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Abstract

Vibrio cholerae, the causative agent of cholera epidemics, is a rod-shaped bacterium with a

highly polarized cellular organization. It can survive harmful growth conditions by entering a

non-proliferating spheroplast state, which involves loss of the cell envelope and polarity.

How polarized rod organization cells are formed when the spheroplasts exit the non-prolifer-

ating state remains largely uncharacterized. To address this question, we investigated how

L-arabinose-induced V. cholerae spheroplasts return to growth. We found that de novo mor-

phogenesis started with the elimination of an excess of periplasm, which was immediately

followed by cell elongation and the formation of cell branches with a diameter similar to that

of normal V. cholerae cells. Periplasm elimination was driven by bifunctional peptidoglycan

synthases involved in cell-wall maintenance, the aPBPs. Elongation and branching relied on

the MreB-associated monofunctional peptidoglycan synthase PBP2. The cell division mono-

functional peptidoglycan synthase FtsI was not involved in any of these processes. How-

ever, the FtsK cell division protein specifically targeted the sites of vesicle extrusion.

Genetic material was amplified by synchronous waves of DNA replication as periplasmic

elimination began. The HubP polarity factor targeted the tip of the branches as they began

to form. However, HubP-mediated polarization was not involved in the efficiency of the

recovery process. Finally, our results suggest that the positioning of HubP and the activities

of the replication terminus organizer of the two V. cholerae chromosomes, MatP, are inde-

pendent of cell division. Taken together, these results confirm the interest of L-arabinose-

induced V. cholerae spheroplasts to study how cell shape is generated and shed light on the

de novo establishment of the intracellular organization and cell polarization in V. cholerae.

Introduction

Prokaryotes have long been perceived as tiny bags of randomly distributed proteins and

nucleic acids. However, high-resolution molecular biology and microscopy techniques
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revealed an extraordinary diversity of cell shapes and developmental programmes, suggesting

that bacteria precisely control their form to adapt to specialized ecological niches and/or envi-

ronmental changes, most notably for pathogenesis [1, 2]. They further revealed that bacterial

cells are highly organized and that formation of subcellular domains is critical for numerous

cellular processes, including cell division, chromosome segregation and motility [3–8].

The shape of bacteria is maintained by a rigid cell-wall consisting of cross-linked peptido-

glycan (PG) [9]. Evolutionary considerations suggest that the Last Bacterial Common Ancestor

was probably rod-shaped [10]. In rod-shaped bacteria, the two major bifunctional PG

synthases, PBP1a and PBP1b, and the two complexes of monofunctional PG synthases, PBP2/

RodA and FtsI/FtsW, mediate PG polymerization and insertion [11]. PBP1a and PBP1b are

involved in cell-wall repair and reinforcement [11, 12]. They belong to class A PBPs, referred

to as aPBPs. The PBP2/RodA complex is responsible for cell elongation [11]. Its activity is con-

trolled by an actin-like protein, MreB, which moves circumferentially around the cell [13–15].

Together RodAZ, MreBCD and PBP2 form the Rod-complex [11]. The aPBPs together with

the Rod-complex form the PG elongation machinery. The FtsI/FtsW complex is part of the

cell division apparatus, the divisome, at the core of which lies a ring-like structure, the Z-ring,

formed by the tubulin-like protein FtsZ [11, 16–18]. In proteobacteria such as Escherichia coli
and Vibrio cholerae, rod-shaped cells are intrinsically polarized with a ‘new’ pole formed by

the division of the parental cell from which they originate, and an ‘old’ pole inherited from one

of the two poles of the parental cell [19, 20]. The old pole-new pole polarity serves as a cue for

the formation of subcellular domains and for the arrangement of the genetic material [7–11].

In turn, the genetic material is used as a scaffold to position DNA-binding proteins that inhibit

the assembly of the Z-ring, which restricts cell division to midcell, where a low DNA density

zone is formed between sister chromosomes at the end of the replication/segregation cycle [16,

21–24]. Thus, the shape and intracellular organization of rod-shaped bacteria are maintained

in a cell cycle-dependent manner. However, many rod-shaped bacteria transition to non-pro-

liferating cell-wall deficient spherical cells when exposed to environmental insults, such as cell-

wall targeting antibiotics, and it remains largely unknown how the shape and intracellular

organization are restored when they revert back to proliferation [25–27].

To address this question, we exploited our recent findings that V. cholerae, the causative

agent of the deadly human disease of the same name, forms viable non-proliferating sphero-

plasts in the presence of L-arabinose (L-Ara), which return to growth within a few hours after

L-Ara removal [28]. V. cholerae belongs to the Vibrionales, whose genome is divided into a

primary chromosome, Chr1, and a secondary chromosome, Chr2. The Vibrionales are closely

related to the Enterobacterales, such as E. coli, which are known to be mono-chromosomal

bacteria [29]. The primary chromosome of the Vibrionales is derived from the chromosome of

the ancestor of the Vibrionales and the Enterobacterales. The secondary chromosome is

derived from a megaplasmid. Like most bacterial chromosomes, V. cholerae Chr1 and Chr2

are circular and carry a single origin of bidirectional replication, oriC1 and oriC2, respectively.

Their replication terminates in a zone opposite of their replication origins, ter1 and ter2,

respectively. Chr1 harbours a chromosomal partitioning system, ParAB1/parS1, which

anchors oriC1 to the old pole of newborn cells and addresses one of the two newly replicated

oriC1 sisters towards the opposite pole during replication. The positioning of oriC1 depends

on a polar transmembrane protein, HubP, which creates a platform for the recruitment of

ParA1 and chemotactic and motility factors [30, 31]. Chr2 harbours a plasmid-type partition-

ing system, ParAB2/parS2, which directs oriC2 to midcell in newborn cells and addresses

newly-replicated oriC2 sisters to quarter positions during replication [32–34]. Chr1 encodes

for homologs of most of the proteins implicated in PG synthesis, elongation and cell division

in E. coli, including PBP1a, PBP2, MreB, FtsI and FtsZ [16, 24]. It also encodes for homologs
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of two site-specific recombinases, XerC and XerD, which add crossovers at a specific site

within the terminus of Chr1 and Chr2, dif1 and dif2, respectively, to resolve topological prob-

lems due to their circularity such as chromosome dimers [35]. The action of XerC and XerD is

under the control of a DNA pump anchored to the divisome, FtsK [33, 35, 36]. Finally, Chr1

encodes for a homolog of MatP, the E. coli terminus organization protein, which maintains sis-

ter dif1 sites at midcell and sister dif2 sites close to midcell [33].

Here, we used live fluorescence video-microscopy to follow the morphological changes and

choreography of different intracellular machineries during the reversion of L-Ara-induced V.

cholerae spheroplasts to proliferating rod-shaped cells.

Results

Chronology of morphological changes

Out of a total of 820 reversion events observed on M9-minimal medium agarose pads, 93.5%

began with the formation of a translucent bulge on one side of the cell (Fig 1A, white star in

panel 125’, and 1B, white star in panel 175’). In the vast majority of cases, the bulge appeared

to be engulfed and subsequently expelled as a translucent vesicle (Fig 1A, white hash in panel

275’, S1–S3 Movies). Engulfment failed to be completed (Fig 1B, S4 and S5 Movies) or was

only achieved after several attempts (S6 Movie) in 6% of the cases. To further characterize the

engulfment step, we engineered a strain in which the cytoplasm was labelled by the production

of a green fluorescent protein (YGFP) and the periplasm by the production of a red fluorescent

protein (mCherry) fused to a membrane export signal. We observed that the transition process

from rod to sphere after L-Ara addition began with the formation of a single bleb on the sur-

face of the rod cell with an enlarged crescent moon-shaped periplasmic space (S7 Movie). The

periplasmic excess increased in size until the entire cellular content escaped the cell envelope

and was assimilated into the spheroplast (S7 Movie). Visualization of the recovery process

demonstrated that translucent bulges originated from the pre-existing crescent-shaped peri-

plasmic space of spheroplasts, which was engulfed and subsequently expelled from the cell in

the form of vesicles (Fig 1A, white hash in the 275’ panel, S1 Movie). Cells with a wild-type

curved rod morphology were only recovered after multiple elongation and division cycles. In

cells that completed periplasmic engulfment, early cytokinetic events often produced cells with

an abnormal shape. In addition, cytoplasmic bulges formed at the surface of the cells (Fig 1A,

white arrows, 350’ panel). They elongated to form branches with a diameter equivalent to that

of normal V. cholerae cells, which divided into rod-shaped offspring. The timing and fre-

quency of vesicle extrusion, branch formation and division events varied in the different cells

(S1–S3 Movies). Formation of cytoplasmic bulges elongating in cell branches were also charac-

teristic of the sphere to rod transition described for E. coli [37] and Bacillus subtilis [38] cells.

In cells that did not complete periplasmic engulfment, a curved cylindrical protrusion

appeared juxtaposed to the site of periplasmic excess and rapidly elongated into a nascent rod,

with cytokinesis directly giving rise to new rod-shaped bacteria (Fig 1B, S4–S6 movies).

In the remaining 6.5% of the reversion events, no periplasmic excess was detected. Early

divisions originated thick elongated cells with aberrant morphologies and protruding

branches. Successive elongation and division steps eventually led to the formation of rod-

shaped bacteria (Fig 1C, S8–S10 Movies).

Morphological changes are linked to new PG synthesis and insertion

We inspected the recovery dynamics of spheroplasts in conditions that selectively inhibited

each of the different cell-wall synthetic machineries to determine their relative importance for

the formation of rod-shaped proliferating cells.
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First, we used cefsulodin, a β-lactam antibiotic that arrests the proliferation of V. cholerae
cells by specifically inhibiting bifunctional PBPs [39]. Treatment of proliferating rod-shaped

V. cholerae cells with cefsulodin led to the formation of a bleb on the cell surface at random

positions. The bleb expanded in size until all the cell material escaped the cell envelope (S11

Movie). Treatment of L-Ara-induced spheroplasts with cefsulodin impeded periplasmic

engulfment and sphere elongation during recovery (Fig 2A and S12 Movie). The spheroplasts

only increased in diameter (Fig 2A and S12 Movie). The major bifunctional PBP of V. cholerae
is PBP1a [40, 41]. We engineered a functional C-terminal fusion of PBP1a with sfGFP to follow

its localization during the de novo formation of rod-shaped cells. PBP1a-sfGFP was diffused in

L-Ara-induced spheroplasts (Fig 2B, 0’ panel). At the onset of the recovery process, bright

patches and spots appeared around the circumference of the spheroplasts (Fig 2B, 250’ panel).

They concentrated on the side of the translucent crescent-shaped periplasmic space of the

spheroplasts and remained at its leading edge during the engulfment and elimination process

(Fig 2B and S13 Movie).

Fig 1. Mechanisms of cell shape recovery. Reconstructed time-lapse bright-field (BF) images of V. cholerae N16961

derivatives cells grown at 30˚C on M9-MM agarose pads after L-Ara removal. One frame was taken every 5 minutes.

On the top-right corner of each frame is indicated the time in minutes. Scale bars = 2 μm. AB. Standard mechanism of

cell shape recovery with periplasmic engulfment. The star points to the periplasmic excess, the hash to the periplasmic

vesicle and arrows to cell branches. In cells failing to complete periplasmic engulfment (B), rod-shaped cells are formed

at the opposite side of the periplasmic excess and separated by the original cells by cytokinetic events. The numbers in

black indicate the number of cells originated in such a way during the recovery process. (A) Strain EGV616: periplasm

(Peri) tagged in red and cytoplasm (Cyto) in green, respectively. C. Alternative mechanism of cell shape recovery.

Spherical cells return to rod shape by an elongation and subsequent division event, without any apparent periplasmic

engulfment event.

https://doi.org/10.1371/journal.pone.0293276.g001
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Second, we specifically arrested the action of the Rod-complex with A22, which inhibits the

activity of MreB [42], or mecillinam, which inactivates PBP2 [43]. Treating proliferating rod-

shaped V. cholerae cells with A22 or mecillinam blocked cell elongation and led to the forma-

tion of characteristic lemon-shaped cells that became spherical and increased in size until lysis

(S14 and S15 Movies, respectively). Treating L-Ara-induced spheroplasts with A22 or mecilli-

nam did not impede growth restart. However, periplasmic engulfment took a longer time (Fig

2C and 2D, respectively). In addition, inhibition of the activity of the Rod-complex diminished

the increase in volume of the spheroplasts (S16 and S17 Movies). No cell elongation or division

event occurred (S16 and S17 Movies).

Finally, we used a temperature sensitive allele of ftsZ, ftsZ84, to inhibit divisome formation.

At the non-permissive temperature (42˚C), rod-shaped V. cholerae ftsZ84 cells form long asep-

tate filaments [16, 44]. At the non-permissive temperature, recovering L-Ara-induced ftsZ84
spheroplasts performed periplasmic engulfment, elongated and created multiple branches (Fig

2E and S18 Movie). The original spherical cell and the newly formed branches elongated as a

unique tentacular cell, which eventually lysed. Before lysis, all connected cell filaments had

recovered a cell diameter similar to that of wild-type proliferating cells.

Fig 2. Role of cell-wall synthesis in cell shape recovery. Reconstructed time-lapse BF and fluorescent images. N16961

derivative cells were grown on M9-MM agarose pads at 30˚C (ABCD) or 42˚C (E) after L-Ara removal. One frame was

taken every 5 minutes. On the top-right corner of each frame is indicated the time in minutes. Scale bars = 2 μm. ACD.

Recovery of cells in presence of 1 mg/ml cefsulodin (Cefs) (A), 10 μg/ml A22 (C), 10 μg/ml mecillinam (Mec) (D). B.

Localization of PBP1a-sfGFP. E. Recovery of rod shape of cells carrying the ftsZ84 temperature sensitive mutation.

https://doi.org/10.1371/journal.pone.0293276.g002
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To further prove that the divisome played an accessory role in the morphological changes,

we inspected the localization pattern and dynamics of FtsZ [45], FtsI [46], and FtsK [47, 48]

using a partially functional FtsZ-RFPT fusion produced from an ectopic chromosomal locus

in presence of the untagged wild-type copy [24] and fully functional YGFP-FtsI and

FtsK-YGFP fusions [16]. In L-Ara-induced spheroplasts, FtsZ-RFPT, YGFP-FtsI and

FtsK-YGFP were diffused. During recovery, they all localized at the sites of septal constriction

(Fig 3, S19–S21 Movies). However, FtsK-YGFP localized also at the site of periplasmic engulf-

ment and encircled the periplasmic excess until its elimination. Furthermore, FtsK-YGFP

accumulated at the sites of extrusion of new periplasmic vesicles that were formed after the

periplasmic engulfment (Fig 3C white arrows and S21 Movie).

Fig 3. Role of divisome components in rod shape recovery. Reconstructed time-lapse BF and fluorescent images.

N16961 derivative cells were grown on M9-MM agarose pads at 30˚C after L-Ara removal. One frame was taken every

5 minutes. On the top-right corner of each frame is indicated the time in minutes. Scale bars = 2 μm. A. Localization of

FtsZ-RFPT. B. Localization of YGFP-FtsI. C. Localization of FtsK-YGFP.

https://doi.org/10.1371/journal.pone.0293276.g003
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Taken together, these results corroborate the observations made in V. cholerae cell-wall

deficient cells recovering rod shape after treatment with cell-wall targeting antibiotics [49]. In

both cases, inhibiting aPBPs prevented the periplasmic engulfment process and successive cell

shape recovery steps whereas inhibiting the Rod-complex precluded cell elongation and

branching.

In addition, localization of FtsK at the leading edge of periplasmic engulfment and at sites

of extrusion of periplasmic vesicles suggests it might play a role at sites where membrane

fusion is required. Even though, at present, we cannot exclude FtsK is recruited there by

another protein and does not actively participate in the periplasmic engulfment process and in

vesicle extrusion.

Morphological changes are accompanied by waves of replication

In M9-minimal media, V. cholerae cells contain between 1 and 2 sets of chromosomes. This is

reflected in the DNA content of cells measured by flow cytometry (S1A Fig) and the V-shaped

profile of the number of copies of each locus as a function of its distance from the origin (MF

analysis, S1B Fig). After a 5h incubation with L-Ara, when rods started transitioning to sphero-

plasts [28], the DNA content of most cells was equivalent to 2 genome copies (S1A Fig, T5).

The flow cytometry profile was largely unchanged after an additional incubation period of 2h,

i.e. at a time when the majority of cells had transitioned to spheres [28], suggesting replication

arrest (S1A Fig, T7). The flat MF profile obtained after 10h of L-Ara treatment confirmed that

the two V. cholerae chromosomes, Chr1 and Chr2, were fully replicated in spherical cells. To

confirm the number of chromosome copies per cell, we visualized oriC1 and oriC2 loci using

two compatible fluorescent reporter systems. To this end, we inserted a parSpMT1 site in prox-

imity of oriC1 and a lacO array in proximity of oriC2, which are bound by YGFP-ParBpMT1

and LacI-RFPT, respectively. Together with the MF analysis data, it demonstrated that each

cell contained an equal number of Chr1 and Chr2 copies (S1C Fig). Thus, in the presence of

L-Ara, V. cholerae cells are able to initiate and terminate a single round of replication, leading

to the formation of a majority of spheroplasts with two full copies of Chr1 and Chr2.

During the reversion process, we did not observe any noticeable growth defect such as

growth arrest or lysis in the rod-shaped cells first originated from the spheroplasts by elonga-

tion or branching. However, we cannot exclude the presence of minor defects not detectable

by visual inspection of cell recovery on agarose pads. This suggests the DNA replication and

segregation machineries are active and functional since the first stages of the shape recovery

process.

To follow the DNA replication process during cell shape recovery and return to prolifera-

tion, we constructed a functional SeqA-YGFP fluorescent fusion and inserted it at its chromo-

somal locus under its native promoter. SeqA is a negative regulator of the initiation of

chromosome replication, it binds to newly synthesized hemimethylated DNA behind the repli-

cation forks and dissociates after its full methylation, thus reporting on the DNA replication

progression and status [50, 51]. At the start of the recovery process, SeqA-YGFP was diffused,

confirming the absence of on-going DNA replication (panel 0’ of Fig 4A and S22 Movie). Two

SeqA foci appeared soon after L-Ara removal and 2 new foci appeared before the engulfment

of the periplasmic excess (Fig 4A, panel 155’ and 160’, respectively). As Chr2 replication initia-

tion is delayed until a locus located in the middle of the left arm of Chr1 is duplicated, it is

likely that the 2 SeqA foci that first appeared corresponded to the initiation of replication of

the 2 Chr1 copies contained by the spheroplasts and that the 2 SeqA foci that appeared soon

after corresponded to the initiation of replication of the 2 Chr2 copies. Correspondingly, oriC1
foci duplicated first, increasing from 2 to 4 foci (panel 25’ of Fig 4B and S23 Movie), followed
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by duplication of oriC2 foci (panel 45’ of Fig 4B and S23 Movie). Furthermore, soon after the

appearance of SeqA foci, the fluorescent intensity of the spots decreased and they appeared to

split in two adjacent foci, suggesting the presence of a replisome machinery on each arm of

Chr1 and Chr2 (S22 Movie). Throughout the recovery process, SeqA foci appeared and disap-

peared in waves, doubling in number at each time (panels 205’, 245’, 265’ and 320’ of Fig 4A

and S22 Movie). Correspondingly, the number of oriC1 and oriC2 foci kept doubling during

the recovery process. Taken together, these results indicate that DNA replication restarted

Fig 4. Chromosome replication re-start at the beginning of cell shape recovery. Reconstructed time-lapse BF and

fluorescent images. N16961 derivative cells were grown on M9-MM agarose pads at 30˚C. One frame was taken every

5 minutes. On the top-right corner of each frame is indicated the time in minutes. Scale bars = 2 μm. The number of

SeqA, oriC1 and oriC2, and ParB1 foci is indicated in the time-lapse panels. A. Localization of SeqA-YGFP. B. oriC1
and oriC2 choreographies during cell shape recovery. C. Localization of YGFP-ParB1.

https://doi.org/10.1371/journal.pone.0293276.g004
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very early during the sphere to rod reversion and that the coordinated replication programme

of Chr1 and Chr2 was maintained [50, 52]. The wave-like pattern of appearance and disap-

pearance of SeqA foci in the elongating spheroplasts further indicated that the new rounds of

replication of the different Chr1 an Chr2 sets harboured by each cell were synchronized before

cell individualization by division events.

Sister chromatid individualization is independent of cell shape

The genetic material must not only be replicated but also correctly segregated to ensure that

each new cell receives a complete set of chromosomes. Under normal growth conditions, sister

copies of the origin regions of Chr1 and Chr2 are segregated to opposite side of the cells by the

ParAB1 and ParAB2 partition systems, respectively [16, 32]. As ParB1 binds to specific sites

located next to oriC1, we could use the position of a ParB1-YGFP fluorescent fusion protein

expressed from the leakiness of a Plac promoter at an ectopic position as a proxy of the position

of oriC1 sister copies throughout the recovery process (Fig 4C and S24 Movie). In the first

stage of the reversion process, when the cell retains a spherical or ovoid shape, ParB1 foci were

very mobile and newly duplicated foci randomly moved to different positions within the cell,

suggesting that Chr1 copies were individualized. This result was corroborated by the direct

observation of the dynamics of oriC1 foci labelled with the parSpMT1/ParBpMT1-YGFP system.

Direct observation of the dynamics of oriC2 foci labelled with the lacO/LacI-mCherry system

suggested that Chr2 copies were also individualized (Fig 4B and S23 Movie). In the later stages

of the recovery process, ParB1 foci localized to the pole of elongating branches and were often

present at the position of newly-visible protruding bulges on the cell surface, suggesting that

the partition systems could correctly segregate sister chromosomes in the protruding branches

(Fig 4C, panels 350’ to 495’, and S24 Movie).

MatP plays a role in the management of the ter domain during cell shape

recovery

Flat MF profiles of L-Ara-treated cells indicated that both Chr1 and Chr2 were fully replicated,

with no region of the chromosomes in excess compared to others (S1B Fig). However, the

simultaneous visualization of oriC1 and ter1 loci by binding of YGFP-ParBpMT1 to a parSpMT1

site located next to oriC1 and LacI-RFPT to a lacO array next to ter1 showed that 75% and 25%

of the L-Ara-induced spheroplasts with 2 oriC1 foci had a single ter1 focus and 2 ter1 foci,

respectively (S1D Fig). The fraction of spheroplasts with 2 oriC1 foci that contained a single

ter1 focus decreased to 35% whereas those containing 2 ter1 foci increased to 65% when matP
was deleted (S1D Fig).

During recovery, newly duplicated ter1 foci kept getting apart and colliding back together

whereas oriC1 foci moved apart from each other towards opposite cell halves (Fig 5A and S25

Movie). The oriC1-ter1 ratio was always in favour of oriC1, even reaching a point of 6 oriC1 to

1 ter1 (panel 225’). In the absence of matP, duplicated ter1 foci had the tendency to remain

apart from each other after segregation and the number of ter1 foci closely followed the num-

ber of oriC1, from 2 to 4 to 8 distinct individual foci (Fig 5B and S26 Movie).

Together these results suggest that MatP was able to keep together sister ter1 regions inde-

pendently of cell shape and proliferation.

The polar determinant HubP does not originate cell branching

Formation of outward bulges branching off elongating spherical cells and subsequently grow-

ing into rods is a common characteristic of morphogenetic processes [37, 38, 49]. It is still

unknown how these branches originate and what locally characterizes their nucleation site on
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the cell surface. We tested if the polar determinant HubP [16, 30] was involved in marking the

site from which bulges emerged by following the recovery process of ΔhubP cells at the single-

cell level on agarose pads. All steps of sphere elongation, periplasmic engulfment and branch-

ing were clearly visible rendering the sphere to rod transition indistinguishable from wild-type

cells (Fig 6A and S27 Movie). To determine if HubP targeted the nascent poles, we followed

the localization pattern of a fully functional HubP-sfGFP fluorescent fusion protein (Fig 6B

and S28 Movie). In spherical cells, HubP always localized as 2 foci at the periphery of the cell

(Fig 6A, panel 0’), characteristically never positioned at the site of the periplasmic excess. Dur-

ing the entire recovery process, the 2 original HubP foci appeared static and never moved

from their original position. In what it seemed a passive process, they were first located at the

polar region of the elongating sphere and in the end at the pole of one of the rod-shaped proge-

nies. On the contrary, HubP dynamically accumulated at all newly formed poles, originated

either by branching or by a cell division event.

Fig 5. MatP plays a role in ter1 delayed segregation during cell shape recovery. Reconstructed time-lapse BF and

fluorescent images. N16961 derivative cells were grown on M9-MM agarose pads at 30˚C. One frame was taken every

5 minutes. On the top-right corner of each frame is indicated the time in minutes. Scale bars = 2 μm. AB.

Choreographies of oriC1 and ter1 in wild-type (A) and ΔmatP (B) cells. The number of oriC1 and ter1 foci is indicated

in each panel.

https://doi.org/10.1371/journal.pone.0293276.g005
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Discussion

Bacteria can withstand or even overcome a variety of stresses, such as nutrient deprivation or

antibiotic treatment. In particular, V. cholerae is able to halt proliferation and reduce its cellu-

lar metabolism until growth conditions are restored, at which point it reverts to vegetative

growth. Non-proliferating V. cholerae cells adopt a spherical shape, which is characterized by a

depletion of the cell-wall material and the loss of normal polarized cell organization [27, 28].

Resumption of proliferation requires the synthesis and insertion of new cell-wall material and

the recovery of a polarized organization of all cellular machineries.

Rod shape recovery

The observation by fluorescent video-microscopy of hundreds of L-Ara-induced V. cholerae
spheroplasts returning to growth on agarose pads revealed that each spheroplast produced

multiple rod-shaped cells. The standard recovery pattern began with a periplasmic engulfment

step in which an excess of periplasm on one side of the spheroplasts was engulfed and then

extruded in the form of vesicles. This was followed by cell elongation, the formation of out-

growing cell branches with a diameter similar to that of rod-shaped V. cholerae and multiple

cell division events (Fig 1 and S1–S3 Movies). We found that the bifunctional PG synthases

aPBPs played an essential role in the periplasmic engulfment stage whereas the Rod-complex

machinery was required for cell elongation and branching (Fig 2A and S12 Movie), as sug-

gested for spherical cell-wall deficient cells formed after treatment with cell-wall targeting anti-

biotics [49]. The Rod-complex was not essential for the elimination of the periplasmic excess.

However, the engulfment process took a longer time to be accomplished in conditions that

inhibited the activity of MreB or PBP2, suggesting that it helped the process (Fig 2CD and

S16–S17 Movies). The divisome was only involved in cytokinesis (Fig 2E and S18 Movie).

The roles of the different cell-wall synthetic machineries during the de novo morphogenesis

were confirmed by monitoring the localization of selected fluorescently labelled PBPs and cell

division factors. PBP1a, whose inhibition impeded periplasmic engulfment, localized at the

inner edge of the periplasmic excess and encircled it during the engulfment process (Fig 2B

Fig 6. Branching formation during cell shape recovery. Reconstructed time-lapse BF and fluorescent images.

N16961 derivative cells were grown on M9-MM agarose pads at 30˚C. One frame was taken every 5 minutes. On the

top-right corner of each frame is indicated the time in minutes. Scale bars = 2 μm. A. Branching formation in ΔhubP
recovering cells. B. Localization of HubP-sfGFP.

https://doi.org/10.1371/journal.pone.0293276.g006
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and S13 Movie) whereas the Z-ring components, FtsZ and FtsI, whose inactivation did not

impede formation of filamentous rods (Fig 2E and S18 Movie), only localized at sites of cell

constriction and septum formation (Fig 3AB and S19–S20 Movies). In vegetatively growing

cells, all cell division factors colocalize with FtsZ [16]. In contrast, in rod-shape recovering

cells, FtsK localized to the leading edge of the periplasmic engulfment and to sites of periplas-

mic vesicle extrusion independently of FtsZ (Fig 3C and S21 Movie). This observation suggests

that FtsK may be involved in the membrane fusion events that lead to the elimination of outer

membrane vesicles. Consistently with this hypothesis, FtsK has previously been proposed to

facilitate membrane fusion during cytokinesis in E. coli [53] and a B. subtilis homologue of

FtsK, SpoIIIE, was proposed to be involved in membrane fusion following spore engulfment

[54, 55].

The standard recovery pattern of L-Ara-induced V. cholerae spheroplasts differs markedly

from that of E. coli spheroplasts induced by treatment with lysozyme or cefsulodin. E. coli
spheroplasts do not show a periplasmic excess. Therefore, there is no periplasmic engulfment

step. The recovery process of cefsulodin-induced E. coli spheroplasts was similar to that of the

6% of L-Ara-induced V. cholerae spheroplasts that failed to undergo periplasmic engulfment,

in which new rod-shaped cells are generated by the formation and elongation of a tubular pro-

trusion by the Rod-complex, and subsequent division events (Fig 1B, [37, 38]). The recovery

process of lysozyme-induced E. coli spheroplasts was similar to that of the 6.5% of L-Ara-

induced spheroplasts that did not undergo periplasmic engulfment, in which rod-shaped cells

are generated by elongation of the spheroplast and subsequent division events (Fig 1C, [37,

38]). Differences in the recovery patterns of cefsulodin- and lysozyme-induced E. coli sphero-

plasts have been proposed to result from differences in PG content, with cefsulodin-induced

spheroplasts retaining PG remnants and glycan strands whereas lysozyme-induced sphero-

plasts have no pre-existing PG [56]. This suggested the possibility that the 3 recovery patterns

observed for the L-Ara-induced V. cholerae spheroplasts were due to differences in their PG

content. However, we were able to follow the recovery of some L-Ara-induced V. cholerae
spheroplasts in microfluidic chambers (S29 Movie and S2 Fig). All of the observed spheroplasts

contained an elongating bulge juxtaposed the periplasmic excess site and followed a recovery

pattern resembling that of L-Ara-induced V. cholerae spheroplasts that failed to complete peri-

plasmic engulfment on agarose pads (S4–S5 Movies). This result suggests that the ability to

complete periplasmic engulfment was related to differences in growth conditions rather than

to the PG content of the cells, in agreement with the rod shape recovery patterns of V. cholerae
spheroplasts induced by treatment with cell-wall targeting antibiotics [49].

Chromosome organization recovery

L-Ara-treated spheroplasts contained fully replicated Chr1 and Chr2 copies, with the vast

majority of cells carrying two complete sets of chromosomes (S1 Fig). This is reminiscent of V.

cholerae cells under nutrient starvation stress, where the stringent response blocks the initia-

tion of new rounds of DNA replication while ongoing rounds are terminated [57]. The simul-

taneous appearance of two SeqA foci early in the recovery process suggested synchronous

replication initiation of the two Chr1 copies (Fig 4A). Consistent with crtS-dependent replica-

tion initiation of Chr2 copies [52], SeqA foci increased from 2 to 4 soon after replication

restarted and doubling of the origin of replication of Chr1 and Chr2 were temporally separated

(Fig 4AB and S22 and S23 Movies). The replication rounds proceeded in synchronous waves,

with SeqA foci disappearing and reappearing in an orderly fashion in doubled numbers (Fig

4A and S22 Movie). It is also worth noting that SeqA foci, which initially appeared very bright,

soon faded slightly in intensity and split into two adjacent foci, as if a replication complex
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controlled by SeqA was present on the left and right replichore of each chromosome during

DNA replication (S22 Movie). This suggests that there are no replisome factories on either

Chr1 or Chr2 in V. cholerae, as in E. coli [58].

The polar marker HubP localized at the pole of the branches that appeared during recovery,

independently of division (Fig 6B and S28 Movie). HubP is required for the polar placement of

oriC1 [30]. In its absence, oriC1 polar anchoring is lost and chromosomes display a ParA-

B1-dependent transversal organization in rods [31]. Yet, we did not observe any proliferation

arrest, filamentation or lysis in the progeny formed by branching and subsequent division

events in ΔhubP recovering cells (Fig 6A and S27 Movie). This suggests that chromosomes

were correctly segregated into the elongating branches in the absence of HubP.

The oriC1 and oriC2 choreographies further showed that chromosomes tended to occupy

all the available cell volume even before the onset of replication and morphogenetic reversion

to rods. After duplication, in cells that were still spherical, the replication origins separated

from each other and appeared very mobile. As the recovering cells began to elongate or

branch, they aligned themselves with the longitudinal axes of the developing rods (Fig 4B and

S23 Movie). This was particularly evident in the choreography of the Chr1 segregation factor

ParB1, which localized to the newly formed cellular protrusions that eventually branched out

and elongated into rods (Fig 4C and S24 Movie).

In contrast to oriC1 loci, duplicated ter1 loci remained together in spherical cells. In addi-

tion, newly replicated sister ter1 loci remained together for an extended period of time during

recovery, with only transient separations (Fig 5A and S25 Movie). The cohesiveness of ter1
foci depended on MatP (Fig 5B, S1 Fig and S26 Movie). In E. coli, MatP binds to specific

motifs, the matS sites, which are located in the chromosome replication termination regions

(Ter). It interacts with the cell division machinery via the ZapB-ZapA-FtsZ protein chain,

thereby maintaining sister Ter regions at midcell by linking them to the Z-ring [59, 60]. How-

ever, our results suggest that V. cholerae MatP keeps sister Ter regions together independently

of the Z-ring since it is absent in the L-Ara-induced V. cholerae spheroplasts and during the

early stages of recovery.

Material and methods

Plasmids and strains

Bacterial strains, plasmids, protein fusion linkers and primers used in this study are listed in S1

Table. All strains are derivatives of the El Tor N16961 strain rendered competent by the inser-

tion of hapR by specific transposition and constructed by natural transformation or conjuga-

tion with integration/excision plasmids. Plasmids and strains construction is described in

detail in S1 File. Engineered strains were confirmed by PCR.

The ftsK-YGFP, hubP-sfGFP, seqA-YGFP and PBP1a-sfGFP fusions were inserted in place

of the endogenous V. cholerae ftsK, hubP, seqA and PBP1a allele, respectively. All other fusion

genes were introduced at the lacZ or hapR locus in addition to the wild-type allele. lacI-RFPT,

YGFP-parBpMT1, YGFP-parB1, YGFP-ftsI and ftsZ-RFPT fluorescent protein fusions were pro-

duced from the E. coli lacZ promoter, leakiness of the promoter was sufficient for imaging.

ftsZ-RFPT starting codon was changed from ATG to TTG to reduce expression and avoid cell

filamentation originated by FtsZ excess.

oriC1, oriC2 and ter1 chromosomal loci were visualized by inserting a pMT1 parS motif

next to oriC1 and a lacO array next to oriC2 or ter1 that were specifically detected by

LacI-RFPT and YGFP-ParBpMT1, respectively.

The cytoplasm was visualized by expressing YGFP from an E. coli lacZ promoter in the

cytoplasm and the periplasm by expression from a Zn2+-inducible promoter [61] of mCherry
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fused to the DsbA signal sequence to efficiently export it to the periplasm [62]. In both cases,

leakiness of the promoter was sufficient for visualization.

Growth conditions

If not otherwise indicated, cells were grown at 30˚C in M9 minimal medium supplemented

with 0.2% (wt/vol) fructose and 1 mg/ml (wt/vol) thiamine (M9-MM). Overnight cultures

were diluted 100 times in M9-MM (to an OD600 0.02), followed by 2 hours of growth at 30˚C

before 0.2% (wt/vol) L-Ara was added. Cells were incubated shacking at 30˚C for further 7h to

10h before cells were washed in L-Ara-free medium and spread on agarose pads or collected

for further analyses. The antibiotics used and their final concentration were the following: 1

mg/ml (wt/vol) cefsulodin, 10 μg/ml (wt/vol) A22, 10 μg/ml (wt/vol) mecillinam.

Microscopy

For standard microscopy experiments, cells were spread on a 1% (wt/vol) agarose pad made

using M9-MM. For time-lapse analyses in liquid medium, we injected L-Ara treated cells in a

PDMS microfluidic device with 1 μm deep micro-chambers. A syringe pump is used to inject

fresh M9-MM that by diffusion enters the micro-chambers for a constant supply of fresh

medium. For snapshots, images were acquired using a DM6000-B (Leica) microscope. For

time-lapse analyses, images were acquired using an Evolve 512 EMCCD camera (Roper Scien-

tific) attached to an Axio Observe spinning disk (Zeiss). If needed, antibiotics were added to

the M9-MM agarose pads. Pictures were taken every 5 minutes. At each time point, we took a

stack of 32 bright-field images covering positions 1.6 μm below and above the focal plane. The

final single BF image was reconstructed using a MatLab-based script developed in the lab [24].

The fluorescent image, if needed, was taken only once, at the focal plane, to avoid

photobleaching.

Marker frequency analysis by whole-genome sequencing

Samples were collected before L-Ara addition (T0) and after a 10h (T10) incubation with 0.2%

(wt/vol) L-Ara. Chromosomal DNA was extracted using the Sigma GenElute1 bacterial geno-

mic DNA kit to generate a genomic library according to Illumina’s protocol. The libraries and

the sequencing were performed by the High-throughput Sequencing facility of the I2BC

(CNRS, Gif-sur-Yvette, France). Genomic DNA libraries were made with the ‘Nextera DNA

library preparation kit’ (Illumina) following the manufacturer’s recommendations. Library

quality was assessed on an Agilent Bioanalyzer 2100, using an Agilent High Sensitivity DNA

Kit (Agilent technologies). Libraries were pooled in equimolar proportions. 75 bp single reads

were generated on an Illumina MiSeq instrument, using a MiSeq Reagent kit V2 (500 cycles)

(Illumina), with an expected depth of 217X. Marker frequency analysis was performed using a

MatLab-based script developed in the lab [36]. The FASTQ files of the reads have been depos-

ited in the NCBI SRA database (Accession number PRJNA1027307).

Flow cytometry

Samples were collected before L-Ara addition (T0) and after a 5h (T5) and 7h (T7) incubation

with 0.2% (wt/vol) L-Ara and fixed in 70% ethanol overnight at 4˚C. Samples were washed

twice in TE buffer pH 7.5 (10 mM Tris, 1 mM EDTA) and resuspended in 100 μl TE buffer

+ 10 μg/ml (wt/vol) RNase A + 10 μg/ml (wt/vol) propidium iodide and incubated 1h at 37˚C.

Stained cells were analyzed on a Partec PAS III, typically 100 000 cells were analyzed in each

run and data were analyzed with Flow max v. 2.52.
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Supporting information

S1 Fig. A. DNA histograms of chromosome sets per cell obtained by flow cytometry. N16961

derivative cells (strain EPV50) were grown in M9-MM at 30˚C and samples collected before

L-Ara addition (T0) and after a 5h (T5) and 7h (T7) incubation with L-Ara. B. Marker fre-

quency analysis profile of N16961 derivative cells (strain EPV50) grown in M9-MM at 30˚C

before L-Ara addition (T0) and after a 10h incubation with L-Ara (T10). C. Number of chro-

mosome sets per cell obtained by counting the number of oriC1 and oriC2 foci in N16961

derivative cells (strain EGV346) incubated for 7h with L-Ara in M9-MM at 30˚C. Mean of two

independent replicates (~1000 cells each) and the standard deviation are represented. D. Per-

centage of cells with 2 oriC1 foci vs 1 ter1 focus and 2 oriC1 foci vs 2 ter1 foci in wild-type

(strain EGV324) and ΔmatP (strain EGV326) cells incubated for 7h with L-Ara in M9-MM at

30˚C. Mean of two independent replicates (~1000 cells each) and the standard deviation are

represented.

(TIF)

S2 Fig. Reconstructed time-lapse bright-field (BF) images of V. cholerae N16961 deriva-

tives cells grown at 30˚C in a microfluidic device supplemented with M9-MM after L-Ara

removal. One frame was taken every 5 minutes. On the top-right corner of each frame is indi-

cated the time in minutes. Scale bar = 5 μm. The stars point to the periplasmic excess and the

arrows to the elongating rod-shaped bulge juxtaposed to the periplasmic excess.

(TIF)

S1 Movie. Recovery of rod shape with a periplasmic engulfment process. One frame was

taken every 5 minutes. N16961 derivative cells were grown in M9-MM at 30˚C. The periplasm

is visible by periplasmic mCherry diffusion (red) and the cytoplasm by cytoplasmic YGFP dif-

fusion (green).

(AVI)

S2 Movie. Recovery of rod shape with a periplasmic engulfment process. One frame was

taken every 5 minutes. N16961 derivative cells were grown in M9-MM at 30˚C. The periplasm

is visible by periplasmic mCherry diffusion (red) and the cytoplasm by cytoplasmic YGFP dif-

fusion (green).

(AVI)

S3 Movie. Recovery of rod shape with a periplasmic engulfment process. One frame was

taken every 5 minutes. N16961 derivative cells were grown in M9-MM at 30˚C. The periplasm

is visible by periplasmic mCherry diffusion (red).

(AVI)

S4 Movie. Recovery of rod shape with a failed periplasmic engulfment process. One frame

was taken every 5 minutes. N16961 derivative cells were grown in M9-MM at 30˚C.

(AVI)

S5 Movie. Recovery of rod shape with a failed periplasmic engulfment process. One frame

was taken every 5 minutes. N16961 derivative cells were grown in M9-MM at 30˚C. The peri-

plasm is visible by periplasmic mCherry diffusion (red).

(AVI)

S6 Movie. Recovery of rod shape with a failed periplasmic engulfment process. One frame

was taken every 5 minutes. N16961 derivative cells were grown in M9-MM at 30˚C.

(AVI)

PLOS ONE Recovery of Vibrio cholerae rod shape

PLOS ONE | https://doi.org/10.1371/journal.pone.0293276 October 26, 2023 15 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0293276.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0293276.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0293276.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0293276.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0293276.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0293276.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0293276.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0293276.s008
https://doi.org/10.1371/journal.pone.0293276


S7 Movie. Transition to spherical cells in presence of 0.2% L-Ara. One frame was taken

every 5 minutes. N16961 derivative cells were grown in M9-MM supplemented with 0.2%

L-Ara at 30˚C. The periplasm is visible by periplasmic mCherry diffusion (red).

(AVI)

S8 Movie. Recovery of rod shape without a periplasmic engulfment process. One frame was

taken every 5 minutes. N16961 derivative cells were grown in M9-MM at 30˚C.

(AVI)

S9 Movie. Recovery of rod shape without a periplasmic engulfment process. One frame was

taken every 5 minutes. N16961 derivative cells were grown in M9-MM at 30˚C.

(AVI)

S10 Movie. Recovery of rod shape without a periplasmic engulfment process. One frame

was taken every 5 minutes. N16961 derivative cells were grown in M9-MM at 30˚C.

(AVI)

S11 Movie. Time-lapse of exponentially growing N16961 derivative cells (strain EPV50)

grown in M9-MM + 1 mg/ml cefsulodin at 30˚C. One frame was taken every 5 minutes.

(AVI)

S12 Movie. Failed return to rod shape of spherical cells treated with cefsulodin. One frame

was taken every 5 minutes. N16961 derivative cells (strain EPV50) were grown in M9-MM + 1

mg/ml cefsulodin at 30˚C.

(AVI)

S13 Movie. Localization of PBP1a-sfGFP during recovery of rod shape. One frame was

taken every 5 minutes. N16961 derivative cells (strain EGV623) were grown in M9-MM at

30˚C.

(AVI)

S14 Movie. Time-lapse of exponentially growing N16961 derivative cells (strain EPV50)

grown in M9-MM + 10 μg/ml A22 at 30˚C. One frame was taken every 5 minutes.

(AVI)

S15 Movie. Time-lapse of exponentially growing N16961 derivative cells (strain EPV50)

grown in M9-MM + 10 μg/ml mecillinam at 30˚C. One frame was taken every 5 minutes.

(AVI)

S16 Movie. Failed return to rod shape of spherical cells treated with A22. One frame was

taken every 5 minutes. N16961 derivative cells (strain EPV50) were grown in M9-MM

+ 10 μg/ml A22 at 30˚C.

(AVI)

S17 Movie. Failed return to rod shape of spherical cells treated with mecillinam. One frame

was taken every 5 minutes. N16961 derivative cells (strain EPV50) were grown in M9-MM

+ 10 μg/ml mecillinam at 30˚C.

(AVI)

S18 Movie. Recovery of rod shape of N16961 derivative cells carrying the ftsZ84 tempera-

ture sensitive mutation (strain EPV390). One frame was taken every 5 minutes. Cells were

grown in M9-MM at 42˚C.

(AVI)
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S19 Movie. Localization of FtsZ-RFPT during recovery of rod shape. One frame was taken

every 5 minutes. N16961 derivative cells (strain AGV4) were grown in M9-MM at 30˚C.

(AVI)

S20 Movie. Localization of YGFP-FtsI during recovery of rod shape. One frame was taken

every 5 minutes. N16961 derivative cells (strain EGV9) were grown in M9-MM at 30˚C.

(AVI)

S21 Movie. Localization of FtsK-YGFP during recovery of rod shape. One frame was taken

every 5 minutes. N16961 derivative cells (strain EGV34) were grown in M9-MM at 30˚C.

(AVI)

S22 Movie. Localization of SeqA-YGFP during recovery of rod shape. One frame was taken

every 5 minutes. N16961 derivative cells (strain AHV42) were grown in M9-MM at 30˚C.

(AVI)

S23 Movie. Choreographies of oriC1 and oriC2 loci during recovery of rod shape. oriC1 foci

are in green and oriC2 foci in red. One frame was taken every 5 minutes. N16961 derivative

cells (strain EGV346) were grown in M9-MM at 30˚C.

(AVI)

S24 Movie. Localization of YGFP-ParB1 during recovery of rod shape. One frame was

taken every 5 minutes. N16961 derivative cells (strain EGV72) were grown in M9-MM at

30˚C.

(AVI)

S25 Movie. Choreographies of oriC1 and ter1 loci during recovery of rod shape. oriC1 foci

are in green and ter1 foci in red. One frame was taken every 5 minutes. N16961 derivative cells

(strain EGV324) were grown in M9-MM at 30˚C.

(AVI)

S26 Movie. Choreographies of oriC1 and ter1 loci during recovery of rod shape in a ΔmatP
background. oriC1 foci are in green and ter1 foci in red. One frame was taken every 5 minutes.

N16961 derivative cells (strain EGV326) were grown in M9-MM at 30˚C.

(AVI)

S27 Movie. Recovery of rod shape with formation of branches in a ΔhubP background.

One frame was taken every 5 minutes. N16961 derivative cells (strain EGV75) were grown in

M9-MM at 30˚C.

(AVI)

S28 Movie. Localization of HubP-sfGFP during recovery of rod shape. One frame was

taken every 5 minutes. N16961 derivative cells (strain EPV453) were grown in M9-MM at

30˚C.

(AVI)

S29 Movie. Recovery of rod shape in a microfluidic PDMS device in M9-MM at 30˚C. One

frame was taken every 5 minutes.

(AVI)

S1 File. Detailed description of plasmids and bacterial strains construction.

(DOCX)

S1 Table. List of bacterial strains, plasmids, protein linkers and primers used in this study.

(DOCX)
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