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Abstract 

 

Glutamate is the major excitatory amino acid in the vertebrate brain. Glutamatergic signaling is involved in 

most of the Central Nervous System functions. Its main components, namely receptors, ion channels, and 

transporters, are tightly regulated at the transcriptional, translational, and post-translational levels through a 

diverse array of extracellular signals, such as food, light, and neuroactive molecules. An exquisite and well-

coordinated glial/neuronal bidirectional communication is required for proper excitatory amino acid signal 

transactions. Biochemical shuttles such as the glutamate/glutamine and the astrocyte-neuronal lactate represent 

the fundamental involvement of glial cells in glutamatergic transmission. In fact, the disruption of any of these 
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coordinated biochemical intercellular cascades leads to an excitotoxic insult that underlies some aspects of most 

of the neurodegenerative diseases characterized thus far. In this contribution, we provide a comprehensive 

summary of the involvement of the Aryl hydrocarbon receptor, a ligand-dependent transcription factor in the 

gene expression regulation of glial glutamate transporters. These receptors might serve as potential targets for 

the development of novel strategies for the treatment of neurodegenerative diseases. 
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Declarations 

Ethical Approval Not applicable. 

Competing interests  The authors declare no competing interests. 

Authors’ contributions  AO and MPF-S conceived the original idea. AO wrote the final version. JS-P, CS and 

LCRH-K prepared the first draft of the manuscript and the figures and tables. All authors have read and 

approved the final manuscript. 

Funding  Conacyt 255087, Conacyt- ECOS-Nord 315689  PhD scholarship 735674.  

Availability of data and materials  Not applicable. 

 

 

 



 3 

1 Introduction 
L-Glutamate (Glu) is considered the main excitatory amino acid neurotransmitter in the vertebrate Central 

Nervous System (CNS). It is involved in most of the brain functions including learning, memory, cognition, 

proliferation, and migration among others [1]. During development, glutamatergic signaling plays a crucial role 

in the correct formation of dendritic spines and synapses [2, 3].  Glu released from presynaptic neurons activates 

both ionotropic (GRI) and G-protein- coupled Glu metabotropic receptors (GRM) expressed in neurons and 

glial cells, [4-7], see Table 1. A tight control of Glu extracellular levels is mediated by a family of sodium-

dependent plasma membrane Glu transporters known as excitatory amino acid transporters. Five Glu 

transporters have been characterized thus far, excitatory amino acid transporter 1 (EAAT1/Na+-dependent 

glutamate/aspartate transporter (GLAST)), EAAT2/glutamate transporter 1 (GLT1), EAAT3/excitatory amino 

acid carrier 1 (EAAC1), EAAT4, and EAAT5. EAAT1 and EAAT2 are mainly expressed in astrocytes and are 

responsible for more than 80% of the Glu synaptic cleft clearance [8]. Glutamatergic transmission is an example 

of a tripartite synapse since glial Glu transporters are responsible for the recycling of this neurotransmitter. The 

impairment of Glu uptake results in a neurotoxic insult due to the over activation of extra-synaptic Glu receptors 

[9, 10], specifically of the N-methyl-D-aspartate subtype (GRIN) containing the 2B subunit (GRIN2B) [11] in 

a process known as excitotoxicity. Over the years, it has been considered that excitotoxicity is the biochemical 

framework of several neurodegenerative diseases [12]. 

 

Table 1 GR in glial cells function 

Effect GR involved Model Reference 

Ca2+ responses evoked by Glu 
GRMI / 

GRMII 
Rat hippocampal slices [13] 

Decrease glast mRNA levels 

and GLAST activity via YY1 
GRIA, GRIK 

Chick Bergmann glia 

primary cultures 
[14, 15] 

Currents evoked by Glu GRIA, GRIN 
Mouse cortical astrocytes 

slices and isolated cells 
[16] 

Increases in p70S6K 

phosphorylation 
GRIK, GRM1 

Chick Bergmann glia 

primary cultures 
[17] 

Increase in p-eEF2 and eEF1A 

phosphorylation  
GRIA, GRIK 

Chick Bergmann glia 

primary cultures 
[18, 19] 

Deficits in motor performance 

in Erasmus Ladder 

GRIA1, 

GRIA4 
Lacking double inducible 

knockout GRIA1 GRIA4 
[20] 
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Mouse Bergmann glial cells 

Increases BMAL1 protein levels GRMI, GRIA 
Chick Bergmann glia cells 

primary culture 
[21] 

Ca2+ currents GRIA, GRIN 
Mouse periglomerular 

astrocytes  

[22] 

 

 

 

2 Glial cells in glutamatergic transmission 

The term glial cells include all non-neuronal cells distributed throughout the Nervous System. The subtypes of 

glia in the CNS are oligodendrocytes, ependymal cells, microglia, and astrocytes. Astrocytic cells are as 

abundant as neurons in the human adult brain, although the ratio between astrocytes/neurons depends on the 

brain area analyzed [23, 24]. In particular, in the primate and rodent cerebral cortex, astrocytic cells outnumber 

neurons, while in the cerebellum, neurons outnumber astrocytes [25-27].  

Historically, glial cells have been considered only as support structures, but nowadays, it is evident that 

astrocytes intervene in diverse CNS functions. Astrocytes participate in the genesis and elimination of synapses, 

enhance synaptic transmission, and are involved in calcium and potassium homeostasis, among other functions. 

Moreover, these cells provide metabolic support to neurons through the so-called astrocyte-lactate-neuronal 

shuttle [24, 28-34]. Lactate seems to have implications in neurons that go beyond metabolic support i.e., 

inducing the expression of c-fos, zinf268, and arc genes via the activation of GRIN [35]. Interestingly, astrocytes 

are involved in the generation of circadian rhythmicity, modulating extracellular Glu levels, a process in which 

EAATs are involved, as has been elegantly described in the mice Suprachiasmatic Nuclei (SCN) [36]. 

Moreover, glial Glu signaling through both receptors and transporters contributes to gene expression regulation 

and glial-neuronal interactions [16-18, 37, 38] summarized in Table 1. 

An example of a well-characterized tripartite synapse is the cerebellar parallel fiber-Purkinje cell synapse and 

between Müller, bipolar and ganglion cells in the retina [39, 40]. Bergmann glial cells (BGC) completely wrap 

this glutamatergic synapse and are responsible for Glu removal through GLAST/ EAAT1 [39]. Once in the glial 

cell, Glu is metabolized to Glutamine (Gln) by the glia-enriched, Gln synthetase (EC 6.3.12), then Gln is 

released from the glial compartment to the presynaptic neuron through the sodium-dependent neutral amino 

acid transporters (SNATs). Gln is deaminated in the neuronal compartment by glutaminase (EC 3.5.1.2), 

converted back to Glu, and packed into synaptic vesicles in order to be released after an action potential [41, 

42] The coupling among Glu uptake and Gln glial release [43, 44] and the metabolic Glu recycling constitutes 

the previously mentioned Glu/ Gln shuttle. Moreover, a GLAST/EAAT1-dependent glucose uptake in these 

cells has also been reported [45]. 

 

3 Glutamate Receptors 
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Glu receptors are classified into two groups: metabotropic (GRM) and ionotropic (GRI) receptors. GRM are G 

protein-coupled receptors that have been classified in terms of their sequence homology into three groups: 

Group I, formed by GRM1 and GRM5, Group II comprising GRM2, GRM3 and GRM4. Finally, GRM6, 

GRM7, and GRM8 belong to Group III. 

The expression of most of the GRM mRNAs has been detected in glial cells, GRM3 and GRM5 have been 

detected in hippocampal astrocytes. Secondary cortical astrocytes express GRM1 and GRM5 [46, 47]. 

Functional GRM1/GRM2 are present in rat hippocampal astrocytes [13, 48] see Table 2. Nevertheless, GRM 

signaling properties remain unclear. Apparently, there is a cell type-dependent signal cascade [49, 50].  

Table 2 Glial GR 

Receptor detected Model Reference 

GRIA1, GRIA3, GRIA4 mRNA 
Bergmann and Müller glial cells-

chick 
[51] 

GRM3, GRIM5 mRNA Rat Hippocampal astrocytes [46] 

GRM1, GRIM5 protein Rat secondary cortical astrocytes [47] 

GRIN1, GRIN2B, GRIN2C mRNA Mouse Cortical astrocytes [52] 

GRIN1, GRIN2A, GRIN2B mRNA and 

protein 
Mouse Cortical astrocytes [53] 

GRIK1, GRIK2, GRIK4, GRIK5 mRNA 

GRIK2 protein 
Mouse neopallia astrocytes [54] 

GRIK4 protein Rat Hippocampal astrocytes [55] 

Gria1, Gria2, Gria3, Gria 4 
Cerebellar Astrocytes cerebellum, 

neocortex and hippocampus-mouse 
[56] 

 

In contrast, ionotropic receptors were subdivided before their molecular characterization was accomplished. 

Three different pharmacological distinct GRI have been described: 5-methyl-4-isoxazole propionate (AMPA), 

N-methyl-D-aspartate (NMDA), and Kainate (KA) receptors. Their respective subunits are, for AMPA 

receptors: GRIA1, GRIA2, GRIA3, GRIA4., NMDA: GRIN1, GRIN2A, GRIN2B, GRIN2C, GRIN2D, and 

KA: GRIK1, GRIK2, GRIK3, GRIK4, GRIK5 [57]. Glu receptors are expressed in neurons and glial cells, in 
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the latter, ionotropic and metabotropic groups have also been reported to be expressed throughout the CNS, and 

to be functionally active (Table 1 and 2) [7, 16, 24, 58]. 

 

KA receptors (GRIK) are tetramers with a homomeric or heteromeric composition [59]. GRIK1-3 are low-

affinity subunits required for ion channel functionality, and as a consequence, can form homomeric receptors, 

in contrast, high-affinity subunits (GRIK4-5) only form heterodimeric ion channels [60]. The pharmacological 

and kinetic properties of KA channels depend on their specific subunit composition [61]. GRIK are activated 

by Glu, kainic acid, domoic acid, and AMPA (EC50 » 50, 5 and 0.3, 200 µM) [62]. GRIK-specific antagonists 

include g-D-glutamyl amino methyl sulphonic acid (GAMS), (3S,4aR,6S,8aR) -6- ((4-carboxy phenyl) methyl) 

-1,2,3,4,4a,5,6,7, 8,8a-deca hydro isoquinoline -3-carboxylic acid (LY382884), while 6-cyano-7-

nitroquinoxaline-2,3-dione (CNQX) can also block AMPA receptors [63-65]. GRIK can mediate synaptic 

responses, in general terms, their synaptic current is smaller than those of GRIA, and their deactivation kinetics 

is slower [66]. In terms of Glu release, GRIK can exhibit a bidirectional modulation in the mossy fiber to CA3 

synapse; at nanomolar KA concentrations, it increases Glu release while higher KA concentrations it diminishes 

Glu release [60, 66]. Concerning GRIK plasma membrane regulation, the Ca2+/calmodulin-dependent kinase II 

(CaMKII) phosphorylates  GRIK5 in S589, S892, and T976, increasing the receptors lateral mobility [67]. 

GRIK interacts with diverse membrane proteins; postsynaptic density protein 95 (PDS-95) was one of its first 

described partners [67]. The Ca2+/diacylglycerol-dependent protein kinase (PKC) phosphorylates GRIK2 at 

S846, and S868, restricting its traffic [60]. 

AMPA receptors (GRIA) are ensembled as homo or heterotetramers [68], that can be activated by Glu, AMPA, 

quisqualate, and (RS)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-yl)isoxazol -4-yl] propionic acid (2-

Me-Tet-AMPA), with an EC50 of 296 µM, 66.2 µM, 16.3 µM, and 3.4 µM, respectively [69]. GRIA activation 

and deactivation kinetics are fast (millisecond range) and exhibit a strong desensitization [64]. GRIA 

heterotetramers are conformed by GRIA1 and GRIA2 subunits in CA1 hippocampal neurons, but their subunit 

composition is dependent on the brain area analyzed [70, 71]. GRIA N-terminus is extracellular, while the C-

terminal domain is an intracellular component that provides a scaffold for post-translational modifications and 

protein interactions [72]. GRIA1 subunit plays a role in the activity of receptors at synapses through its C-

terminal phosphorylation by CAMKII, protein kinase C (PKC), or the cyclic AMP-dependent protein kinase 

(PKA). Moreover, interaction with synaptic scaffold proteins containing a PDZ domain leads to the recruiting 

and retention of GRIA1 and GRIA2 at synapses during long-term potentiation processes [70, 73]. Within the 

plasma membrane, GRIA interacts with the Discs large homologs (DLG), DLG-1 or synapse associate protein 

97 (SAP97) which binds to GRIA C-terminus and is associated with receptor trafficking, SPD-95, and SPD-93 

binds to GRIA [74]. The formation of the transmembrane AMPA Receptor regulatory protein (TARP)/GRIA 

complex is necessary for the channel function, providing different physiological properties and intervening 

receptor trafficking [74]. 



 7 

 

The kinetics of the activation of NMDA receptors (GRIN) is slower than that of GRIA and GRIK, between ten 

and thousand milliseconds [64], the ligand-gated NMDA ion channel requires a strong depolarization to remove 

the external Mg 2+ block and allow Ca2+ influx for an efficient activation, therefore it can also be considered as 

a voltage-dependent channel [75-77]. Moreover, GRIN activation requires the binding of two co-agonists; Glu 

and glycine (Gly), the latter acting as an activation modulator [78, 79]. GRIN are conformed by heterotetramers, 

each formed by at least one GRIN1 subunit and a combination of the others. The structural peculiarity of GRIN 

confers its diverse kinetic and pharmacological properties [80, 81]. Therefore, the outcome of GRIN activation 

depends on the subunit composition. For instance, GRIN2A-containing receptors activation has been associated 

with cell survival, while GRIN2B subunit activation results in cell death signaling [82]. Also, intracellular C-

terminal GRIN2B signaling contributes to the excitotoxic response [11]. Most GRIN are assembled of 

GRIN1/GRIN2A or GRIN1/GRIN2B subunits [83]. GRIN2B-containing receptors are mostly enriched in 

extra-synaptic sites [84, 85]. Gly and other endogenous ligands of GRIN such as Quinolic acid (QUINA) and 

Kynurenic acid (KYNA), which are metabolites from tryptophan from the kynurenic pathway, modulate its 

actions e.g. QUINA acts as an agonist [86] and KYNA as an antagonist (Ec5010 µM) acting on the glycine-

binding site [87, 88]. KYNA also is an antagonist of both GRIA and GRIK [89]. 

 

 

4 Glu Transporters 

Extracellular Glu levels are regulated by a family of plasma membrane sodium-dependent Glu transporters 

named Excitatory Amino Acid Transporters (EAAT1-5) [3, 90]. The molecular characterization of these 

transporters was reported in the early 90´s: EAAT1; slc1a3; glutamate/aspartate transporter (GLAST), EAAT2; 

slc1a2; glutamate transporter 1 (GLT1), EAAT3; slc1a1; excitatory amino acid carrier 1 (EAAC1), EAAT4; 

slc1a6 and EAAT5; slc1a7 [8, 91-96]. Each Glu molecule is co- transported with three Na+ and one H+ with 

one K+ ion efflux [97, 98] the transport is electrogenic and dependent on the Na+ gradient. EAAT1/GLAST is 

functional and physically coupled with the Na+/K+ ATPase [99] and the neutral amino acid transporter 3 (SNAT 

3) [43]. Glu transporters are expressed differentially in specific brain regions, for example, EAAT1/GLAST is 

enriched in the cerebellar cortex, in Bergmann glia cells, retinal Müller glial cells, while EAAT3 and EAAT4 

are expressed in Purkinje cells. In other brain structures, EAAT2/GLT1 is highly enriched in glia cells [3, 100-

102]. EAAT1/ GLAST is the major transporter expressed in the cerebellum [3, 101]. This transporter is present 

in high levels during early development in most of the encephalon, while EAAT2 /GLT1 expression is increased 

during development, which explains GLAST use in immunohistochemistry as a  marker of glial cells [103]. 

Glial Glu transporters are critical for a proper regulation of extracellular Glu levels, preventing its spillage to 

the extra synaptic space, and by these means avoiding excitotoxicity [9, 10] and are apparently necessary for 

proper brain development. Cortical neurons maturation is impaired in the cortex of double mutant GLAST-/- 
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/GLT1-/- mouse model [104]. Furthermore, Glu transporters participate in Glu signaling in glial cells [38] and 

in circadian rhythms generation i.e. using a competitive non-transportable EAATs blocker reduces the 

amplitude and robustness of PER2::LUC oscillations in explants from suprachiasmatic nuclei [36]. On the other 

hand, GLAST and GLT-1 mRNA levels are decreased in the gyrus frontalis medialis from sporadic Alzheimer's 

disease donors [105]. 

A wide variety of mechanisms regulate Glu transporter function and gene expression; including gene 

transcription, translation, and traffic to the plasma membrane [106, 107]. Different molecular mechanisms 

participate in the regulation of each transporter [108] e.g. concerning chglast promoter, the Ying-Yang 1 (YY-

1) transcription factor represses its expression  of chicken GLAST [15]. While NF-kB acts as a positive 

regulator [109]. AMPA receptors activation decreases GLAST/EAAT1 mRNA and protein levels through PKC 

activation [14], see Table 1. Dibutyryl cAMP (dbcAMP) up-regulates GLAST/ EAAT1 mRNA, protein levels 

and transport activity Dibutyryl cAMP (dbcAMP), that activates PKA [110-113]. Moreover, EAAT1/GLAST 

protein levels and activity might be regulated by clock factors; its promoter contains functional E-boxes [114] 

and its expression is decreased in Per2 mutant mice [115], indicating a circadian influence in its regulation. 

Estrogens are involved in EAAT2/GLT1 regulation through Estrogen Receptor (ER) activation and increased 

binding activity of the CREB and NF-kB transcription factor to EAAT2/ GLT1 promoter [116-118].  

 

5 The Kynurenic Pathway 

Over 95% of dietary Tryptophan (TRP) is metabolized by the Kynurenic pathway (KP). A reduced amount of 

TRP is used in protein synthesis and the serotonin pathway [86]. Indoleamine-pyrrole 2,3-dioxygenase (IDO1) 

is an important limiting enzyme of this pathway [119]. In primary cultures of mouse brain astrocytes IDO1 

mRNA has been detected through RT-PCR after treatment with interferon-g [120]. Metabolites produced 

through the KP present in the vertebrate CNS at nanomolar concentrations [121]. IDO1 is expressed in primary 

cultures of neurons, microglia and astrocytes derived from mixed brain human fetuses. Likewise, its mRNA 

and protein have been detected in mouse primary astrocytic cultures. Moreover, QUINA also was found in these 

cultures [122, 123]. In the KP, modulator molecules are generated: as previously mentioned, KYNA and 

QUINA, act as GRI modulators, act as an antagonist for GRIA, GRIK, and GRIN and agonists for GRIN, 

respectively (see section 3). On the other hand, some metabolites of KP - Kynurenine (KYN), KYNA, and 

QUINA - also are ligands for the aryl hydrocarbon receptor (AHR) Fig. 1 (see section 8, Table 3 for details). 
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Fig. 1 KP. Indoleamine 2,3-dioxygenase (IDO), tryptophan 2,3-dioxygenase (TDO) Kynurenine 
aminotransferases (KATs) 3-hydroxykynurenine (3-HK), kynurenic acid (KYNA), quinolic acid (QUINA), aril 
hydrocarbon receptor (AHR). For details of GRI modulators / AHR ligands (See text section 3 and Table 3). 
Modified from [124] 

Table 3 Endogenous and Exogenous AHR ligands 

Ligand Affinity Reference 

Endogenous 

Kynurenic acid 100 nM [125] 

Kynurenine 4 µM [126] 

FICZ 0.07 nM [127] 

Exogenous 
TCDD 0.27 nM [128] 

B[a]P 0.5 µM [129] 

 b-Naphthoflavone 20 nM [130] 

 

 

6 AHR in CNS: Expression and function 

The AHR is a ligand-dependent transcription factor that belongs to the basic helix-loop- helix family (bHLH) 

with a Per-Arnt-Sim (PAS) domain [131, 132]. Present in the cytoplasm as an inactive complex, AHR is 

expressed in brain homogenates of different species including mammals, rodents, and birds [133, 134]. In mice, 

it is expressed in specific CNS regions including the cerebral cortex, cerebellum, hippocampus, olfactory bulb, 

and in retinal photoreceptor cells [135, 136]. Furthermore, in rats, AHR mRNA is expressed in the olfactory 

Protein
synthesis

Serotonin
Pathway

IDO TDO

N-formyl kynurenine

Formamidase

3-HK

Kynurenase 3-HAO

NAD+

Kynurenine KYNA
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AHR agonist
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GRIA, GRIN, GRIK
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O

OH
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2
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bulb, ventral tegmental area, hippocampus, caudal arcuate nucleus, raphe nucleus and the globus pallidus [137]. 

AHR and ARNT (Aryl hydrocarbon nuclear translocator) protein levels from mouse cerebellum homogenates 

were examined by immunoblot analysis between postnatal day (PND) 0–PND21, revealing that AHR protein 

levels decrease throughout development [138]. Moreover, relevant to glutamatergic transmission, AHR is 

expressed in murine and human astrocytes [139-142] (Table 4). It is relevant to mention that AHR is expressed 

in a glioblastoma cell line from human brain [126, 143, 144]. 
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Table 4 AHR expression in neurons and astrocytes 

Expression Preparation Specie Reference 

Protein Cerebellar granule neuroblasts Mouse [138] 

mRNA, Protein Cortical neurons -Primary culture Rat  [140] 

mRNA Cortical astrocytes -Primary culture Mouse [141] 

Protein Cortical astrocytes –Primary culture Mouse [139] 

mRNA, Protein Cortical astrocytes-Primary culture Mouse [145] 

Protein 

Astrocytes co-localization AHR-

GFAP hippocampal post-mortem 

tissue 

Human [142] 

 

Historically, AHR has only been studied in regard to the metabolism and detoxification of environmental 

pollutants and was originally described as a xenobiotic receptor. With the development and use of AHR 

knockout models [146, 147], pharmacological approaches and the discovery of endogenous ligands, its 

physiological role has begun to be unveiled. Recently, in an AHR-null mouse model it has been reported that 

tise receptor participates in the regulation of KP, modulating protein levels of kynurenine aminotransferase II 

and the levels of KYNA; in this model both are increased in the cortex and striatum [148]. Moreover, AHR 

activity participates in the development of contextual fear memory. Absence of this receptor induces alteration 

of granule cell morphology, decrease of mushrooms' spines density, increase of total dendritic length, and 

decrease in the GRIA/GRIN ratio in dental gyrus granule cells [149, 150]. It has a role in gaze stabilization at 

the eye movement, since the optokinetic reflex is decreases in the AHR -/- mice [151]. AHR also might act as 

an environmental stress sensor for the retina since its invalidation leads to alterations similar to age-related 

macular degeneration [152].  Interestingly, AHR takes importance in circadian rhythm regulation, given the 

fact that in an AHR +/- mice model, Per2 mRNA and protein levels are enhanced within the SCN [153].  

AHR is involved in neuronal migration and dendritic development of olfactory interneurons [154] as well as in 

the survival and differentiation of hippocampal neurons [149]. AHR also modulates the expression of some 

GRIN subunits [155] and the neurogenesis of cerebellar granule cells [156]. In addition, through the use of 

specific AHR antagonists, it was established that this receptor is involved in cerebellar granule cells' apoptotic 

processes induced by xenobiotic insults [157]. All of these properties are not exclusively neuronal; for example, 

in primary astrocyte cultures from wild type or AHR deficient mice, expression of the Chemokine (C-C motif) 

ligand 2 (Ccl2), Colony-stimulating factor 2 (Csf2), Nitric oxide synthase 2 (Nos2), is increased in a model of 

experimental autoimmune encephalomyelitis [141]. The endogenous physiology of AHR is complex and the 

involved mechanisms remain unclear. 



 12 

 

7 Canonical and non-canonical activation pathway 

In the canonical AHR activation pathway, the AHR-ARNT complex is recruited to a specific DNA-response 

element (5ʹ-TNGCGTG-3ʹ) known as xenobiotic responsive element (XRE) or Dioxin responsive element 

(DRE) to control the transcription of its target genes [158] like cytochrome 1A1 (cyp1a1), the AHR repressor 

(ahrr), indoleamine-pyrrole 2,3-dioxygenase (ido1), [159, 160]. This receptor senses extra and intracellular 

signals from endogenous and foreign origin [91]. As mentioned earlier, AHR inactive complex is localized in 

the cytoplasm and is composed of the chaperone proteins heat shock protein 90 (Hsp90), prostaglandin E 

synthetase 3 also known as p23 protein, AHR interacting protein (AIP), also called ARA9 or HVB X-associated 

protein 2 (XAP-2), and the non-receptor protein tyrosine kinase or pp60src [161, 162]. Once AHR is bound by 

an agonist it is dissociated from the cytoplasmic inactive complex and is translocated to the nucleus to interact 

with the ARNT or with the hypoxia-inducible factor 1-b (HIF1b) [163]. AHR can interact with other 

transcription factors, in a non-canonical pathway. For example, AHR can be associated with RelB, forming an 

NF-kB subunit. The newly formed complex binds to the DNA sequence 5ʹ-AGATGAGGGTGCATAAGTTC-

3ʹ named RelBAHRRE. It is especially relevant the GGCTCCAT sequence immersed in and, this the 

GGCTCCAT sequence encompasses regulating expression of IL-8, which regulates the expression of genes 

like IL-8 [164]. Another AHR non-canonical pathway involves formation of a complex with the Estrogen 

Receptor (ER)-AHR (ERAHR), disrupting the ER signaling [165]. On the other hand, through 

immunoprecipitation assays, an interaction between AHR and BMAL1 was evidenced, acting as a repressor of 

Per1 expression [166]. Furthermore, AHR-ARNT complex can block the transcription of certain ER-regulated 

genes at least in part by the AHR ARNT complex binding to its DNA recognition sequence and disrupting ER 

signaling (see Fig. 2 [167, 168]). Moreover, AHR can interact with and activate the Mitogen-Activated Protein 

Kinase (MAPK) [169, 170]. In this review, we embark on the possibility of AHR as a possible orchestrator of 

glutamatergic neurotransmission, Fig. 3. 

 

AHR

AHR ligand

hsp90 p23 ERAHR Ebox RelbAHRRE XRE

AHR

ER

RelB

ARNT

Clock
genes

Extracellular

Intracellular

AHR AHR AHR
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Fig. 2 AHR Canonical and non-canonical pathways. AHR through non-canonical pathway is capable of 

physically associating with components responsible for circadian rhythmicity, hormone disruption, and 

dysregulation of gene transcription; BMAL1 

 

 

 

 

Fig. 3 Glial AHR as an orchestrator in glutamatergic neurotransmission. A canonical AHR gene regulated is 
IDO, limiting in KYNA an AHR ligand and a GR antagonist, Table 3 section 3, and 5. Antagonize GRIA 
downregulate chglast, table 2, section 

 

8 Ligands 

AHR ligands can be classified as endogenous or exogenous. The exogenous ligands come  from the diet and 

are tryptophan metabolites produced by the KP, including some photoproduct tryptophan-derivates such as 6-

formylindolo- [3,2-b] -carbazole [171] (Table 4). Exogenous or xenobiotics AHR ligands usually are 

environmental toxins e.g. polycyclic aromatic hydrocarbons or polychlorinated biphenyls [171]. Dioxins are 

persistent organic pollutants, that were used during the Vietnam War, known as the agent orange. The most 

important dioxin and exogenous AHR ligand is 2,3,7,8-tetraclorodibenzo-p-dioxin or TCDD [128]. It is a 

AHR ligand
  e.g.
KYNA Extracellular

Intracellular

AHR

hsp90 p23

PKC

KYNA QUINA

KP

IDO

GRIA     GRIK     GRINGLAST

AHR

YY1

GLAST

ARNT
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ubiquitous environmental pollutant presenting neurotoxic effects and was classified as a human carcinogen by 

the WHO [161, 172, 173], The model molecule used to study polycyclic aromatic hydrocarbons is the 

Benzo[a]Pyrene, which has been described as an exogenous AHR ligand [129] with potential neurotoxic and 

glutamatergic actions (Table 4). 

 

9 Effects of the exposure to AHR ligands in glutamatergic transmission 

As can be easily understood, plasma membrane Glu binding proteins  (receptors and transporters) play a 

fundamental role in the regulation of glutamatergic transmission. Decreased levels of  Glu receptors are linked 

to deficits in learning and memory processes. Moreover, diminished  mRNA or protein levels of Glu 

transporters have been observed in amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, and other 

neurodegenerative diseases. [57, 174, 175]. The AHR endogenous ligand KYNA acts as GRIN and GRIK 

antagonist while QUINA is an agonist for GRIN. Nevertheless, the characterization of the effect of AHR 

activation on Glu transporters and receptors is far from complete (see Table 5). In any event, it has been 

demonstrated that Glu receptor agonists do not alter [3H]-D-aspartate uptake, but AMPA and KA receptor 

antagonists decrease it [3H]-D-aspartate uptake [176] impacting on the regulation of expression and function of 

Glu transporter GLAST [14], Table 2. It has also been described, through siRNA AHR knockdown strategies, 

that downregulation of AHR results in diminished grin2a RNA levels and increased grin2b mRNA levels in 

neonatal rat cortex primary neuronal cultures [155], supporting the idea that AHR is a modulator of different 

components in the glutamatergic neurotransmission. In Fig. 3 we provide a schematic modulatory 

representation of this interplay. 

Table 5 Effects of exogenous ligands on glutamatergic components 

Effect Model Ligand Reference 

¯ mRNA GRIN2B 

Prefrontal cortex and Hippocampus 

C57BL/6J mice 

 

 

B[a]P 2.5 y 6.25 
mg/kg intraperitoneal 
Twice per week for 

90 days 

 

[177] 

¯ mRNA GRIN2B 

Brain cortex 
Rat PND 100 

 

B[a]P 3 mg/kg in 
utero exposure GD 
14-17 oral gavage 

 

[178] 

 female Balb/c 
mice (18-20 g) 

B[a]P 0.02, 0.2, 2, 
20, 200 mg/kg 

intraperitoneal daily 

[173] 
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¯ mRNA GRIN2B 

Cerebellum, hippocampus, 

¯ mRNA GRIN2A 

Hypothalamus 

­ mRNA GRIN2A 

Prefrontal cortex 

 

for 11 days 

¯ GRIN2B protein 

Cerebral cortex 

 

Rat 

PND 45 

TCDD 100 and 700 
ng/kg on GD 15 oral 

gavage  
[179] 

­ mRNA GRIN2A  

Neocortex 

Hipocampos 

¯ mRNA GRIN2B 

Neocortex 

Hippocampus 

 

Rat 

PND 45 800 ng/kg 

 

PND 5 and 45 

200 ng/kg and 800 
ng/kg 

 

TCDD 200 ng/kg and 
800 ng/kg single 

dose on GD 15 oral 
gavage 

[180] 

¯ [3H] glutamate uptake  

Cerebral cortical slices 

Rats 

PND 14 and 60 

 

TCDD 700 ng/kg 
single dose on GD18 

oral gavage 

 

[181] 

¯ GLT-1 protein C6 cells TCDD 10 nM for 12 
h [182] 

 

 

10 Conclusion 

Glutamatergic transmission is involved in most brain functions and its regulation is fundamental for the 

organism and its interactions with the environment. Glial cells participate in Glu mediated-transactions, being 
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responsible for its recycling and thus the maintenance of this neurotransmitter system. Multiple signaling 

molecules are capable of interfering with this exquisite and precise control. A plausible involvement of AHR 

is suggested by the evident after the described participation of the clock genes in regulation of glial Glu 

transporters. Certainly, in the next few years, more information regarding the role of this important transcription 

factor in brain health and disease will be unveiled.  
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Abbreviations:  

AHR: Aryl hydrocarbon receptor. AHRR: Aryl hydrocarbon repressor. AIP: AHR interacting protein. ALS: 

Amyotrophic lateral sclerosis. ARNT: Aryl hydrocarbon nuclear translocator. B[a]P: Benzo [a] Pyrene. PND: 

Postnatal day. BGC: Bergmann Glial cells. BMAL1: Brain and Muscle Aryl Hydrocarbon Receptor Nuclear 

Translocator-Like Protein 1. 2-Me-Tet-AMPA: (RS)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-

yl)isoxazol -4-yl] propionic acid. 3-HK: 3-hydroxykynurenine. CAMKII: Calcium/calmodulin-dependent 

protein kinase II. CLOCK: Circadian Locomotor Cycles Kaput. CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione. 

DRE: Dioxin responsive element. EAAC1: Excitatory amino acid carrier 1. EAAT: Excitatory amino acid 

transporter. ER: Estrogen receptor. FICZ: 6-formy- lindole [3,2-b] carbazole . GAMS: g-D-glutamyl amino 

methyl sulphonic acid. GD: Gestational day. GLAST: Glutamate/ Aspartate transporter. Gln: Glutamine. GLT1: 

Glutamate transporter 1. Glu: L-Glutamate. CNS: Central Nervous System. HIF1b: hypoxia-inducible factor 1-

b. Hsp90: Heat shock protein 90. KP: Kynurenic pathway. KYN: Kinurenine. IDO: Indolamine- pyrrole -2,3-

deoxygenase. KYNA: Kynurenic acid. LY382884: (3S,4aR,6S,8aR)-6-((4-carboxyphenyl)methyl)-

1,2,3,4,4a,5,6,7, 8,8a-decahydroisoquinoline-3-carboxylic acid. MAPK: Mitogen Activated Protein Kinase. 

mRNA: massager ribonucleic acid. NMDA: N-Methyl-D-Aspartate. P23: Prostaglandin E synthetase 3. PKA: 

Protein kinase A. PKC: Protein kinase C. QUINA: Quinolinic acid. SCN: Suprachiasmatic nucleus. SCN: 

Suprachiasmatic Nuclei. SNAT: Neutral amino acid transporter. TCDD: 2,3,7,8-tetraclorodibenzo-p-dioxin. 

TDO: tryptophan-2,3-deoxygenase. KATs: Kynurenine aminotransferases. Xap2: X-associated protein 2. XRE: 

Xenobiotic responsive element. 
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