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Abstract

The ΛCDM standard model of cosmology involves two dark components of the universe,
dark energy and dark matter. Whereas dark energy is usually associated with the (posi-
tive) cosmological constant Λ associated with a de Sitter geometry, we propose to explain
dark matter as a pure QCD effect, namely a gluonic Bose Einstein condensate with the sta-
tus of a Cosmic Gluonic Background (CGB). This effect is due to the trace anomaly viewed
as an effective negative cosmological constant determining an Anti de Sitter geometry
and accompanying baryonic matter at the hadronization transition from the quark gluon
plasma phase to the colorless hadronic phase. Our approach also allows to assume a ra-
tio Dark/Visible equal to 11/2.
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1 Introduction

Let us start out this group theoretical oriented contribution with three motivating quotes. The
first one from Newton and Wigner (1949) [1] is about the concept of elementary system.

The concept of an “elementary system” requires that all states of the system be obtain-
able from the relativistic transforms of any state by superpositions. In other words,
there must be no relativistically invariant distinction between the various states of the
system which would allow for the principle of superposition. This condition is often
referred to as irreducibility condition ...
The concept of an elementary system (...) is a description of a set of states which
forms, in mathematical language, an irreducible representation space for the inho-
mogeneous Lorentz (≃ Poincaré) group

The second one from Fronsdal (1965) [2] is about curvature versus flatness of space-time.

A physical theory that treats spacetime as Minkowskian flat must be obtainable as
a well-defined limit of a more general physical theory, for which the assumption of
flatness is not essential.

The third one from Sakharov [3], quoted by Adler in [4].

The presence of the action

Sgrav =
1

16πG

∫

d4 x
p

−g(R− 2Λ) , (1)

leads to a metrical elasticity of space, i.e., to generalized forces which oppose the
curving of space. Here we consider the hypothesis which identifies the action (1) with
the change in the action of quantum fluctuations of the vacuum if space is curved.

These statements are the leitmotiv guiding our interpretation of dark matter, as it will be
exposed in the sequel. Section 2 is devoted to the description of three fundamental space-time
symmetries, Poincaré group and its two deformations, de Sitter (dS) and Anti de Sitter (AdS)
groups, and their respective significance in terms of invariants, spin, mass, and “energy at rest”.
Cosmology chronology is put in perspective in Section 3 with regard to our interpretation [5,6]
of the dark matter as a gluonic Bose-Einstein condensate emerging at the end of the so-called
quark period (see also [7–9] about the genesis of our common work). Following the short
conclusion (Section 4), we give in Appendix A some insight in relation with theΛCDM standard
model.
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2 Three maximal symmetries, Poincaré, dS, AdS

2.1 The place of the cosmological constant

Firstly let us observe that there exist two standpoints about the Einstein equation of general
relativity [10]:

• Standpoint 1

Rµν −
1
2
R gµν

︸ ︷︷ ︸

geometrical content

= −κ Tµν −Λ gµν
︸ ︷︷ ︸

matter content

, κ=
8πG

c4
. (2)

Here, the fundamental state that contains the maximum number of symmetries is the
Minkowskian geometry, and the cosmological term Λgµν may be interpreted as an extra
pressure, named world matter by de Sitter in his debate with Einstein:

Λ> 0∼ “dark energy” , Λ< 0∼ “dark matter” ?

• Standpoint 2

Rµν −
1
2
R gµν +Λ gµν

︸ ︷︷ ︸

geometrical content

= −κ Tµν
︸ ︷︷ ︸

matter content

. (3)

Here, the fundamental states that contain the maximum number of symmetries are the
de-Sitter (dS) (Λ≡ ΛdS > 0) and the Anti-de-Sitter (AdS) (Λ≡ ΛAdS < 0) geometries.

Note that the split between these two standpoints should not be considered as absolute, since
we could as well model situations in a mixed way:

• Standpoint 3

Rµν −
1
2
R gµν +ΛL gµν

︸ ︷︷ ︸

geometrical content

= −κ Tµν −ΛR gµν
︸ ︷︷ ︸

matter content

. (4)

2.2 Two unique deformations of Poincaré symmetry

From the above di-or tri-lemna let us give present some points in favor of dS/AdS studies

• dS and AdS are maximally symmetric (remind that in a metric space of dimension n, the
maximum number of metric preserving symmetries is n(n+ 1)/2, here 10 since n= 4).

• Their symmetries are one-parameter deformations of Minkowskian symmetry with

– negative curvature −cdS = −
p

ΛdS/3 (= −H/c, H: Hubble parameter)

– positive curvature cAdS =
p

|ΛAdS|/3

respectively

• As soon as a constant curvature is present, we lose some of our so familiar conservation
laws like energy-momentum conservation!

• Then what is the physical meaning of a scattering experiment (“space” in dS is like the
sphere S3, let alone the fact that time is ambiguous)?
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Figure 1: The eleven kinematics (Bacry & Levy-Leblond, JMP (1968)). From [12].

• Which relevant “physical” quantities are going to be considered as (asymptotically? con-
tractively?) experimentally available?

In addition to the previous observations, we should insist on the fact that dS and AdS sym-
metries are the two unique deformations of the Poincaré symmetry. They occupy the extreme
vertex of the cubic diagram in Figure 1 showing the eleven kinematics classified by Bacry &
Levy-Leblond (1968) [11]. More precisely, under the assumptions that space is isotropic (ro-
tation invariance), parity and time-reversal are automorphisms of the kinematical groups, and
inertial transformations in any given direction form a noncompact subgroup, then there are
eight types of Lie algebras for kinematical groups corresponding to eleven possible kinematics.
These algebras are [11]:

R1 The two de Sitter Lie algebras isomorphic, respectively, to the Lie algebras of SO(4,1)
and SO(3,2);

R2 The Poincaré Lie algebra;

R3 Two “para-Poincaré” Lie algebras, of which one is isomorphic to the ordinary Poincaré
Lie algebra but physically different and the other is the Lie algebra of an inhomogeneous
SO(4) group;

R4 The Carroll Lie algebra;

A1 The two “nonrelativistic cosmological” Lie algebras;

A2 The Galilei Lie algebra;

A3 The “para-Galilei” Lie algebra;

A4 The “static” Lie algebra.

While the Lie algebras of class R have no nontrivial central extensions by a one-parameter Lie
algebra, those of class A each have one class of such extensions. Hence, with the requirements
of kinematical rotation, parity, and time-reversal invariance, there exists only one way to de-
form the proper orthochronous Poincaré group R1,3 ⋊ SO0(1,3) (or R1,3 ⋊ SL(2,C)), namely,
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Figure 2: Left: the one-sheeted de Sitter hyperboloid as a manifold embedded in the
1+4 Minkowski space-time. x0 might be chosen as a time parameter, but there is no
global time-like Killing vector. Right: the one-sheeted Anti de Sitter hyperboloid as
a manifold embedded in the 2+3 ambient space. Angular position along the central
belt can be chosen as a local time coordinate, and it is in one-to-one correspondence
with a global time-like Killing vector.

in endowing space-time with a certain curvature. This leads to the two simple Lie groups,
namely the ten-parameter de Sitter group SO0(1,4) (or its universal covering Sp(2,2)) and
the ten-parameter Anti de Sitter group SO0(2, 3) (or its two-fold covering Sp(4,R)).

2.3 de Sitter and anti-de-Sitter Geometries

The de Sitter space may be viewed (on the left in Fig. 2) as a one-sheeted hyperboloid em-
bedded in a five-dimensional Minkowski space with metric ηαβ = diag(1,−1,−1,−1,−1) (but
keep in mind that all points are physically equivalent):

MdS ≡
§

x ∈ R5; x2 = ηαβ xαxβ = −
3
ΛdS

ª

, α,β = 0, 1,2, 3,4 . (5)

The Anti de Sitter space may as well be viewed (on the right in Fig. 2) as
a one-sheeted hyperboloid embedded in another five-dimensional space with metric
ηαβ = diag(1,−1,−1,−1,1) (here too all points are physically equivalent):

MAdS ≡
§

x ∈ R5; x2 = ηαβ xαxβ =
3
|ΛAdS|

ª

, α,β = 0, 1,2, 3,5 . (6)

Note that the fifth dimension is space-like in dS whereas it is time-like in AdS.

2.4 Compared classifications of Poincaré, dS and AdS UIR’s for quantum ele-
mentary systems

In a given unitary irreducible representation (UIR) of dS and AdS groups, (∼ elementary
system in Wigner’s sense) their respective generators map to self-adjoint operators in Hilbert
spaces of spinor-tensor valued fields on dS and AdS respectively:

Kαβ 7→ Lαβ =Mαβ + Sαβ , (7)

with orbital part Mαβ = −i(xα∂β−xβ∂α) and spinorial part Sαβ acting on the field components.
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The physically relevant UIR’s of the Poincaré, dS and AdS groups are denoted by P>(m, s)
(“>” for positive energies), UdS(ςdS

, s), and UAdS(ςAdS, s), respectively. These UIR’s are spec-
ified by the spectral values 〈·〉 of their quadratic and quartic Casimir operators. The latter
define two invariants, the most basic ones being predicted by the relativity principle, namely
proper mass m for Poincaré and ς

dS
, ςAdS for dS and AdS respectively, and spin s for the three

cases (see [12] and references therein).

Poincaré

For Poincaré the Casimir operators are fixed as

Q(1)Poincaré = Pµ Pµ = P02 − P2 = m2 c2 ,

Q(2)Poincaré =WµWµ = −m2 c2 s(s+ 1)ħh2 , Wµ :=
1
2
εµνρσJνρPσ .

(8)

de Sitter

For de Sitter,

Q(1)dS = −
1
2

LαβLαβ = ς2
dS
−
�

s−
1
2

�2

+ 2≡ 〈Q(1)dS 〉 ,

Q(2)dS = −WαWα =
�

ς2
dS
+

1
4

�

s(s+ 1) , Wα := −
1
8
εαβγδηLβγLδη .

(9)

Anti-de-Sitter

For anti-de Sitter,

Q(1)AdS = −
1
2

LαβLαβ = ςAdS(ςAdS− 3) + s(s+ 1)≡ 〈Q(1)AdS〉 ,

Q(2)AdS = −WαWα = −(ςAdS− 1)(ςAdS− 2)s(s+ 1) , Wα := −
1
8
εαβγδηLβγLδη .

(10)

2.5 Proper mass versus “at rest” energy in de Sitter and anti-de-Sitter

While the proper mass is identified as the at rest energy, which means the energy spectrum
infimum in Minkowski, these two quantities come apart in de Sitterian/anti-de Sitterian geom-
etry. They have to be devised from a flat-limit viewpoint, i.e., from the study of the contraction
limit Λ→ 0 of these representations

Proper mass versus at rest energy in de Sitter: Garidi mass

In this respect, a mass formula for dS has been established by Garidi (2003) [13]:

m2
dS :=
ħh2ΛdS

3c2
(〈Q(1)dS 〉 − 2) =

ħh2ΛdS

3c2

�

ς2
dS+
�

s−
1
2

�2
�

. (11)

This definition should be understood through the contraction limit of representations:

dSUIR−→ PoincaréUIR.

More precisely, with

ΛdS→ 0 , ςdS→∞ , while fixing ςdSħh
p

ΛdS/
p

3c = mPoincaré ≡ m , (12)
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we have
UdS(ςdS, s) −→

ΛdS→0 , |ςdS|→∞
|ςdS|
p
ΛdS/
p

3=mc
ħh

c>P>(m, s)⊕ c<P<(m, s) . (13)

This result was proved in [14] and discussed in [15]. Note the breaking of dS irreducibility
into a direct sum of two Poincaré UIR’s with positive and negative energy respectively. To
some extent the choice of the factors c<, c>, is left to a local tangent observer. The latter will
naturally fix one of these factors to 1 and so the other one is forced to vanish. This crucial
dS feature originates from the dS group symmetry mapping any point (x0,P) ∈ HdS into its
mirror image (x0,−P) ∈ HdS with respect to the x0-axis. Under such a symmetry the four
dS generators La0, a = 1, 2,3, 4, (and particularly L40 which contracts to energy operator!)
transform into their respective opposite −La0, whereas the six Lab ’s remain unchanged. We
think that the mathematical fact (13) should be carefully revisited with regard to the inflation
scenario and the breaking of the matter-antimatter symmetry [16].

Proper mass versus at rest energy in Anti de Sitter

Concerning AdS a mass formula similar to that one for dS exists
[10,17]:

m2
AdS =

ħh2|ΛAdS|
3c2

�

〈Q(1)AdS〉 − 〈Q
(1)
AdS|ςAdS=s+1〉
�

=
ħh2|ΛAdS|

3c2

�

�

ςAdS−
3
2

�2

−
�

s−
1
2

�2
�

.
(14)

One here deals with the AdS group representations UAdS(ςAdS, s) with ςAdS ≥ s + 1 (discrete
series and its lowest limit), and their contraction limit holds with no ambiguity:

UAdS(ςAdS, s) −→
ΛAdS→0 ,ςAdS→∞
ςAdS

p
|ΛAdS|/3=

mc
ħh

P>(m, s) . (15)

Proper mass as an absolute invariant

Now, contraction formulae for both dS and AdS give us the freedom to write

mdS = mAdS = m .

This agrees with the Einstein position that the proper mass of an elementary system should be
independent of the geometry of space-time, or equivalently it should not exist any difference
between inertial and gravitational mass.

Rest energy of a free particle in AdS versus dS and Poincaré

Each Anti-deSitterian quantum elementary system (in the Wigner sense) has a discrete energy
spectrum bounded below by its rest energy [18–20]

Erest
AdS =

�

m2c4 +ħh2c2 |ΛAdS|
3

�

s−
1
2

�2
�1/2

+
3
2
ħh

√

√ |ΛAdS|
3

c . (16)

Hence, to the order of ħh, a “massive” AdS elementary system is a deformation of both a rela-
tivistic free particle with rest energy mc2 and a 3d isotropic quantum harmonic oscillator with
ground state energy 3/2ħh

p

|ΛAdS|/3 c ≡ 3/2ħhωAdS [21,22].
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In contrast to AdS, energy is ill-defined for dS. However a local tangent observer will
naturally choose the invariant with positive sign:

Erest
dS =

�

m2c4 −ħh2c2ΛdS

3

�

s−
1
2

�2
�1/2

. (17)

Noticeable simplification in both AdS and dS for fermions s = 1/2:

for dS : Erest
dS = mc2 , (18)

for AdS: Erest
AdS = mc2 +

3
2
ħhωAdS . (19)

In the massless case and spin s, we have

for dS : Erest
dS = ±iħh

√

√ΛdS

3
c
�

s−
1
2

�

, (20)

for AdS: Erest
AdS = ħh

√

√ |ΛAdS|
3

c(s+ 1) . (21)

Therefore, while for dS the energy at rest makes sense only for massless fermionic systems and
is just zero, for AdS the energy at rest makes sense for any spin, and in particular for spin 1
massless bosons we get

Erest
AdS = 2ħhωAdS , (22)

and for scalar massless bosons
Erest

AdS = ħhωAdS . (23)

3 Dark matter from QCD: A relic of quark period

We now explain the rôle of the above material in our interpretation of Dark Matter.

3.1 Cosmology chronology: The salient stages

Let us start out with the cosmology chronology depicted in Figures 3 and 4 (see for instance
[25] for a comprehensive account of early cosmology versus particle physics). In Figure 4,
the cosmic evolution is schematized on the thick line, on which the cosmic time, that is pro-
portional to the logarithm of the scale factor, is made implicit, by replacing all dimensioned
quantities depending on the local time t, by “effective co-moving densities” that are scaled by
the scale factor depending on a global time.

In Figure 4 Greek letters represent noticeable events, to be understood as phase transitions
for γ (electroweak symmetry breaking), δ (hadronization or color confinement), ε (domi-
nance of matter over radiation), as Universe temperature (∼ thermal time) is decreasing from
the “Planck epoch” to ours. Futhermore, one should not omit the neutrino decoupling, lying
between δ and ε, at a temperature T ≈ 1 MeV, as shown in Figure 3 (electroweak phase tran-
sition). Now, the cosmic microwave background (CMB) is the relic of the photon decoupling,
i.e., when photons started to travel freely through space rather than constantly being scat-
tered by electrons and protons in plasma. This represents a pure QED effect, and one of its
outcome is precisely that we see or experience those photons. Similarly, the cosmic neutrino
background (CNB) is the relic of the neutrino decoupling when the rate of weak interactions
between neutrinos and other forms of matter dropped below the rate of expansion of the Uni-
verse, which produced a cosmic neutrino background of freely streaming neutrinos. In turn,
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Figure 3: Cosmology chronology (from http://zebu.uoregon.edu/images/bb_
history.gif).

this represents a pure electroweak effect. Our interpretation of Dark Matter is based on a
similar scenario: gluonic component of the quark epoch (quark-gluon plasma) freely subsists
after hadronization within an effective AdS environment. This represents a pure QCD effect,
and we do not observe those gluons but we observe their gravitational effects. Hence, dark
matter could be as well named cosmic gluonic background (CGB)... But let us tell more about
dark matter.

According to the Planck 2018 analysis [26] of the CMB power spectrum, our Universe
is spatially flat, accelerating, and composed of 5% baryonic matter, 27% cold dark matter
(CDM, non baryonic) and 68% dark energy (Λ) [27]. (Cold) dark matter is observed by its
gravitational influence on luminous, baryonic matter The dark matter mass halo and the total
stellar mass are coupled through a function that varies smoothly with mass (with controversial
exception(s)). One can notice that, up to now, all hypothetical particle models (WIMP, Axions,
Neutrinos ...) failed direct or indirect detection tests. Similarly, alternative theories (e.g.
MOND) for dark matter have failed to explain clusters and the observed pattern in the CMB,
despite recurrent propitious announcements...

3.2 Quark-gluon plasma: Experimental evidence

The main physical ingredient of our interpretation [5] is the specific state of matter Quark-
Gluon Plasma (QGP), e.g., see Figure 5, characteristic of the Quark Epoch quark, i.e. from
10−12s to 10−6s, with temperature T > 1012K (point δ in Figure 4). Theories predicting the
existence of quark-gluon plasma were developed in the late 1970s and early 1980s (Satz,
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Figure 4: Cosmology chronology: Hubble radius L(a) ≡ H−1(a) (c = 1) is plotted
versus the scale factor a(t)≡ R(t) in logarithmic scale (from [7]).

Figure 5: From Strong interactions News: Protons probe quark-gluon plasma at CMS,
13 January 2017.

Rafelsky, Kapusta, Müller, Letessier...), and the quark-gluon plasma was detected for the first
time at CERN (2000). Lead and gold nuclei have been used for collisions yielding QGP at CERN
SPS and BNL RHIC, respectively. The current estimate of the hadronization temperature for
light quarks is Tc f = 156.5±1.5 MeV ≈ 1.8×1012 K (“chemical freeze-out temperature”). See
for instance [28–30].

3.3 Quark-gluon plasma and effective AdS geometry

Our scenario [5] is that the colorless gluonic component (e.g., digluons) of the quark epoch
which freely subsists after hadronization within an effective AdS environment (QCD effect) is
the dark matter. As a matter of fact the contribution of the so-called di-gluons through what
is called by Adler [4] the gluon pairing amplitude to the QCD trace anomaly reads as

¬

Tµµ
¶

0
= −

1
8

�

11Nc − 2N f

�

Dαs

π

�

F a
µνF aµν
�rE

0
, (24)

where Nc is the number (=3) of colors, and N f the effective number of quark flavors which
was put at 3 as a first guess, but will rather be considered as an adjustable parameter in [16],
with the purpose of matching the two standard models, the one of particle phyics and the one
of comology.. As asserted by G. Cohen-Tannoudji [8]

The minus sign in the right hand side shows that when the factor
�

11Nc − 2N f

�

is
positive, all the QCD condensates contribute negatively to the energy density, which
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means that the QCD world-matter is globally an AdS world-matter (dominance of an
AdS world-matter over a smaller dS world-matter),

and so

• the bosonic (gluon) loops, proportional to Nc , contribute to the AdS world matter,

• the fermionic (quark) loops, proportional to N f , contribute to the normal dS world mat-
ter.

Compare the ratio
11
2

Nc

N f
∼ 5.5 with the estimate [dark matter]/[visible matter]∼ 27/5= 5.4.

3.4 Cold dark matter: Bose-Einstein condensation of (di-)gluons in effective
anti-de Sitter geometry

We now explain the mechanism which makes the remaining gluonic component the dark mat-
ter or CGB. First we remind that in an AdS geometry:

Erest
AdS =

�

m2c4 +ħh2c2 |ΛAdS|
3

�

s−
1
2

�2
�1/2

+
3
2
ħh

√

√ |ΛAdS|
3

c . (25)

As an assembly of NG non-interacting (i.e., colorless) scalar bosonic di-gluons with individ-
ual energies En = Erest

AdS + nħhωAdS with Erest
AdS is mc2 (m = mG can be zero or negligible) and

degeneracy gn = (n + 1)(n + 3)/2, those remnant components, analogous to isotropic har-
monic oscillators in 3-space, are assumed to form a grand canonical Bose-Einstein ensemble
whose chemical potential µ is, at temperature T , fixed by the requirement that the sum over
all occupation probabilities at temperature T yields

NG =
∞
∑

n=0

gn

exp
�

ħhωAdS
kB T (n+ ν0 −µ)

�

− 1
, ν0 :=

Erest
AdS

ħhωAdS
. (26)

The number NG is very large and so the gas condensates at temperature

Tc ≈
ħhωAdS

kB

�

NG

ζ(3)

�1/3

, ζ(3)≈ 1.2 (Riemann zeta function) , (27)

to become the currently observed dark matter. The above formula involving the value
ζ(3) ≈ 1.2 of the Riemann function is standard for all isotropic harmonic traps (see for in-
stance [31]). Actually there is no harmonic trap here, it is the AdS geometry due to QCD trace
anomaly which originates the harmonic spectrum on the quantum level. To support this sce-
nario it is known from ultra-cold atoms physics that Bose Einstein condensation can occur in
non-condensed matter but also in gas, and that this phenomenon is not linked to interactions
but rather to the correlations implied by quantum statistics.

Although we do not precisely know at which stage beyond the hadronization phase tran-
sition does take place the gluonic Bose Einstein condensation, let us see if our estimate on
Tc yields reasonable orders of magnitude. Take Tc equal to the current CMB temperature,
Tc = 2.78K, and |ΛAdS| ≈

5.5
6.5 ×

11
24 ×ΛdS = 0.39×ΛdS (an estimate based on the ΛCDM model,

see complements), with ΛdS ≡ present Λ = 1.1× 10−52m−2. We then get the estimate on the
number of di-gluons in the condensate:

NG ≈ 5× 1088 . (28)

This seems reasonable since the gluons are around 109 times the number of baryons, and the
latter is estimated to be around 1080.
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4 Conclusion

We have tentatively explained dark matter by actually asking a simple question (!): what
becomes the huge amount of gluons after the transition from QGP period to hadronization?
Similarly to the emergence of the two validated CMB (QED effect) and CNB (electroweak
effect), we propose to consider Dark Matter, observed through its gravitational effects, as a
pure QCD effect. From our viewpoint it would legitimate to replace the puzzling expression
“Dark Matter” with the realistic “Cosmic Gluonic Background”.

A Complements: Facts of ΛCDM standard model

Let us recall the cosmological formalism (c = 1) based on the Robertson metric. In an isotropic
and homogeneous cosmology, the Einstein’s equation reads as

Rµν −
1
2

gµνR= 8πGTµν +Λgµν , (A.1)

where the stress energy momentum stands for a perfect fluid with density ρ and isotropic
pressure P, i.e.,

Tµν = −P gµν + (P +ρ)uµuν . (A.2)

Its solution is the Robertson metric:

ds2 = dt2 − R2(t)

�

dr2

1− kr2
+ r2
�

dθ2 + sin2 θ dφ2
�

�

, (A.3)

where k is the curvature index, and R(t) is the time-dependent radius of the universe. It is the
cosmological scale factor (also noted a(t)) which determines proper distances in terms of the
comoving coordinates. The radial variable r is dimensionless.

The radius R, the density ρ, and the pressure P obey the Friedmann-Lemaître (FL) equa-
tions of a perfect fluid modelling the material content of the universe.

H2 ≡
�

Ṙ
R

�2

=
8πGρ

3
−

k
R2
+
Λ

3
, (A.4)

R̈
R
=
Λ

3
−

4πG
3
(ρ + 3P) , (A.5)

ρ̇ = −3H (ρ + P) (Conservation of the energy) . (A.6)

Note that the cosmological term Λgµν is taken to the right-hand side of the Einstein’s equation
and may be interpreted as an extra pressure, named world matter by de Sitter in his debate
with Einstein:

Rµν −
1
2

gµνR= 8πG (P +ρ)uµuν + (Λ− 8πGP)gµν . (A.7)

According to the sign of this extra pressure one talks of a de Sitter world matter (Λ positive,
pressure negative) or an anti-de Sitter world matter (Λ negative, pressure positive). From the
first FL equation at Λ≈ 0 one derives

k
R2
=

8πG
3
ρ −H2 ≡

8πG
3
ρ −

8πG
3
ρc , ρc :=

3H2

8πGN
, (A.8)

where ρc is the so-called critical density. Since the (∼ observed) flatness rule k = 0 expresses
the vanishing of the spatial curvature one can write

ρ −ρc ≡ ρvis +ρDM +ρDE −ρc = 0 , (A.9)
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Figure 6: From [32]: 68.3 %, 95.4 % and 99.7% Confidence level contours on
ΩΛ ≡ ΩDE and Ωm obtained from CMB, BAO and the Union SN set (P/ρ ≡ w= −1).
This is “Concordance Cosmology”: The contributions of the cosmological constant
ΩΛ and of the (ordinary + dark) matter Ωm to the ratio total density/critical density,
i.e., the density for which the Universe is spatially flat, are yielded (modulo their un-
certainty ranges) through Supernovae (SNe), Baryonic Acoustic Oscillations (BAO),
and Cosmic Microwave Radiation (CMB). One sees that alternative models to Big
Bang (No Nig Bang) are excluded. The straight line ΩΛ +Ωm = 1 which is marked
“flat” corresponds to a spatially flat Universe.

with
ρvis = ρbar +ρrad , ρDE =

Λ

8πGN
. (A.10)

Hence ρc is the energy density at the boundaries in the far past and in the far future of
the Hubble horizon in the absence of any “integration constant” Λ and any spatial curvature
(k = 0). Next, from the second FL equation

R̈
R
=
Λ

3
−

4πGN

3
(ρ + 3P)≡ −

4πGN

3
(ρ − 2ρDE + 3P)≡ −

4πGN

3
(ρeffective + 3P) , (A.11)

one infers that at the inflection points R̈= 0 one has the “equation of state” (EoS)

winflexion ≡ P/ρeffective = −1/3 .

Inside the “confidence area” of the figure 6 in which ΩΛ = ρDE/ρc is expressed versus
ΩM = ρm/ρc one finds the points

• (ΩDM,ΩDE +Ωvis) ,

• (Ωm = 1/3,ΩDE = 2/3) .
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The value ΩDE = 2/3 results from our assumption completing the flatness sum rule as which
the total energy vanishes (from the Robertson metric):

ρvis +ρDM +ρDE = ρc =
3
2
ρDE . (A.12)
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