In a distributional sense, the inverse problem can thus be formulated as

find (x, b) ∈ R 𝑛 1 𝑛 2 ≥0 × R 𝑚 1 𝑚 2 ≥0 s.t. D sim (x, b) ≈ D, (2) 
where observed and generated samples ({y 𝑡 } and y sim

𝑡

, respectively) should thus be compared in terms of a suitable distance between probability distributions.

Standard approaches to (2) overcome the ill-posedness of the problem by minimising suitable cost functionals defined as the sum of data-fidelity and regularisation terms. In the context of fluctuation-based imaging, this has been done using fitting terms in the co-variance domain possibly combined with sparsity-promoting regularisations, see, e.g., [START_REF] Labouesse | Joint reconstruction strategy for structured illumination microscopy with unknown illuminations[END_REF][START_REF] Idier | On the superresolution capacity of imagers using unknown speckle illuminations[END_REF][START_REF] Solomon | Sparcom: Sparsity based super-resolution correlation microscopy[END_REF][START_REF] Stergiopoulou | COL0RME: Covariance-based ℓ 0 super-resolution microscopy with intensity estimation[END_REF][START_REF] Stergiopoulou | Col0rme: Super-resolution microscopy based on sparse blinking/fluctuating fluorophore localization and intensity estimation[END_REF] combined with optimisation-based learning approaches [START_REF] Dardikman-Yoffe | Learned sparcom: unfolded deep super-resolution microscopy[END_REF][START_REF] Stergiopoulou | Fluctuation-based deconvolution in fluorescence microscopy using plug-and-play denoisers[END_REF]. While effective, hand-crafted approaches suffer from high-parameter sensitivity and possible reconstruction artefacts which are particularly visible when applied on real microscopy data characterised by heterogeneous (i.e., being a mixture of sparse and non-sparse) structures.

FLUOGAN MODELLING

Generative Adversarial Networks (GANs) were introduced firstly in [START_REF] Goodfellow | Generative adversarial nets[END_REF]. The objective of a GAN is to approximate the (unknown) distribution of observed data, in our case D, relying on training two competing networks, a generator network 𝐺 (•) and a discriminator network 𝐷 𝜑 (•) ∈ [0, 1] so that, at convergence, it is possible to generate samples with distribution D sim ≈ D. Generator and discriminator are thus trained together but with opposite goals. The class of plausible solutions output by 𝐺 can be restricted whenever prior information on the underlying physical model is available, thus, in principle, obtaining more interpretable solutions and less data to generate them. In the context of inverse problems, this idea has been firstly used for cryo-EM in [START_REF] Gupta | CryoGAN: A New Reconstruction Paradigm for Single-Particle Cryo-EM Via Deep Adversarial Learning[END_REF] and exploited in [START_REF] Cachia | Fluorescence image deconvolution microscopy via generative adversarial learning (FluoGAN)[END_REF] deconvolution in fluorescence microscopy. There, only Poisson/Gauss noise fluctuations were considered, with no modelling of fluorescence fluctuations of the signal x (i.e., the approximation P (x) ≈ x was made). Here, under the more refined generative law (1), we consider the problems:

min x≥0, b≥0 E Y sim [𝐿 𝐺 (x, b, 𝜑)], min 𝜑 E Y sim [𝐿 𝐷 (x, b, 𝜑)], (3) 
where for parameters 𝛾, 𝜆 ∈ R ≥0 , the functionals read:

E Y sim [𝐿 𝐺 (x, b, 𝜑)] :=E Y sim 𝛾 2 ∥Y sim (x, b) -E Y real [Y real ] ∥ 2 -𝐷 𝜑 (Y sim (x, b)) (4) 
E Y sim [𝐿 𝐷 (x, b, 𝜑)] :=E Y sim 𝐷 𝜑 (Y sim (x, b)) -𝐷 𝜑 (Y real ) +𝜆 ∥∇𝐷 𝜑 (Y mix (x, b))∥ -1 2 . ( 5 
)
In the spirit of [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF][START_REF] Gulrajani | Improved training of Wasserstein GANs[END_REF], a gradient penalty is introduced in ( 5) to enforce 1-Lipschitz regularity of 𝐷 𝜑 on its domain, which, as shown in [START_REF] Gulrajani | Improved training of Wasserstein GANs[END_REF] corresponds to minimise the Wasserstein distance between D sim and D. To do so the penalty is applied on

Y mix (x, b) := 𝜂Y real + (1 -𝜂)Y sim (x, b) with 𝜂 ∼ U ( [0, 1]), with U ( [0, 1]) being for the uniform distribution on [0, 1].
Note that in (4) an ℓ 2 term enforcing proximity between the generated data and the mean of the observed ones is introduced. This is unusual in standard GANs, but in [START_REF] Cachia | Fluorescence image deconvolution microscopy via generative adversarial learning (FluoGAN)[END_REF] it was showed to stabilise convergence. In the following, we get better insights on this choice and propose a regularisation functional encoding physical constraints. To do so, we denote for simplicity by Z ∼ P (X) the random (since X is) process simulating fluorescence fluctuations and observe:

E Y sim ∥Y sim (x, b) -E Y real [Y real ] ∥ 2 = E Z E Ŷsim ∥ Ŷsim (z, b) -E Ŷsim [ Ŷsim (z, b)] ∥ 2 + E Z ∥E Ŷsim Ŷsim (z, b) -E Y real [Y real ] ∥ 2 , ( 6 
)
where Ŷsim is the stochastic process defined, for z ∈ R 𝑛 1 𝑛 2 and b ∈ R 𝑚 1 𝑚 2 , by:

Ŷsim (z, b) ∼ 𝛼P (𝚿z + b) + N. (7) 
The right hand side in [START_REF] Stergiopoulou | COL0RME: Covariance-based ℓ 0 super-resolution microscopy with intensity estimation[END_REF] decomposes the expectation in the sum of a variance and a bias term, respectively. As far as the first term is concerned, we notice that:

E Z E Ŷsim ∥ Ŷsim (z, b) -E Ŷsim [ Ŷsim (z, b)] ∥ 2 = E Z       E Ŷsim       𝑚 1 𝑚 2 ∑︁ 𝑗=1 Ŷsim 𝑗 (z, b) -E Ŷsim 𝑗 [ Ŷsim 𝑗 (z, b)] 2             = E Z       𝑚 1 𝑚 2 ∑︁ 𝑗=1 Var Ŷsim 𝑗 (z, b)       = E Z       𝑚 1 𝑚 2 ∑︁ 𝑗=1 𝛼 2 (𝚿z + b) 𝑗 + 𝜎 2       = E Z 𝛼 2 𝑛 1 𝑛 2 ∑︁ 𝑖=1 ∥𝚿 𝑖 ∥ 1 𝑧 𝑖 + 𝛼 2 ∥b∥ 1 + 𝑚 1 𝑚 2 𝜎 2 = 𝛼 2 𝑛 1 𝑛 2 ∑︁ 𝑖=1 ∥𝚿 𝑖 ∥ 1 𝑥 𝑖 + ∥b∥ 1 + 𝑚 1 𝑚 2 𝜎 2 , (8) 
where 𝚿 𝑖 , 𝑖 = 1, . . . , 𝑛 1 𝑛 2 denotes the 𝑖-th column of the matrix 𝚿 and computations follow by simple algebraic manipulations, the fact 𝚿 𝑖 , b are non-negative and on the property E Z [Z] = x which holds by definition of Poisson process.

As far as the bias term is concerned we have:

E Z ∥E Ŷsim Ŷsim (z, b) -E Y real [Y real ] ∥ 2 = E Z ∥𝛼 (𝚿z + b) -E Y real [Y real ] ∥ 2 = 𝛼 2 E Z ∥𝚿(z -x) ∥ 2 + ∥𝛼 (𝚿x + b) -E Y real [Y real ] ∥ 2 . (9) 
Denoting by 𝑤 𝑖, 𝑗 = (𝚿 𝑇 𝚿) 𝑖, 𝑗 , simple calculations show:

E Z ∥𝚿(z -x) ∥ 2 = 𝑛 1 𝑛 2 ∑︁ 𝑖=1 Var(𝑧 𝑖 ) 𝑤 𝑖𝑖 +2 ∑︁ 𝑖< 𝑗 Cov(𝑧 𝑖 , 𝑧 𝑗 ) 𝑤 𝑖 𝑗 = 𝑛 1 𝑛 2 ∑︁ 𝑖=1 ∥𝚿 𝑖 ∥ 2 2 𝑥 𝑖 ,
so that combining ( 8) and ( 9), we get from ( 6):

E Y sim ∥Y sim (x, b) -E Y real [Y real ] ∥ 2 = ∥𝛼 (𝚿x + b) -E Y real [Y real ] ∥ 2 + 𝛼 2 𝑛 1 𝑛 2 ∑︁ 𝑖=1 (∥𝚿 𝑖 ∥ 1 + ∥𝚿 𝑖 ∥ 2 2 ) |𝑥 𝑖 | + ∥b∥ 1 + 𝑚 1 𝑚 2 𝜎 2 . ( 10 
)
Expansion [START_REF] Stergiopoulou | Col0rme: Super-resolution microscopy based on sparse blinking/fluctuating fluorophore localization and intensity estimation[END_REF] shows that an ℓ 1 type regularisation on both the desired reconstructed image and the background is thus naturally enforced. However, on x, we notice that the regularisation weight at each pixel depends on the value of ∥𝚿 𝑖 ∥ 2 2 ≤ ∥𝚿 𝑖 ∥ 1 ≤ 1 as they consist of only a subset of the elements defining the PSF. This is undesirable as in the case of large noise a higher regularisation weighting could be preferable. Moreover, the sparsity constraint on b does not fit most of the real-world applications where background encodes smooth intensity variations describing out-of-focus and/or auto-fluorescence.

To overcome this, we thus make some modifications in (10) so as to allow for larger sparse regularisation on x and to encode smoothness on b, while removing the explicit dependence on 𝛼. Recalling (4) and for 𝛾, 𝜆 1 , 𝜆 2 ≥ 0 we thus consider the functional:

E Ŷsim [𝐿 𝐺 (x, b, 𝜑)] = 𝛾 2 ∥𝚿x + b -E[Y real ] ∥ 2 -E Ŷsim 𝐷 𝜑 (Y sim (x, b)) + 𝜆 1 ∥x∥ 1 + 𝜆 2 2 ∥∇b∥ 2 , ( 11 
)
which we use in (3) together with 𝐿 𝐷 in [START_REF] Dardikman-Yoffe | Learned sparcom: unfolded deep super-resolution microscopy[END_REF] for training. Note that the last term in [START_REF] Stergiopoulou | Col0rme: Super-resolution microscopy based on sparse blinking/fluctuating fluorophore localization and intensity estimation[END_REF] can be neglected as we assume 𝜎 2 to be known/estimated in advance.

OPTIMISATION INSIGHTS

For the minimisation problems in (3) under the choice ( 5) and ( 11) suitable algorithms can be used. In particular, due to the convenient structure [START_REF] Stergiopoulou | Fluctuation-based deconvolution in fluorescence microscopy using plug-and-play denoisers[END_REF], the computation of ∇ x E Ŷsim [𝐿 𝐺 (x, b, 𝜑)] (and similarly of ∇ b ) can be done by using standard gradient/proximal operators for all terms but ∇ x E Ŷsim 𝐷 𝜑 (Y sim (x, b) . To deal with it, we write:

∇ x E Ŷsim 𝐷 𝜑 (Y sim (x, b) = ∇ x E Z [ℎ(z, b)] ,
with ℎ(z, b) := E Ŷsim 𝐷 𝜑 ( Ŷsim (z, b)) , and then follow similar arguments as in [START_REF] Cachia | Fluorescence image deconvolution microscopy via generative adversarial learning (FluoGAN)[END_REF] to obtain:

∇ x E Z [ℎ(z, b)] = E Z {ℎ(z + e i , b) -ℎ(z, b)} 𝑖=1,...,𝑛 1 𝑛 2 , (12) 
where e 𝑖 is the 𝑖-th vector of the canonical basis in R 𝑛 1 𝑛 2 . Since by definition [START_REF] Cachia | Fluorescence image deconvolution microscopy via generative adversarial learning (FluoGAN)[END_REF] there trivially holds:

Y sim (z+e i , b) ∼ 𝛼P (𝚿(z+e i ) +b) +N = 𝛼P (𝚿z+C 𝑖 +b) +N, with C 𝑖 being the 𝑖-th column of 𝚿, we have Y sim (z + e i , b) = Y sim (z, b + C 𝑖 ).
Carrying on calculations in [START_REF] Goodfellow | Generative adversarial nets[END_REF] we thus get:

∇ x E Z [ℎ(z, b)] = E Z E Ŷsim 𝐷 𝜑 ( Ŷsim (z, b + C 𝑖 )) -E Ŷsim 𝐷 𝜑 ( Ŷsim (z, b)) 𝑖=1,...,𝑛 1 𝑛 2 = E Ŷsim 𝐷 𝜑 (Y sim (x, b + C 𝑖 )) -E Ŷsim 𝐷 𝜑 (Y sim (x, b)) 𝑖=1,...,𝑛 1 𝑛 2
Proceeding similarly for ∇ b E Ŷsim 𝐷 𝜑 (Y sim (x, b) , we get:

∇ b E Ŷsim 𝐷 𝜑 (Y sim (x, b)) = E Ŷsim 𝐷 𝜑 (Y sim (x, b + e 𝑖 )) -E Ŷsim 𝐷 𝜑 (Y sim (x, b))
𝑖=1,...,𝑚 1 𝑚 2 . Thanks to these computations we can now make precise the type of algorithms used for minimising (3) under the choice ( 5) and [START_REF] Stergiopoulou | Fluctuation-based deconvolution in fluorescence microscopy using plug-and-play denoisers[END_REF]. We alternate minimisation over (x, b) for [START_REF] Stergiopoulou | Fluctuation-based deconvolution in fluorescence microscopy using plug-and-play denoisers[END_REF] and over the parameter network 𝜑 of the discriminator 𝐷 𝜑 for [START_REF] Dardikman-Yoffe | Learned sparcom: unfolded deep super-resolution microscopy[END_REF]. As far as the optimisation of ( 11), we consider block-coordinate proximal gradient descent, where the gradient terms are computed explicitly and using the expressions above, while non-negativity constraints and, in the case of x, the sparsity-promoting regularisation is enforced using a ReLu (i.e. a soft-thresholding operator restricted to the nonnegative orthant). Optimisation of ( 5) is performed using ADAM [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF].

NUMERICAL RESULTS

We validate FluoGAN on a sequence of 𝑇 = 500 of data {y 𝑡 } generated using the SOFI simulator [START_REF] Girsault | SOFI simulation tool: A software package for simulating and testing super-resolution optical fluctuation imaging[END_REF], a tool developed to simulated realistic fluctuations based on a given spatial pattern, see Fig. 1a) for the image ȳ. With the future intent of testing our model on real Argolight slides, we simulated a spatial ground-truth spatial pattern x * ∈ R 𝑛 1 ×𝑛 2 composed by a sequence of parallel lines which are 100 nm wide. The separation distance 𝑑 (centre-to-centre distance) between the two middle lines of each set is gradually decreasing from 390 nm up to 120 nm with a rate of 30𝑛𝑚, see Fig. 1b) for a detail at 𝑑 = 120𝑛𝑚. To simulate realistic acquisitions we provided SOFI tool with a smoothly varying background image b * ∈ R 𝑚 1 ×𝑚 2 , see 1c). Note that in Fig. 1a) inner lines can hardly be distinguished at all distances 𝑑. We apply FluoGAN to reconstruct the small ROI highlighted in red. The physical inspired simulator (1) requires also the use of physical parameters describing the microscope PSF, which we estimated to be of FWHM=318 nm. We fixed an undersampling factor 𝐿 = 4. The standard deviation 𝜎 of the Gaussian noise component was provided beforehand. Regarding the structure of 𝐷 𝜑 , we consider a convolutional neural network (CNN) with 3 convolutional layers performing convolutions of size 3 with max pooling and with 32 initial channels. A careful selection of the step-size parameters 𝜏 x , 𝜏 b and 𝜏 𝜑 must be performed to guarantee convergence. Regularisation parameters 𝛾, 𝜆 1 , 𝜆 2 was chosen manually. Training is performed for 5000 epochs with mini-batches of 200 images.

The numerical reconstruction obtained shows that the two inner lines can be indeed be reconstructed at a distance 𝑑 = 120 nm, up to some reconstruction biases induced by the use of the ℓ 1 norm as a regulariser. Further tests and validation on more challenging real data have to be performed to assess the robustness of the approach. 

CONCLUSION

In this paper we proposed a precise model to generate fluorescence fluctuations data by means of a suitable double Poissontype stochastic process and use it as a generator in a GAN approach. The super-resolved image x and the background image b are estimated to produce samples with a distribution D sim close to the experimental distribution D in the Wasserstein distance sense. The computation of the objective function and its gradient is provided and a first numerical result shows the pertinence of the approach. Further simulations as well as real data on a real Argolight slide are underway and will be compared to state of the art methods.
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  (a) Temporal mean ȳ of fluctuating stack simulated by SOFI tool. (b) GT, 𝑑 = 120𝑛𝑚. (c) Simulated b * . (c) FluoGAN result.

Fig. 1 :

 1 Fig.1: Reconstruction of data generated using the SOFI tool[START_REF] Girsault | SOFI simulation tool: A software package for simulating and testing super-resolution optical fluctuation imaging[END_REF] using Arolight slide-type patterns.
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