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Fig. 1: Detection and pose estimation of two fallen objects on the ground. 3D models of the objects are placed on their
estimated poses to compare the resulting RGB and depth images with the ones captured by the robot’s camera.

Abstract— Automating in-store logistics processes in the retail

industry poses significant challenges for robot manipulators.

Contrary to warehouses, retails stores are subject to customer

actions, which can imply non-standard tidying of products. This

paper addresses the problem of detecting, discriminating, and

accurately estimating the 6 degrees-of-freedom (6-DOF) pose

of individual products, even in unexpected positions such as

fallen or wrongly placed objects. The trained object detection

model successfully discriminated similar-shaped objects of dif-

ferent brands/types commonly found in convenience stores. The

detection is used to initialized the object position while several

possible orientations are explored by a Fibonacci Multi-Start

method. The estimated pose is then refined by a multi-scale

projective Iterative Closest Point (ICP). The evaluation of the

complete 6-DOF pose estimation module revealed its consistent

ability to converge to the correct pose, avoiding local optima and

achieving sub-millimetric precision. A working demonstration

is presented, showcasing a robot rearranging a convenience

store shelf. The overall system demonstrated the ability to

detect fallen objects, estimate their poses, determine suitable

grasping directions, and execute successful grasps. Importantly,

the system’s feasibility with minimal human intervention was

demonstrated, allowing easy addition of new objects by conve-

nience store employees or other stakeholders.

I. INTRODUCTION

The utilization of robot manipulators is increasingly
expanding within the retail industry, primarily for
warehousing purposes [1]. However, automating in-
store logistics processes using these manipulators remains
a challenging endeavor. The automation of the commercial
part of supermarkets not only requires to handle individual
products, as opposed to boxes containing group of them, but
also the capacity to cope with unexpected events caused by
customers such as wrongly placed or fallen products. The
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challenges raised by the handling of individuals products
have been exemplified during the different editions of
the Amazon Picking Challenge [2]. Perception and object
detection was listed as the most difficult task by the
participant teams [2] and was the most common cause of
failures even for the winning team [3]. The case of objects
in fallen or unexpected positions is partially covered in the
Future Convenience Store robotic challenge launched by
the World Robotic Summit, in the Stock and Disposal Task
[4]. However, participants use Augmented Reality (AR)
markers for pose estimation [4] [5]. While this approach
offers convenient and accurate pose estimation, it has
some limitations. First, it necessitates repackaging all retail
products. Second, AR markers must be present on every
object face to account for potential customer-induced pose
variations. Last, accurately marking non-flat surfaces could
pose challenges.

Several methods can be used for 6 degrees-of-freedom
(6-DOF) pose estimation of objects without markers.
Using only 2D images is possible but with a precision
range of 1-10 cm [6], so depth information is commonly
integrated. The 2022 BOP Challenge winner [7] achieves
top results on standard datasets but demands per-object
network training, a time/resource-intensive process. It also
necessitates challenging-to-acquire ground truth object
poses for training. Other commonly used methods for pose
estimation such as DenseFusion [8] and PoseCNN [9] were
not considered as accurate enough by the european project
REFILLS as they yield a successful pose localization if the
value of the average closest point distance (ADD-S) metric
is below 2 cm [10], which is not suitable for a precise
grasping. To tackle this issue, [10] uses a two-step method
starting with a Convolutional Neural Network (CNN) that
gives an initial coarse estimation of the object’s pose, which
is then refined by a visual servoing module, achieving an



impressive precision of 2 mm. However, the use of visual
servoing has several drawbacks. As raised by the authors,
this approach is suitable only for texture-rich objects. It
also necessitates a desired grasp image for each possible
grasping position. The authors worked with plain white
background, but more textured ones may make the system
less efficient. Finally, it requires an eye-in-hand camera and
can only estimate the exact pose of one object at a time.

In this paper, we present a working demonstration of a
robot rearranging a convenience store shelf using an object
detection and pose estimation system with sub-millimetric
precision. The perception system is able to detect objects in
non-standard positions, such as objects that have fallen off
the shelf. We show its capacity to detect, discriminate and
estimate the pose of multiple similar objects in real-time,
allowing efficient grasping and rearrangement. The overall
detection and pose estimation module only requires a
3D model and a couple of pictures of the object on a
plain background, from different angles. Neither depth
information nor ground truth poses are required for training.
Thus, a new object can be added with minimal human
intervention, by a convenience store employee for example.

II. RELATED WORKS
A. YOLO architecture

The YOLO architecture is a one-stage detector based on
a Convolutionnal Neural Network (CNN) [11]. In 2022,
YOLOv7 achieved state-of-the-art performance and inference
speed on the COCO dataset [12]. In 2023, YOLOv8 was
released as the latest iteration of the YOLO family with
improvements in terms of speed, accuracy and efficiency
[13].

B. Multi-scale pyramidal projective ICP

The authors of [14] have developed an object tracking
method based on a multi-scale pyramidal projective Iterative
Closest Point (ICP). This method projects the 3D model of
the object with the depth camera projection function � :
R3 7! R3. Unlike most previous approaches that undistort
the captured depth image beforehand, this method directly
performs the data association stage in the image plane with
strong distortions. This difference prevents a decrease in
resolution at the image center, where the targeted object is
usually. The captured depth image is noted D⇤ while the
image of the projected 3D model is noted D. The method
then runs an ICP algorithm [15] on three level of a multi-
scale pyramids representation of the object projection and the
captured depth image. The multi-scale pyramids for depth are
noted PD⇤ and PD for the depth image and the projected
object respectively. From these, the method computes multi-
scale pyramids of the vertices PV⇤ and PV, and the surface
normals PN⇤ and PN. The process runs iteratively from the
coarsest to the finest pyramid level, using dense depth pixel-
to-pixel correspondances (u, û) with u 2 R2 a pixel from
the predicted depth image PD and û = �(T,PV(u)) its

corresponding pixel in PD⇤ . As the captured depth image
may suffer from depth-less pixels, only a subset ⌦ of pixels
from the captured depth image is used. This subset contains
only pixels with non-zero depth, under a certain distance
�d 2 R+ from the projected object and of similar orientation
(threshold �✓ 2 [0,⇡]. Then, the method minimizes the
following energy based on point-plane metric [16]:

E(T) =
X

u2⌦

k(TPV(u)�PV⇤(û))>PN⇤(û)k2. (1)

The optimization process leverages the Cholesky decompo-
sition [17].

III. APPROACH
In this section, we describe the overall approach, from the

detection of an object to its manipulation by the robot. The
robot uses a Red, Green, Blue - Depth (RGB-D) camera. A
system overview is presented in figure 2.

Fig. 2: System overview

A. Object Detection

Due to its performance in both accuracy and inference
speed, we select the YOLOv8 architecture described in
section II-A for our Object Detection module.

1) Synthetic dataset generation and training: To train
the model for our targeted objects we need to create a
dataset with annotations. While real images with manually
made annotations are often the best way to achieve high
accuracy, it can take a considerable time to create, even
for a single object. In a supermarket or convenience store
use-case with numerous different products, this method is
therefore not practical. Consequently, we develop a method
to generate a synthetic dataset from a reasonable number of
pictures Np, without any annotation.

We start by taking pictures of the targeted object on a
uniform background, from different angles. From there,
the dataset generation is fully automatic. First, the uniform
background is removed automatically. Several random
transformations are then applied to the resulting isolated
object: rotation, translation, hue, saturation, lightness,
contrast, brightness, blur. The transformed object is then
pasted on a random background, selected among a dataset
of sample images such as ImageNet for instance. Several
random isolated objects are pasted as well before and after
the targeted object is pasted on the background. Finally,
some final transformations such as Gaussian blur are applied
to the resulting image to help blend the objects with the
background. Examples of synthetic training images are
presented with labels in figure 3. The object is a Noodle Cup.



Fig. 3: Synthetic images for training (Noodle Cup)

As the targeted object is pasted on the background,
its ground-truth bounding box is directly known, thus
avoiding the need for manual annotation. This synthetic
data generation method is therefore very efficient in terms
of human intervention. However, it also raises several
challenges. Indeed, there is a ”gap” between synthetic data
and real pictures. First, the isolated images of the object
are all taken in the same conditions. This could lead to
a trained model unable to recognize the object in other
settings, for instance with a different light. This is where the
several random transformations applied to the object prove
their usefulness, avoiding the model overfitting. Another
challenge is that an object pasted on a background will
never achieves flawless integration with its surroundings.
A neural network could then overfit to detect ”pasted
objects” and not the specific targeted object. This is why
pasting other random objects is a very important step
of the dataset generation, as it will force the network
to use the distinguishing features of the object instead of
relying on whether or not it seems pasted on the background.

The initial pictures used for the data generation can be taken
with a studio setup and a rotation table for high resolution
pictures but also in a minimal setup configuration. We tested
our dataset generation with high quality pictures taken from
[18] for one object, while for some other objects we used
pictures taken with a standard smartphone on a basic black
clothe. No significant difference was visible in the resulting
performance of the model on our test cases. A studio setup
with a rotation table can bring consistency and automation
to the process if available, for example in large supermarkets
or warehouses, while the minimal setup test shows that
new objects could be added by employees without specific
equipment, for instance in small convenience stores.

2) Pose initialization from bounding box: After an object
has been detected, we derive a coarse pose estimation from
the bounding box that will be used as initialization for
the point cloud alignment phase described in section III-
B. We take the center pixel of the bounding box and use
the correspondence between the RGB image and the depth
map to obtain its Z coordinate with respect to the camera
frame. Then, the X and Y coordinates in the camera frame
are determined from the camera intrinsic parameters and the
pixel coordinate (xpixel, ypixel) using the following formulas:

(
x = (xpixel�cx)⇤z

fx

y = (ypixel�cy)⇤z
fy

,
(2)

with fx, fy being the focal lengths and (cx, cy) the
principal point of the camera [19].

Using the center point of the bounding box for the position
P = [X,Y, Z]> 2 R3 initalization seems intuitive, but it
can also be justified mathematically. In addendum [20] we
present a mathematical demonstration to show that given a
convex shape S and its bounding box B, the center point is
the only point guaranteed to be part of S.

After estimating the object’s 3D position, an orientation ✓w
is required to complete the pose, where ✓ 2 [�⇡,⇡[ and
w 2 R3 with kwk = 1. Initially, a rough guess is made
using the bounding box height/width ratio, e.g., a standing
bottle should have a ratio ¿ 1, while a fallen bottle should
have a ratio ¡ 1. This serves as an initialization for the 6-DOF
pose estimation module.

B. 6-DOF Pose Estimation

From the pose initialization made in the Object Detection
module, we proceed with a point cloud alignement between
the depth map captured by the camera, and a 3D model of the
targeted object. The objective is to find the transformation
matrix T 2 SE(3) from the object frame to the camera
frame. The initial P and ✓w can be combined in a single
vector r in se(3) and the exponential map from se(3) to
SE(3) then gives the initial T. Afterward, we use the multi-
scale pyramidal projective ICP described in section II-B that
we adapt for pose estimation. We defined a normalized error
based on the energy from (1) that will be used to evaluate
the convergence of the process:

e(T) =

p
E(T)

|⌦| . (3)

While the translation initialization from the Object
Detection module generally produces satisfactory results,
the rotation initialization often deviates significantly from
the actual orientation. This can lead to convergence to
local optima or in some cases to a complete absence of
convergence. In order to make the method more robust, we
develop and compare two algorithms that are used if the
resulting error e defined in (3) is higher than a pre-defined
threshold �e.

The first method is a Randomized Multi-Start algorithm
[21]. In this method, orientations ✓w are randomly selected
for the object and the projective ICP described above is re-
run for each of them. The resulting pose P̂ 2 R3 with the
lowest error e is kept as final estimated pose of the object.
The number N of orientations sampled is a trade-off between
exploration (higher chance of converging to the correct
optimum) and computational complexity. This number can be
chosen depending on the computational resources available
and the application requirements.



Fig. 4: Randomly selected points on a sphere (left) vs
Spherical Fibonacci point set (right)

We refer to the second method as a Fibonacci Multi-Start
algorithm. The process is similar to the Randomized Multi-
Start but instead of using randomly selected orientations,
we use a spherical Fibonacci lattice. Spherical Fibonacci
point sets yield nearly uniform point distributions on the unit
sphere as presented on figure 4. Furthermore, they are both
simple and efficient to compute. We start from a Fibonacci
lattice point set defined by:

ti = (
i

N
,
i

'
) for 0  i  N, (4)

where ' =
1 +

p
5

2
is the golden ratio.

Then, each point is mapped from the unit square [0, 1]2 to
the sphere by the cylindrical equal area projection:

(x, y) ! (✓,�) :
�
cos�1(2x� 1)� ⇡/2, 2⇡y

�

(✓,�) ! (x, y, z) : (cos ✓ cos�, cos ✓ sin�, sin ✓) .
(5)

Each of the resulting points on the unit sphere corresponds
to a directional vector w that is used for the object orien-
tation. As the points are close to be evenly distributed on
the sphere, it ensures maximum coverage of the possible
orientations. Note that this is true for objects with an axis of
symmetry, often found in retail stores. For objects with no
symmetry, a final uniform rotation should be applied around
w to define ✓.

C. Grasping

After determining the object’s pose, the robot can proceed
with the grasping phase. We use a reachability graph-based
planner from [22]. From an offline computed reachability
graph containing feasible end-effector paths, this planner
uses global graph search to find a feasible path between
input start and goal. Therefore, we only need to provide a
goal pose to the planner that will allow the robot to grasp
the object. We consider the case of a 2-finger gripper as
end-effector. Offline, we determine an ”ideal” grasping
approach based on the object shape and the gripper. To do
this, we start by considering the three axes of the object
frame. We select the axis along which the object is the
biggest. In other words, it is the axis that accounts for the
largest possible variance in the object points coordinates.
If a Principal Components Analysis (PCA) was done on
the object points coordinates, this axis would correspond

to the first dimension selected. Therefore, we call this axis
the object principal axis. We then consider its orthogonal
plane and define approaching directions in this plane
with ✓ 2 [0, 2⇡]. As the 2-finger gripper has a maximum
extension, we define a subset � ✓ [0, 2⇡] such that the
object’s width when approaching from this direction is
smaller than the gripper extension. As it can be assumed
that, at rest, the object is lying on a surface (e.g ground or
shelf) due to the gravitational force, we prefer a vertical
approach that will avoid collision with the supporting
surface. Therefore, knowing the object pose in the base
frame, we can select the angle ✓0 2 � that represent the
most vertical approach i.e. the vector most correlated with
the gravitational acceleration ~g. This approach represents
our ”ideal” approach. In the particular case where the object
principal axis is co-linear with ~g 2 R3 (meaning that all
approach vectors defined by ✓ 2 � are horizontal in the
base frame), we select ✓0 2 � such that the resulting
grasping approach is the most aligned with the robot to
object direction.

For better understanding, we illustrate the process with an
example in figure 5. The targeted object is a Noodle cup.
The principal axis is found to be the z-axis of the object,
represented in blue on figure 5a. It is also a symmetry axis
for the object, therefore we have � = [0, 2⇡], represented as
a purple circle on figure 5b. We are looking for ✓0 2 � such
that the grasping approach is the most vertical. The closed
form solution can be determined and is represented by a red
point on the example of figure 5b. Depending on the task
space, this ideal approach may not be feasible. Particularly,
an obstacle from the scene may prevent the robot to reach the
object using the suggested approach. For example, the robot
arm can reveal too big to use a vertical approach on an object
between two shelves of a retail store. To tackle this issue,
we generate several candidate grasping directions based on
the ideal one introduced above. They are represented by the
yellow points on figure 5b. They are generated by tilting the
ideal direction by manually pre-defined angles depending on
the object shape. Each candidate point is sent to the planner,
which determines if it is reachable or not. When a reachable
point is found, the search is stopped and the grasping can
be tried by the robot. In this example, the selected point is
represented in green.

(a) Object’s axes (b) Candidate grasping directions

Fig. 5: Determining grasping approach



TABLE I: Ablation study of the detection model training

Training data Results
Isolated objects Random background Random transformations Random objects Successful detection rate False detection rate

X ⇥ ⇥ ⇥ 0.090 1.6
X X ⇥ ⇥ 0.63 0.030
X X X ⇥ 0.84 0
X X X X 0.94 0

(a) Success (b) Success (c) Success (d) Success (e) Success (f) Failure

Fig. 6: Detection module test on real pictures

IV. RESULTS
In this section, our method is tested using a Fetch Robot

equipped with a Primesense Carmine 1.09 short-range RGB-
D camera. Each module of our work is tested individually,
before a complete experiment with the overall system.

A. Object Detection

The object detection model is trained with our synthetic
data, using Np = 100, on three types of noodle cup com-
monly found in Japanese convenience stores: Cup Noodle,
Cup Noodle Curry and Cup Noodle Seafood. This will
test the model ability to discriminate similar shaped objects
of different brands/types as they are commonly found in
supermarkets. Furthermore, as the object detection model
was trained on synthetic data, testing its ability to work
on real pictures is necessary to confirm the validity of our
training process. For this purpose, we take 33 real pictures of
a targeted object and proceed to an ablation study presented
in table I

On figure 6, we see that the model can successfully
discriminate the different variations of the object in different
light conditions (6a, 6b) as well as handle distant views
(6d). While the trained model can handle partial occlusions
to a certain extent (6c, 6e), it fails to detect the object in
very hard cases (6f). This can be explained by the absence
of specific training for occluded scenarios in our synthetic
data generation. As our experiment does not involve heavy
occluded scenarios, we do not focus on this case.

B. 6-DOF Pose Estimation

For the pose estimation system described in section III-B,
we set empirically �d = 0.05m, �✓ = 45° and �e = 10�6.
As the purpose of our demonstration is to show the robot
ability to detect, estimate the pose and grasp an object in a
variety of situations that could happen in a retail store, we
create a benchmark for testing our 6-DOF pose estimation

module on different cases. The test images are presented
cropped around the targeted object in figure 7.

Using this benchmark, we compare our complete pose
estimation system to the initial Multi-scale Projective ICP
from [14] without modifications. Both methods are initialized
using our Object Detection module (as described in III-A.2).
Specifically, we test the ability of the methods to converge
to the true pose versus a local optimum. For our test object,
which is close to a cylinder shape despite a slight slope, a
common local optimum would be to align the model to the
correct position but with a backward orientation. We present
the results in table II. The initial method fails because it is
tailored for fast tracking of big objects but it is interesting
to note that its core can be used for robust pose estimation
by adding the parapet we propose in this paper.

The results of table II for the complete module (”Ours”)
are valid when using indifferently the Randomized Multi-
Start or the Fibonacci Multi-Start algorithms described in
section III-B. Therefore, we propose a more thorough com-
parison to evaluate the impact of choosing one method over
the other. To have a benchmark with a precise ground truth,
we use a RGB-D scene from the linemod dataset of the BOP
challenge [7]. In figure 8, we plot for both algorithms the
centroid error in millimeters for a pose estimation, depending
on the number N of directions explored. As the Randomized
method is not deterministic, we average its performance over
100 trials and give its maximum and minimum errors. To
give an idea of the distribution, the area within one standard
deviation from the mean is shown in light blue (clamped to
positive values).

The randomized method has high variance when the
number of directions sampled is low, which was expected.
The Fibonacci method consistently outperforms the Random-
ized method’s mean and achieves sub-milimetric precision
starting from 20 directions explored. Therefore, we choose
to use the Fibonnaci Multi-Start algorithm with N = 24.



(a) Front (b) Top (c) Side (d) Side-top (e) Side-bottom (f) Bottom

Fig. 7: Benchmark’s views (cropped around the object)

TABLE II: 6-DOF pose estimation benchmark

View
Front Top Side Side-top Side-bottom Bottom

Initial ⇠ ⇠ ⇥ ⇠ ⇠ ⇥
Ours X X X X X X

Legend
X Convergence to correct pose
⇠ Convergence to local optimum
⇥ No convergence

Fig. 8: Comparison of resulting error using Randomized or
Fibonacci method

C. Demonstration

The experimental setup shown in figure 9. The robot has
to detect the two fallen cups, be able to discriminate them,
estimate their pose, find a suitable grasping direction, grasp
them and finally replace them on the shelf. The detection
result can be seen on figure 10a while the pose estimation
process is shown via the system graphical interface on figure
1. As it can be seen on the RGB image taken from the robot’s
camera, in the top left corner, very bright reflections of the
ceiling light could make the detection difficult. Still, we see
that the system correctly detected the two types of cup and
estimated their 6-DOF poses. For evaluation purpose, the
detection and pose estimation was repeated 70 times. The
system achieved a success rate of 96%. All cases considered
as failures were a ⇠5 mm offset in the object principal axis,
that would not have prevented grasping in this case.

After the pose estimation, a list of candidate approaches
is sent to the planner as described in section III-C. Here,
no obstacle prevents a vertical approach, so it is directly
selected. We show on figure 10b that the robot successfully
picks fallen cups to replace them on the shelf. The full
demonstration can be seen in the attached video submission.

Fig. 9: Demonstration setup emulating a convenience store
shelf, comprises a Fetch Robot, a shelf and three types of
Noodle Cups. In the proposed scenario, two cups have fallen
on the ground, in an unknown pose, due to a customer action.

V. CONCLUSIONS

This paper addresses challenges in automating the retail
industry using robot manipulators. The results confirm the
success of the trained object detection model in discrim-
inating similar-shaped objects from different brands/types
commonly found in convenience stores. The evaluation of
the 6D pose estimation module shows its consistent ability to
converge to the true pose, avoiding local optima and achiev-
ing a position error smaller than 1mm. The experimental
setup emulating a convenience store shelf demonstrates the
robot’s success in detecting fallen cups, distinguishing them,
estimating their 6D poses, determining suitable grasping
directions, and executing successful grasps.

Moreover, the system’s demonstrated feasibility with
minimal human intervention is noteworthy. Only a few
pictures on a plain background without annotations are
needed; the rest is automated and could be performed on a
cloud application. This capability enables easy addition of
new objects by retail store employees or other stakeholders,
highlighting its practical implementation potential.



(a) Object Detection (robot’s point of view) (b) Execution (external point of view)

Fig. 10: Demonstration

This research opens up perspectives for future work in
automated in-store processes within the retail industry. Espe-
cially, integration with planning and control modules could
be further explored to create entire autonomous behaviors
such as exploring the store aisles, detecting and replacing
fallen products, using the method developed in this paper.
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