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Abstract

AlphaFold2 (AF2) and RoseTTaFold (RF) have revolutionized structural biology,
serving as highly reliable and effective methods for predicting protein structures. This
article explores their impact and limitations, focusing on their integration into exper-
imental pipelines and their application in diverse protein classes, including membrane
proteins, intrinsically disordered proteins (IDPs), and oligomers.

In experimental pipelines, AF2 models aid X-ray crystallography in resolving the
phase problem, while complementarity with Mass Spectrometry and NMR data en-
hances structure determination and protein flexibility prediction. Predicting the struc-
ture of membrane proteins remains challenging for both AF2 and RF due to difficulties
in capturing conformational ensembles and interactions with the membrane. Improve-
ments in incorporating membrane-specific features and predicting the structural effect
of mutations are crucial. For Intrinsically Disordered Proteins, AF2’s confidence score
(pLDDT) serves as a competitive disorder predictor, but integrative approaches with
molecular dynamics simulations or hydrophobic cluster analyses are advocated for ac-
curate dynamics representation. AF2 and RF show promising results for oligomeric
models, outperforming traditional docking methods, with AlphaFold-Multimer show-
ing improved performance, however, somes caveats remain in particular for membrane
proteins. Real-life examples demonstrate AF2’s predictive capabilities in unknown pro-
tein structures, but models should be evaluated for their agreement with experimental
data. Furthermore, combining AF2 models with molecular dynamics simulations can
be used complementarily. In this perspective we propose a ”wish list” for improving
deep learning-based protein folding prediction models, including using experimental
data as constraints and modifying models with binding partners or post-translational
modifications. Additionally, a meta-tool for ranking and suggesting composite models

is suggested, driving future advancements in this rapidly evolving field.



Introduction

AlphaFold and RoseTTaFold have rapidly changed the landscape of structural biology and
are widely recognized as largely reliable and effective methods for protein structure predic-
tion.1? This success has been demonstrated by rigorous evaluations in Rounds 14 and 15
of CASP (Critical Assessment of Protein Structure Prediction).'® However, when prospec-
tively studying a novel protein structure, researchers must be able to critically evaluate
the quality of these models. In this context, researchers may share their observations and
advices. The present perspective paper arose from the “Machine Learning and Artificial
Intelligence in structural biology: Looking beyond AlphaFold2 / RosettaFold for remaining
blind spots” workshop, which was organized in November 2022. The participants explored,
and discussed the use of these tools both from the modelling and experimental perspectives,
raising the issue of the dissemination of this shared knowledge. This manuscript formulates
ideas to be tested in a prospective manner: i.e. readers are encouraged to use the methods
listed below, in particular on cases for which the structures are not known, in order to test
them more extensively in their daily practice. This extensive testing and associated feedback
could eventually be turned into a series of recommendations in a follow-up meeting and/or
paper.

The workshop aimed to bring together experimentalists and theoretical groups to discuss
advances but also limitations in the performance and use of Al-based protein structure
prediction methods. We explored in particular i) Use in experimental pipelines / integrative
structural biology; ii) Membrane proteins; iii) intrinsically disordered proteins/domains; iv)
Oligomers.

The schedule included lectures, but also interactive exploration of models obtained with
AlphaFold2 (AF2) and RosettaFold (RF) in a visualization room allowing for 3D stereoscopic
visualization on a screen wall. This paper presents both issues that were discussed during
the classical lectures, but also the points raised during the interactive sessions and which

result from an interdisciplinary dialogue within a diverse audience, as this event gathered



experimentalists in biochemistry and structural biology on one hand, and theoreticians from

molecular modeling, bioinformatics and computer sciences on the other hand.

Integrating AF2 into experimental pipelines

Although AF2 has produced impressive results, it has not solved the structure prediction
problem and should not be opposed to experimental methods but used in combination with
experimental data. For example, recent work focused on the evaluation of the use of AF2
models in experimental contexts.”® In those context the impact comes from the availability
of realistic models when nothing was known before. In the study by Akdel et al.” the models
obtained with AF2 were compared with those previously available by homology modeling.
On a series of 11 model species it was found an average of around 25% of the residues of the
proteomes are covered by AF2 with novel and confident (pLDDT > 70) predictions.” One of
the possibilities offered by these models is the exploration of mutations and rationalization
of their effect within the 3D structure of proteins.®

Among the data generated by AF2 and RF are contact maps. A direct way to use
them, and in turn test the models, is to design point mutations with experimentally testable
effects. Until now, and besides the case of mitofusins that is discussed in the second part of
the manuscript, few studies have been conducted with such mutations in mind. for example,
Pyatnitniskaya et al. explored single point mutations that disrupt interactions found on
models generated with AlphaFold Multimer and are associated with functional defects.!°
Ceppi et al. showed how AF2 models can be used to interpret the functional effect of
mutations. !*

Contact maps can also be used to explore the dynamics of AF2 models. Fakhoury et al.
used contact maps to go beyond the folded state and instead study the folding pathway. 2
When it comes to combining AF2 models with molecular dynamics (MD) simulations, it

is noteworthy that coarse grained MD can be improved taking into account AF2’s scores.



Indeed, MD run with the martini force field usually involve an additional Gaussian Network
used to constrain secondary structure elements or rigid domains. Interestingly, the pLDDT
and PAE scores of AF2 can be used to select the constrains.!?

Mass spectrometry (MS) is another experimental approach which complements well struc-
ture prediction methods. Indeed, several studies have shown how MS data can be combined
with AF2 models. ! Specific tools have been developed to include MS data in the modeling
process, namely AlphaLink?” and its extension to AlphaFold multimer, Alphalink2.2!

NMR has shown significant complementarity with AF2 models. Indeed, it has been shown
that AF2 models can be confidently used to guide and complement experimental NMR data
analysis. 22 Furthermore, a recent tool for the prediction of protein flexibility?* developed
by Ma et al. uses local contacts and pLDDTs from AF2 predicted structures to calculate S2
order parameters of backbone N-H bonds that compare well with NMR experimental data.

After CASP14, it had been anticipated that AF2 predictions could have an impact on
molecular replacement.??% Barbarin-Bocahu et al. illustrated the potential of AlphaFold2
and RosettaFold models to allow molecular replacement, including for targets for which pre-
existing tools would not allow it.2” Recently, AF2 models have found their place in structure
determination pipelines, in particular via iterative protocols.?®2? AF2 models therefore have
a considerable impact in structure determination by X-ray crystallography and NMR.. 233032

Furthermore, the observation that AF2/RF models can be used for molecular replacement
while other models cannot, suggests that we might question our definition of what a good
model is. Indeed, some models that could have been defined as good by many metrics were
not accurate enough for molecular replacement. The same situation could hold true for other

applications such as structure-based drug design. 3334
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Figure 1: Old (a) and new (c) domain classification of the HEV pORF1 based on new
crystallographic structure (6NU9°?) and 25 AF2 structural models and pLDDT (b). Gray
lines project domain boundaries from the previous classification and new classification.

Predicting oligomeric models

Biological systems are crowded environments that involve protein complexes. The fact that
AF2 allows to build models of protein complexes efficiently has raised the possibility to anal-
yse protein-protein interactions in a systematic manner.3*3® This is particularly important
for domains for which protein-protein interactions are crucial like virology. Recent research
on Hepatitis E virus (HEV) employed AF2 to predict the structure and domain boundaries of
the protein encoded by the open reading frame 1 (pORF1).3 The exact number and bound-
aries of these domains have been debated for three decades,**° but AF2! has provided new
insights with its pLDDT score. Since the pLDDT score is related with disorder (see the
next section), it can be used in identifying domain boundaries in multi-domain proteins. !
In this case (Figure 1), the pLDDT score suggested to (i) merge the first two domains and
(ii) redefine the position of the third domain, supporting the hypothesis of the absence of a
putative protease within pORF1.3

The first domain in the AF2 model closely resembled the recently published structure

of the Fatty Acid Binding Domain (FABD).5? Indeed, it shares the same fold as shown by



structural similarity comparison methods.?*>* Intriguingly, the conformation of these models
could vary significantly depending on the methodology employed for identifying similarities
and the number of sequences considered, thus highlighting the impact of co-evolutionary
information in the multiple sequence alignment on the resulting model conformations. In the
final model, the first two domains, methyltransferase and membrane binding domain (Met
and Y), were merged into a single one called MetY. Structural comparison methods such as
DALI?™ and FoldSeek®® revealed a strikingly similar structure, the natively dodecameric
nsP1 protein of Chikungunyavirus (CHIKV),5"% which also exhibits methyltransferase and
membrane binding functions. However, the sequence identity between MetY and CHIKV
nsP1 is less than 20 %, making it difficult to identify this template with classical sequence
searching methods and hypothesize its dodecameric state based solely on sequence. In this
case, AF2 allowed to generate the dodecamerization hypothesis based on structural similarity.

The accuracy of oligomer prediction tends to decrease with the number of chains, %60
making it difficult for AF2 to predict the dodecameric state of a 500-residue domain. Nonethe-
less, this study revealed that the C2 dimer conformation predicted by AF2 was consistent
with a dodecameric state that was obtained by applying the transformation between the
two molecules eleven times. Although the resulting dodecameric state was not perfect, op-

61,62 resulted in

timizing the contact between two monomers using the HELIGEOM software
a flat, clashless dodecameric structure with the same local fold (Figure 2).
This approach demonstrates AF2’s capability to predict dimeric contacts that can lead to
higher oligomeric states, though the architecture’s limitations make it challenging to predict
large systems. Alternative methods, such as Unifold-symmetry, % can overcome this barrier,
but they require specifying the symmetric state. An imposed C12 symmetric model of
the MetY domain from unifold-symmetry produced a dodecamer; however, despite Unifold-

symmetry also being multiple-sequence-based like AF2, the conformation of the monomeric

MetY domain did not match the more realistic AF2 model.
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Figure 2: dodecamerization for the MetY domain. Initially, a preliminary attempt was made
by duplicating the MetY dimer model, which was previously generated using Alphafold2. A
more successful dodecamerization process was carried out using the HELIGEOM %162 soft-
ware, resulting in the formation of a flat dodecamer.

HEV pORF1 Model Validation

In the absence of high-resolution structural data, it is imperative to ensure that gener-
ated models concur with prevailing biological observations. In the context of HEV pORF1
modeling, over 30 distinct models were produced using various alignment methodologies
(HHBIits, 545 MMSeqs®) with assorted parameters, thus facilitating the exploration of di-
verse conformations. Intriguingly, the models exhibited varying features depending on the
methodology employed. Alternate conformations and folding states were observed in 3 out
of 5 domains. Drawing upon existing literature and domain function knowledge, a specific
conformation was selected, either using an experimental structural template when feasible
(for one domain) or extracting a domain from an AF2 model exhibiting an accurate confor-
mation. The colabfold%” implementation of AF2 facilitated the use of these templates for
modeling, substantially enhancing the confidence and quality of the resulting models. This
strategy enables local fold improvement and capitalizes on AF2’s inter-domain contact pre-
diction capabilities. The validation of the Met and Y domain merging into a singular MetY

domain was achieved based on a region of the Met core domain, referred to as the “iceberg



”

region”, % previously proposed to include alpha-helices, as part of a single domain called
MetY. The alpha-helix in this region has been shown to play a crucial role in targeting
replication complexes of various plant viruses and HEV to the correct cellular endomem-
brane.%® " Furthermore, membrane binding prediction methodologies, such as PPM, " the
hydrophobic protrusion model,”*™ and DREAMM, ™ converge on the hydrophobic interface
generated by the MetY dimer and accentuated in its dodecameric form. Consequently, recent

investigations reveal that the closest structural neighbor of the MetY dodecamer interacts

with membranes in a manner akin to the predicted mechanism.

Building Oligomer Models

Soon after the release of AF2, the community started to tweak it to predict the structure
of protein assemblies, even though it had not been designed (or trained) for this purpose,
using a residue index shift trick. The implementation of this strategy in ColabFold made
the prediction of complexes accessible to a large user community.®” AF2 was shown to out-
perform traditional docking methods, both in terms of success rate and model quality. ™ 7"
Interestingly, the generation of a paired MSA was not necessary for AF2 to pick up inter-

action signal and predict protein complexes, 76

although combining unpaired and paired
alignments gave the best results.”™ Another early study showed that a combination of AF2
predictions with the ClusPro docking protocol improved the success rate over using AF2
alone and confirmed that the quality of the resulting model was much higher than the usual
docking model quality.”” A specific version of AF2, called AlphaFold-Multimer, was retrained
on protein complexes and displayed improved performances for interface modeling over AF2,
reaching a 67% success rate.®%"™® The potential of AlphaFold-Multimer has recently been
confirmed in the CASP15 experiment.”™ In parallel, RF was developed for the prediction
not only of protein structures but also of protein complexes.? On a large scale, AF2 was

applied to predict structures for more than 65,000 experimentally determined human inter-

actions, producing more than 3000 high confidence models, of which 43% have no homology
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to known structures, with the potential for the interpretation of disease mutations at inter-
faces.?® Another study used a fast version of RF followed by AF2 structure prediction to
explore all possible interactions between yeast proteins and generated new predicted interac-
tions together with accurate complex structures for the yeast interactome.® The pipeline was
subsequently extended to predict human mitochondrial protein complexes.®! The Bacillus
subtilis interactome was recently explored by an alternative approach that combined mass
spectrometry, existing interaction data and AlphaFold-Multimer predictions.®? The Alpha-
Pulldown Python package pipeline screens protein-protein interaction using AF2.%3 Another
impressive application of AF2 and RF was the integrative structure determination of the
nuclear pore complex architecture, simultaneously published in June 2022 in five indepen-
dent Science papers. Three of them used Al-based predictions: AF2 for subunit modeling, %*
AF2 for subunit and sub-complex modeling,®® AF2 and RF for subunit and sub-complex
modeling.® By the end of 2022, the CASP15 competition highlighted the efficiency of ML
approaches for the structural determination of protein assemblies.?8” While the need for
MSAs on both partners appears to be a limitation of AF2 when attempting to predict pro-
tein interactions, strategies have been proposed to overcome it. On the one hand, it has
been shown that MSA can be denoised.® On the other hand, the recent development of
predictors relying on large language models (LLM) opens new perspectives in that field. %%
In particular, the lower quality of the ESMFold predictions might be compensated by the
considerable decrease of the calculation time required by language models. Finally, Colab-
Dock has been proposed to perform a form of docking restrained by experimental data.

Several studies have addressed the ability of AF2 to predict protein-peptide complexes.
A simple implementation already showed interesting predictive capacity, including in cases
where the peptide induces a large conformational change of the protein and docking therefore
most likely fails, and without the need for a peptide MSA.%? AlphaFold-Multimer performs
better than AF2 at protein-peptide complex prediction, and sampling a larger part of the

conformational space by enforcing dropout at inference time in AlphaFold-Multimer fur-
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ther increased the quality of protein-peptide complex models.?*%* Using a protein-peptide
complex benchmark that is not redundant with the AF2 training set, AlphaFold-Multimer
achieves only 40 % success rate in identifying the correct site and structure of the interface
when the full-length partners are used as input; combining input fragments of size 100 or
200 aminoacids and different strategies for building the MSAs, this success rate can rise up
to 90 %.% The AlphaFold2 confidence score is also very powerful in discriminating between
alternative binding partners.?® More recently, combining AlphaFold Multimer and docking

has been shown to be an efficient approach.

Intrinsically disordered proteins/domains

The functional relevance of intrinsically disordered proteins (IDPs) and proteins containing
intrinsically disordered regions (IDRs) is now well established, as these systems play a signif-
icant part in numerous biological processes, such as signal transduction and transcription, 7
and are abundant in eukaryotic proteins. While AF2 was initially developed to predict the
structure of folded proteins, it soon became clear that the pLDDT values, which serve as a
confidence score for the structural prediction for each residue, could also be used as a com-
petitive disorder predictor compared to other standard methods. %% For example, roughly
30 % of the human proteome is estimated to comprise IDRs, %1% the same proportion of
residues across AF2 predicted structures in the human proteome present very low (< 50)
pLDDT values, and both groups strongly overlap. %! However, AF2 is known to overestimate
disorder in protein sequences, for example, in the assessment by Akdel et al.,” around half
of the residues presented a low confidence (< 70) score.

Recent studies 192103

addressing prediction within protein sequences highlighted the possibil-
ity of "hidden order” cases, i.e. situations where low-confidence structural predictions are
not related to disorder, but correspond to foldable domains that are not correctly predicted

due to intrinsic limitations of AF2 (such as a lack of coevolutionary information for the
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target sequence). In that case one can combine AF2 predictions with an additional tool
based on the residues’ physico-chemical properties, such as their hydrophobicity in the case
of the Hydrophobic Cluster Analysis (HCA),'% to unveil ordered segments that remain hid-
den from AF2. One should note that disorder in proteins comes in different flavors, with

conditional order that can arise from different experimental conditions. %4

High confidence
pLDDTs have been shown to sometimes correspond to residues that belong to disordered
protein fragments in a monomeric unit that will fold conditionally, for example when binding
another protein partner.1%1% As a consequence, AF2 models should be taken with caution,
as several studies show how they are likely to predict a protein bound structure instead of
its unbound structure in solution. 97108

As mobility and disorder are tightly related (but not necessarily identical) features of pro-
teins, the need for descriptors of protein dynamics, be they based on experimental (X-ray
crystallography B-Factors, NMR order parameters) or numerical (Molecular Dynamics tra-
jectories) data has been increasing recently. There is a growing interest for tools that can
predict protein flexibility from sequence, such as the MEDUSA webserver. " MEDUSA’s
predictions are based on protein flexibility definition in terms of experimental B-factor val-
ues. As demonstrated on several examples, such definition allows to successfully predict both
hinge position of the ordered protein structure responsible for conformational changes as well
as to detect locally rigid fragments in the intrinsically disordered protein fragments. ' Inter-
estingly, AF2 pLDDT index provides similar information and can take low values for hinge
protein fragments such as middle fragment of the calmodulin molecule and reasonably high
values for locally rigid portions of IDR. Nevertheless, as compared to MEDUSA predictions,
AF2 does not seem to reflect the change in flexibility profile in response to minor mutations

of the protein sequence as shown on the examples of proteins with experimentally obtained

stabilizing mutations.

As mentioned earlier for oligomers, it appears important to take into account the size
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of the system submitted to AF2 or RF, which could revive the maxim ’small is beautiful’.
Indeed, various examples have been shared during the workshop, where too big systems
end up in a "spaghetti plate” type of prediction, including long extended fragments linking
smaller folded domains. This observation echoes very recent, and more systematic analyses,
which shows that playing with the size of the system can greatly improve predictions, '°
including for those that involve IDP.% Looking at the models in 3D could also help, given
the difficulty of interpreting large systems including disordered regions (see the NOX case
below).

The dynamics of IDP/IDR are best represented as conformational ensembles and using
integrative approaches. 11116 Regarding the experimental data, the description of the result-
ing models should be as exhaustive as possible.!'” In addition to predictions based on deep
learning tools, as mentioned above, it is worth pointing out that IDP/IDR may be studied

via molecular dynamics simulations. 11819

Membrane proteins

Membrane proteins are involved in various biological processes, such as signal transduc-
tion, molecular transport, and cell proliferation and survival.'?® They constitute one of the
most significant protein classes as they are implicated in cancer and diseases, accounting
for more than 60 % of the current drug targets.?! However, due to their high hydropho-
bicity and dependence on the membrane environment, only a small fraction of membrane
proteins have been structurally resolved compared to soluble proteins. Recent advances
in protein structure elucidation techniques have increased the number of available mem-
brane protein 3D structures.'?? But there is still a significant gap between the number of
known membrane protein sequences and their experimentally determined structures. Deep
learning-based protein folding prediction models such as AF2' and RF? have the potential

to bridge this gap by providing valuable structural information about membrane proteins of
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unknown structure. However, these models have limitations that must be addressed. For
example, ML folding models are limited in predicting an energy minimum, while membrane
proteins exist in conformational ensembles. Moreover, these conformational ensembles can
be allosterically modulated by their environment (e.g. ligand or lipid binding) and to mu-
tations.'? In a recent study, Kiriakida et al. used MD simulations of the AT1 receptor to
show that conformational changes can be observed upon binding of cholesterol.?* In the
case of PI3Kalpha, the most mutated kinase in human cancer, the E545K and H1047R. point
mutations, despite being distant from the active site, alter the conformational landscape of
PI3Kalpha, abolish the autoinhibitory role of its C-terminal, modify protein-membrane in-
teractions, and perturb allosteric pathways. 1231257128 ML, folding models can hardly predict
these conformational changes as they are trained on static structures and evolutionary infor-
mation, althought attempts have been made more recently.?® This limitation also extends
to predicting protein-protein multimer structures and/or when proteins are embedded or
contact the cell membrane. Coarse-grained enhanced sampling MD simulations of rhodopsin
dimerization have revealed the adoption of multiple dimer interfaces, which are not predicted
by AF2.130 In prospective cases, e.g. for K-Ras4B, an oncoprotein whose dimer structure
on the membrane is unknown, AF2 predicts K-Ras4B monomers with a high pLDDT score,
but the dimer structure has a low predicted alignment error (PAE). Moreover, the highly
variable region (HVR) of K-Ras4B, which binds to the membrane, is known to be disordered.
However, AF2 incorrectly predicts it as an alpha-helix in the absence of the membrane en-
vironment. Factors like membrane composition and membrane attachment can significantly
alter the conformational landscape of proteins, and this issue is still neglected by the current
AF2 folding models.

Protein-membrane interactions play a significant role in protein function although the
protein-membrane interface is usually not known. 131133 When using structures generated
by ML folding models to predict protein-membrane interactions, extra caution is required as

the predicted structures often contain unstructured regions with low pLDDT scores (pLDDT
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score < 70), which can impact or bias the performance of protein-membrane interaction
prediction tools (Figure 3). Therefore, when attempting to predict protein-membrane in-
teractions from an AF2 generated model, one should consider removing regions with low
predictability scores from the calculation. Moreover, peripheral membrane proteins may
adopt different conformations in solution and on the membrane, and when the structure is
predicted using ML folding models, it is challenging to determine whether the conformation
corresponds to the one in solution or embedded in the membrane.

The future steps of ML folding models in predicting folding of membrane proteins involve
several key aspects. Firstly, there is a need to improve the modeling of conformational ensem-
bles, aiming to capture the dynamic nature and allosteric modulation of membrane proteins
(see below and'?). Integration of experimental data, including cryo-EM and NMR, can
provide valuable structural constraints and dynamic information. Secondly, the impact of
mutations on protein structure is largely unexplored by current methods, limiting our ability
to predict structural changes resulting from them. Thirdly, incorporating membrane-specific
features such as hydrophobicity, transmembrane domains, protein-membrane interactions,
membrane composition, and membrane topology into ML folding models could improve the
prediction accuracy of ML folding models. Fourthly, the prediction of multimeric structures
formed by highly flexible monomers is still in its early stages and requires significant ad-
vancements. Additionally, incorporating the description of nucleic acid structures or other
binding partners when studying membrane proteins is crucial, as these interactions often
have significant biological relevance. Lastly, unraveling the unknown folding processes of
membrane proteins will contribute to a deeper understanding of their folding mechanisms

and may uncover novel functional insights.
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A)  AF2 prediction DREAMM prediction

B)  AF2prediction DREAMM prediction
(pLDDT > 70)

Figure 3: The interleukin-22 receptor subunit alpha-1 structure as predicted by AF2,
https://alphafold.ebi.ac.uk/entry /Q8NGP7. A) On the left, the regions with very high con-
fidence (pLDDT > 90) are colored blue, with adequate confidence (90 > pLDDT > 70) are
colored cyan, with low confidence (70 > pLDDT > 50) are colored yellow, and with very low
confidence (pLDDT < 50) are colored in orange. On the right, the unfolded regions affect
DREAMM predictions, leading to false membrane-penetrating amino acid predictions. B)
The same structure is shown, but only the amino acids with pLDDT > 70 are kept for
the DREAMM prediction. Upon using residues with pLDDT > 70, DREAMM accurately
predicts the a-helix 225-255 that inserts into the membrane.

Observations from real life examples

Each system presented below was the subject of a discussion between a modelling expert who
prepared models with AF2/RF and a group comprising mostly experimentalists, including
experts of the biological system. This discussion took place in a dedicated room and was

supported by advanced collaborative 3D stereoscopic visualisation facilities whose technical
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characteristics and setup are described in. 3

In particular, the large-scale 3D stereoscopic display wall was an incredibly useful tool
for collaborative discussions regarding the predicted model structures. This type of display
allows participants to view the structures in great detail, from multiple angles, and in an
intuitive and casy to understand manner with all the spatial details.

By using this technology, all the researchers present were able to work together to identify
key features of the models, discuss potential weaknesses, and explore different approaches to
further improve the models, sharing their own experiences with AF2/RF. Being able to view
the structure in 3D and on a large scale has helped to better understand how different parts
of the model interact with each other, how certain parts of the structure are exposed, and
how different ligands or other molecules can bind. These observations stimulated discussions
on related cases or experiences in systems that presented similar features from a model

prediction perspective.

NADPH oxidases

NADPH oxidases (NOX) are a family of enzymes that generate reactive oxygen species
(ROS), mostly superoxide or hydrogen peroxide. The best known member of this family is
NOX2, which is primarily expressed in phagocytic cells of the innate immune system, where
the ROS production fulfils critical functions in the defence against microbial pathogens.
From a structural point of view, NOX2 raises multiple challenges.

The active phagocyte NADPH oxidase is composed of 2 membrane bound proteins
(gp91Phx and p22PhoX) and 4 cytosolic proteins named pd0PRox| pd7Phox pETPROX and the
small GTPase Racl or Rac2.1® In the resting state, i.e when the enzyme is inactive, the
cytosolic components arc separated from the membrane components avoiding inappropriate
ROS production.

Several subunits of the oxidase contain structured domains separated by IDRs, and their

flexibility is crucial for the activity of NOX. The inactive and the active state rely on distinct,
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multiple protein-protein and protein-lipid interactions. The transition to the active state
requires multiple phosphorylations on several subunits, mostly p47P"* and p67Phox.

In the resting state p40P"*, p47Pho% and p67PE°* form a complex in the cell cytosol. '3

7137 whereas only partial structures of

The crystal structure of p40P"* was solved in 200
some p47P1°* and p67PRO* domains are available, mainly due to their high flexibility. 13® Nev-
ertheless, SAXS models of p47P"* and p67P"** were proposed and may serve as experimental
references for testing computational structural models. By combining the topological infor-
mation obtained in the living cell using an imaging strategy based on Forster Resonance
Energy Transfer (FRET), the partial structural data and the biochemical observations made
on purified proteins, Ziegler et al. proposed a 3D model of the cytosolic complex in the
resting state.!3” In 2022, Cryo-EM structures of membrane-bound proteins were proposed
for the resting state.®!'*! They reveal new structural information including the structure
of p22phox and the relative position of gp91P"* and p22P'°* in the membrane.

AF2 was used to produce models for several subsystems from the NOX complex including
two or more subunits. The models for the gp91Ph* /p22Phox assembly concur well with the
available experimental data. The addition of cytosolic subunits to the membrane heterodimer
usually leads to a degradation of the model quality with low confidence scores. The large
gp91Phox /pggphox /mqphox /hgrphox /R AC system does not give satisfactory results, with small
interacting folded domains, whose interfaces are usually reasonable, but are separated by
extended disordered linkers.

Working on AF2 models with the 3D stereoscopic visualization helped raise several re-
maining issues, such as the modeling of post-translational modifications, membranes, ligands
and cofactors (see the next paragraph on this specific point). The case of dynamic systems,
that will transition between different states, is still unaddressed. At the time of the work-
shop, the current version of AF2 would only accept structural templates for the complete
system it was set to model. The possibility to provide AF2 with partial templates, using

experimental data to specify angular or distance constraints or contact maps on a limited
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set of residues, was therefore identified as an extremely valuable option (see above for recent
progresses in that direction). The subdomains that are predicted to interact by AF2 can
be used to identify residue pairs that could be targeted in experimental approaches such as
FRET.

3D stereoscopic visualization of the 300 kDa active complex provides interesting cues on
the assembly of the complex. The models produced with AF2 were presented which provided
new ideas on the protein-protein interactions in this complex. Noteworthy, the visualisation
of models in a stereoscopic environment makes them more readable. Indeed, the IDR linkers

that appear as "spaghetti” are making the analysis confusing in 2D.

Adding cofactors to AF2 models

As an electron transferring protein, NOX2, the catalytic core of the complex, incorporates
multiple redox carriers: two b-type hemes, a flavin, and the substrate NADPH. The AlphaFill
algorithm*? was used to integrate these cofactors into the AF2 predicted 3D structure.
AlphaFill first aligns amino acid sequences to identify proteins with at least 25 % sequence
identity with the reference protein. It then uses the aligned structure to position the cofac-
tors. In addition, AlphaFill provides an RMSD metric calculated on the basis of residues
located within 6 Angstrom distance from the cofactor, enabling the quality of the model
and the proposed cofactor positions to be assessed. In the case of NOX2, although there are
several structural homologs in the PDB (NOX5 : 500T /500X, DUOX1 mouse : 6WXV,
DUOX1 humain : 7D3F), the majority of them have less than 25 % sequence identity. As a
result, AlphaFill was unable to insert the hemes correctly. Hence, NADPH was integrated
based on a flavin-containing protein available in the PDB (PDB code: 4YRY), while flavin
was added based on the structure of a NOX2 homolog, NOX5 (PDB code: 500X). Initially,
the position of the added NADPH was inappropriate as it colided with a beta sheet of the
protein. Helpfully, AlphaFill provides an optimization option based on energy minimization

to improve cofactor positioning. After optimization, the position of NADPH improved signif-
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Figure 4: Integration of cofactors into the AlphaFold model of NOX2 using the AlphaFill
server a: Structural model of NOX2 predicted by AlphaFold with integrated and optimized
cofactors by AlphaFill (FAD in red, NADPH in green) b: NADPH (by atom types, with
carbons in green) integrated into the structure of NOX2 before optimization ¢: Improved
position of NADPH (by atom types, with carbons in green) after energy minimization by
AlphaFill; d: Superposition of FAD integrated by AlphaFill before (in red) and after (in
yellow) energy minimization.

icantly. A similar energy minimization procedure was applied to optimize flavin positioning
(Figure 4).

AlphakFill is a powerful and valuable tool for adding cofactors, essential elements for
the proper functioning of proteins. The optimization option, which allows cofactors to be
repositioned through energy minimization, enhances its value as a complement to AlphaFold.
However, AlphaFill has certain limitations. Firstly, it relies solely on sequence identity,
whereas structural homologues with less than 25% sequence identity, such as the membrane
region of NOX5, could have been useful for adding b hemes. In addition, the AlphakFill
database is not regularly updated. In the case of NOX2, AlphaFill does not consider the
two recent NOX2 structures published in the PDB in 2022.14%141 Overall, AlphaFill has
considerably improved the possibility of extending AF2 models to redox proteins and thus

enabling a better understanding of their function.
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As shown above, the attempts to complement the models with cofactors using AlphaFill
are not necessarily straighforward. Furthermore, several features of the complex cannot be
addressed with AF2: IDRs, Post-Translational Modifications, 37146 protein lipid contacts.
The models may be improved using homologous templates, which are important for large

assemblies. 7294

Multiple C2 Domains and Transmembrane region Proteins

Multiple C2 Domains and Transmembrane region Proteins (MCTPs) of plants are membrane
proteins involved in the organization of plasmodesmata that are crucial in cell communica-
tion. MCTPs are associated with the endoplasmic reticulum and possess three or four C2
domains (C2A-C2D) and two transmembrane regions (TMR). C2 domains are easily mod-
elled but the TMR are difficult to address.'*” We investigated models generated by various
tools, namely AF2, RF, trRosetta, AlphaFold multimer, OmegaFold and ESMFold.® As
expected the models appear reliable on the C2 domains but the TMR have relatively lower
pLDDT. Noteworthy, four of the models, from RF, trRosetta, AlphaFold multimer and ESM-
Fold, display a very similar TMR with interactions between helices H2 and H3 (Figure 5a).
At variance the model proposed by OmegaFold suggests interactions between helices H1 and
H4 (Figure 5b). Interestingly a physics-based exploration of the conformational landscape of
the protein, running molecular dynamics of the various Al models, leads to another confor-
mation (Figure 5c). Strickingly, a model of a dimer of MCTP shows interactions of helices
H2 and H3 in a monomer and between helices H1 and H4 at the interface between monomers
(Figure 5d).

A key capability of AF2 is to allow the prediction of contacts from sequence align-
ments. 48149 The relationship between sequences and contacts is however partially ambigu-
ous, which has been shown in the case of conformational changes. This in turn triggered the
creation of strategies to explore the conformational landscape with AF2 and RF.94150-154

The prediction of multimers is a complicated issue, the evaluation of interfaces increasing
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Distance (Angstrom)

Figure 5: MCTP models and exploration by molecular dynamics. a) superposition of the
models obtained with AlphaFold Multimer, RosettaFold, ESMFold and TrRosetta, b) model
obtained by OmegaFold, ¢) New model obtained by MD showing new contacts (left) and
corresponding structure (right), d) model of a dimer showing contacts at the interface be-
tween monomers
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the difficulty compared to monomers. This issue raises the question of treating the inter-
faces separately as proposed by Zhu and coworkers'®® and of whether multimeric proteins
should be modelled as monomers or oligomers. Arguably, homo-oligomeric proteins should
be treated more accurately as oligomers rather than monomers given that part of the evolu-
tionary pressure/signal should be associated with interfaces. Indeed, there are cases in which

the models produced with AF-multimer appear more robust than with AF2 (see Figure 5).

The Yeast mitofusin, Fzol

Mitochondrial membrane fusion in Eukaryotes generates a dynamic tubular network support-
ing the organelle functions. Outer membrane fusion is initiated by the membrane mitofusin
Fzol in yeast Saccharomyces cerevisiae. As a member of the dynamin-related proteins,
Fzol is homologous to MFN1 and MFN2 in Homo sapiens, for which high-resolution crystal
structures of GTPase domains were determined that proved structurally similar to bacterial
dynamin-like protein (BDLP).!¢ Binding and hydrolysis of GTP followed by the release of
GDP, induces a conformational cycle enabling reversible homodimerization'*” that sequen-
tially controls the tethering, junction and fusion of outer membranes.'®® Because Fzol is a
large (855 residues), membrane-bound, multi-domain protein that adopts multiple conforma-
tions and oligomeric states, the determination of its structure represents an unmet challenge
both from an experimental and computational perspective.

The structure of Fzol has initially been investigated in a hybrid computational and
experimental approach, combining molecular modelling with site-directed mutagenesis and
in vivo functional assays.'® The predicted architecture of Fzol was tested by in vivo site-
directed mutagenesis and validates salient aspects of this model, notably, the long-distance
contacts and residues participating in hinges (Figure 6 Left). A model prepared with AF2
was compared with the previous models (Figure 6 Right). While the models appears similar
at first sight, the analysis of pairs of residues validated experimentally suggest that this newer

models is not compatible with experiments. Noteworthy, a significant part of the structure is
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constituted of a bundle of helices on which heptad repeats are found. It is therefore tempting
to speculate that AF2 could be misled by heptad repeats and the models might therefore
be shifted by one or two repeats. Other have indeed shown difficulties with bundles. 119160
More subtle rearrangement on coiled coil structure as seen in other systems should however

be considered. 16!
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Figure 6: Mitofusin models. Left, models obtained by homology modeling. Right, model
obtained using AF2. The residues pairs validated by mutagenesis experiments are shown in
space filling representation.

Modelling validation

As discussed above, an important aspect of the use of models generated prospectively is that
they need to be validated. This can basically be done by comparing the models with ex-
perimental data as mentioned above (Mutagenesis, Mass spectrometry, NMR) or with data
obtained from independent modelling tools. While the complementarity of AF2 and RF
models with experiments already is the subject of many studies, there could be an under-use

of independent modeling tools. During the development of AF2 a choice has been done
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not to rely on the physico-chemical knowledge of proteins,! although it may have learned
some of it implicitly.® Although the lack of explicit use of the physico-chemical knowledge of
proteins is probably an element of success of AF2, it should not prevent users from using it
to validate the models. In fact the absence of those criteria in the modelling process make
it an independent tool for validation. In addition to the possibility of analyzing models
with a biochemist specialist of the protein, as mentioned above, it could be worth analyzing
the basic properties of the model, such as clashes, Ramachandran plot outliers, etc.!6%163
This also opens the possibility of model’s improvements via molecular dynamics simula-

164(Sujith’s preprint), or methods directly based on angles.'% Structural alphabets also

tions
appear as a mean to analyse underrepresented secondary structure elements that could be
badly scored in terms of pLDDT whereas correct in terms of structure.®® As mentioned
above for membrane proteins, alternative tools can be used for validations, such as DREAM
or MembraneFold /Deep TMHMM 167168 to identify elements associated with the membrane,
or MD to test the stability of the system. The latter, could also, in principle, improve the

model. 1697

Wish list

In just a few years of existence, AF2 and RF have become the go-to tools for structural
biologists working on proteins. Their integration into the research pipeline has been nothing
short of revolutionary. However they were initially developed mainly to predict the structure
of monomeric proteins in a fully automated manner. Although it is helpful in most cases,
there are still ways in which these approaches could be improved. During the workshop, we
initiated the compilation of a list of essential tools that would greatly facilitate our research.
Additionally, while preparing the manuscript, we incorporated several crucial points.
Among the ideas expressed, some correspond to tools that more or less exist, which

illustrates the need to share knowledge in this rapidly progressing field:
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e Use experimental data as a constraint for modelling. As we have seen above this idea
has already been tested, for example, with MS or NMR data. The possibilities could
probably be extended for example allowing to play on contact maps although some

methods already go in that direction;!™

e Modify models with various tools and feed them back as template to AF2/RF. As

mentioned above ColabFold makes the use of templates more flexible.

e A predictor of Molecular Dynamics. The recently proposed method EigenFold goes in

that direction.'™

e A predictor of Binding Partners. In addition to the virtual pull-down approach men-

tioned above, many developments are ongoing for the prediction of protein/protein

complexes 72

Other ideas correspond to tools that do not exist yet:

e A meta tool that combines all modeling programs in one pass, rank them globally and
suggest an ideal composite model. Although a jury method has been proposed for the

prediction of protein-protein complexes,!™ this is still a largely unexplored possibility.
e A predictor of Post-Translational Modifications.

e A predictor of function.
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