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Abstract

Background

Forced Vital Capacity (FVC) is an important predictor of all-cause mortality in the absence

of chronic respiratory conditions. Epidemiological evidence highlights the role of early life

factors on adult FVC, pointing to environmental exposures and genes affecting lung devel-

opment as risk factors for low FVC later in life. Although highly heritable, a small number of

genes have been found associated with FVC, and we aimed at identifying further genetic

variants by focusing on lung development genes.
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Methods

Per-allele effects of 24,728 SNPs in 403 genes involved in lung development were tested in

7,749 adults from three studies (NFBC1966, ECRHS, EGEA). The most significant SNP for

the top 25 genes was followed-up in 46,103 adults (CHARGE and SpiroMeta consortia) and

5,062 children (ALSPAC). Associations were considered replicated if the replication p-value

survived Bonferroni correction (p<0.002; 0.05/25), with a nominal p-value considered as

suggestive evidence. For SNPs with evidence of replication, effects on the expression lev-

els of nearby genes in lung tissue were tested in 1,111 lung samples (Lung eQTL consor-

tium), with further functional investigation performed using public epigenomic profiling data

(ENCODE).

Results

NCOR2-rs12708369 showed strong replication in children (p = 0.0002), with replication

unavailable in adults due to low imputation quality. This intronic variant is in a strong tran-

scriptional enhancer element in lung fibroblasts, but its eQTL effects could not be tested

due to low imputation quality in the eQTL dataset. SERPINE2-rs6754561 replicated at nomi-

nal level in both adults (p = 0.036) and children (p = 0.045), whileWNT16-rs2707469 repli-

cated at nominal level only in adults (p = 0.026). The eQTL analyses showed association of

WNT16-rs2707469 with expression levels of the nearby gene CPED1. We found no statisti-

cally significant eQTL effects for SERPINE2-rs6754561.

Conclusions

We have identified a new gene, NCOR2, in the retinoic acid signalling pathway pointing to a

role of vitamin A metabolism in the regulation of FVC. Our findings also support SERPINE2,
a COPD gene with weak previous evidence of association with FVC, and suggestWNT16
as a further promising candidate.

Introduction
Forced vital capacity (FVC), a spirometric measure routinely used in clinical practice to
approximate vital capacity, is increasingly recognised as an important parameter beyond its
diagnostic and prognostic role in restrictive lung diseases. Unlike the ratio of forced expiratory
volume in 1 second (FEV1) to FVC, an indicator of airway obstruction, FVC is a strong predic-
tor of all-cause mortality in asymptomatic adults without chronic respiratory conditions[1].
Although the origins of a low FVC in the general population are poorly understood, there is a
strong link to poverty[2], and in particular to low socio-economic status in early life[3].
Endemic vitamin A deficiency is associated with low FVC, and maternal supplementation with
vitamin A before, during and after pregnancy, improves FVC in offspring[4]. Low FVC has
also been associated with early exposure to particulate air pollution[5]. The deviation of an
individual’s FVC values (and lung function in general) from the population mean has been
shown to remain stable over time, with future values being predicted by early measurements
(“tracking”)[6], which means that early life and genetic effects that manifest in childhood will
influence the individual’s whole FVC life trajectory. Taken together, this evidence highlights
the role of early life factors on adult FVC, which points to environmental exposures and genes
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affecting the development of the lung. Severe defects in lung development lead to neonatal
death, but milder structural or functional defects could affect lung function and increase sus-
ceptibility to lung diseases that become clinically detectable during childhood or later life,
including asthma and COPD[7]. This is supported by experimental work on in-vitro and ani-
mal models of lung function and disease[8].

Knowledge of the genetics of FVC is still limited. Biological candidates for FVC, mainly
related to host defense, inflammatory pathway, pulmonary surfactant and oxidative stress,
have been evaluated in candidate-gene association studies, but replication has been difficult.
New candidates for FVC have been provided by genome-wide association (GWA) studies, the
largest being a recent meta-analysis from the joint CHARGE and SpiroMeta consortia on
52,253 individuals, with replication of the top associations in 24,840 individuals[9]. It identified
eight loci, of which six new (EFEMP1, BMP6,MIR129-2-HSD17B12, PRDM11,WWOX,
KCNJ2), and two previously associated with FEV1 and FEV1/FVC (GSTCD and PTCH1). The
eight loci explain 1.8% of FVC variation, and yet FVC heritability (proportion of FVC variation
attributable to genetic factors) is estimated around 40–60% by familial aggregation and twin
studies[10, 11] and, more recently, genome-wide data[12].

Available GWA datasets represent an invaluable resource to test hypotheses about the role
of genetic pathways involved in specific pathophysiological mechanisms. We hypothesised that
focusing on genes lying in pathways related to lung development could help identify new can-
didates for FVC and further our understanding of the underlying biological mechanisms.

Materials and Methods
We evaluated the effect on FVC of 403 genes (24,728 SNPs) related to lung development in two
stages. In Stage 1, all SNPs were tested for association with FVC in a meta-analysis of three
European adult studies (ECRHS[13], NFBC1966[14], EGEA[15]). For replication in adults
(CHARGE and SpiroMeta consortia)[9] and children (ALSPAC[16]) in Stage 2, we selected
the best signal for the top 25 genes, defined as the SNP with the lowest meta-analysis p-value
which satisfied the following criteria: minor allele frequency>0.05 and imputation quality
(imputation R2)>0.7 in all three studies; low between-study heterogeneity defined as I2<30%,
with I2 representing the percentage of total variation in effect estimates across studies due to
heterogeneity rather than chance.

The rationale for limiting our replication analysis to the best signal for the top 25 genes was
to maximise the probability of successful replication in children, where the sample size was
only 5,062. With this sample size, testing for replication of 25 SNPs gives a power of about 80%
to detect a variant explaining 0.3% of FVC residual variance, at a Bonferroni corrected p-value
threshold of 0.002 (0.05/25). This assuming that genetic effects in children may be slightly
stronger than in adults, where the variance explained by the eight loci previously identified[9]
was 1.8%, an average of 0.23% per SNP.

Selection of candidate genes and SNPs
Two experts in lung development, a basic scientist (C.H.D.) and a clinician scientist (M.H.),
compiled a list of genes involved in lung development, first independently and then through
agreement. The selection of genes was based on their knowledge of the topic, mainly using
genetic evidence from animal models[8, 17, 18]. This initial list was extended to include addi-
tional genes suggested by: 1) pathways information obtained from KEGG[19]–relevant genes
lying in the same pathways as those in the initial list; 2) information from published literature
identified using HuGE Navigator[20]–genes considered as associated with lung development
in previous genetic association studies. When in doubt about which genes to select from large
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gene families, those with higher gene expression in foetal lung were chosen, with information
retrieved from the Human U133A/GNF1H Gene Atlas database using BioGPS[21].

The final list included 403 genes (S1 Table). According to NCBI gene definition, we retrieved
SNPs within 2 kb upstream and 500 bp downstream of each gene, using the R package NCBI2R
(http://cran.r-project.org/web/packages/NCBI2R). We identified 24,728 SNPs for which imputed
data (based on HapMap release 22) were available for all three studies in Stage 1 (S1 Table).

Study populations
Stage 1. Below and in Table 1 we briefly describe the three studies, with details on spirom-

etry and genotyping methods summarised in S2 and S3 Tables.
The Northern Finland Birth Cohort 1966 (NFBC1966) is a birth-cohort study in the prov-

inces of Oulu and Lapland that recruited pregnant women with an expected date of delivery in
1966. A total of 12,231 children were recruited and followed-up in adulthood[14], with 6,033
participating in the clinical follow-up at 31 years. Of these, 5,218 individuals with GWA and
spirometry data were included in this study.

The European Community Respiratory Health Survey (ECRHS) is an international cohort
study designed to identify risk factors for asthma[13] that started in 1992–1994, with follow-up
performed twice in the following 20 years. Included in this study are 1,662 subjects from the
first survey (ECRHS I, age 20–48) with GWA and spirometry data available, recruited from 16
centres that used random sampling frameworks.

The Epidemiological study on the Genetics and Environment of Asthma (EGEA), which
combines a case-control and a family-based study of asthma, was conducted in 1991–1995
(EGEA1), with follow-up after 12 years (EGEA2, 2003–2007)[15]. The study included 388
nuclear families, ascertained by one or two asthmatic adult or paediatric probands, and 415
population-based controls, totalling 2,120 subjects. This analysis only includes 869 non-asth-
matic adults, using spirometry data from EGEA1 for subjects�18 year old at baseline and
EGEA2 for those<18 in EGEA1.

Stage 2. The joint CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemi-
ology) and SpiroMeta consortia performed a GWA investigation of FVC in 52,253 individuals
of European ancestry from 26 studies[9], which included ECRHS and NFBC1966. Included
here are 46,103 individuals from 24 studies, after subtracting the contribution of ECRHS and
NFBC1966. New effect estimates and standard errors were derived by taking a weighted differ-
ence between the original fixed-effect meta-analysis estimate and the pooled estimate of
ECRHS and NFBC1966.

The Avon Longitudinal Study of Parents and their Children (ALSPAC) is a birth cohort
study consisting initially of 14,541 women and their children recruited in the county of Avon,
UK, in the early 1990s[16]. Included in this study are 5,062 white European children (50.3%

Table 1. Characteristics of studies in Stage 1. N = number of subjects included in the analyses.

Study N Country Sex[%
male]

Age (years) Height (cm)
[Mean (SD)]

FVC (ml)
[Mean (SD)]

Absolute
Range

Mean
(SD)

NFBC1966 5,218 Finland 47.9% 31–31 31 (0) 171.2 (9.2) 4,718 (987)

ECRHS 1,662 Spain, United Kingdom, France, Germany, Sweden,
Norway, Switzerland, Estonia

47.5% 19.7–48.1 34.0
(7.1)

170.5 (9.5) 4,552 (1,031)

EGEA 869 France 46.1% 18.0–76.5 38.5
(12.6)

168.6 (8.5) 4,239 (982)

doi:10.1371/journal.pone.0147388.t001
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male) of 8–9 years of age with GWA and spirometry data. Their mean height was 132.6 cm
(standard deviation, SD: 5.8) and mean FVC 1,931 ml (SD: 319).

Statistical analyses
Stage 1. Study-specific estimates for the three studies were obtained assuming an additive

mode of inheritance. In ECRHS, linear regression analyses of the effects of the SNPs on FVC (in
ml) were adjusted for age, age2, height, sex, centre, and first four ancestry principal components to
control for residual population stratification. In NFBC1966, all subjects were 31 year olds and linear
regression analyses were only adjusted for height, sex and first two principal components. In the
family-based EGEA, the regression analyses were performed using linear mixed models to account
for family structure, adjusting for age, age2, height, sex and first two principal components.

Inverse-variance weighted meta-analysis of the three studies using a fixed effect model was
performed on a total of 7,749 individuals.

The association analyses for NFBC1966 were carried out using SNPTEST[22], while the
analyses for ECRHS and EGEA and the meta-analysis were performed using R, version 3.0.1
(www.R-project.org).

Stage 2. Individual cohorts within CHARGE and SpiroMeta performed GWA analyses for
FVC (ml) using linear regression adjusted for age, age2, height and sex (plus height2 and weight
for CHARGE), as well as centre and/or principal components if appropriate[9].

In ALSPAC, linear regression analyses on FVC (ml) were performed adjusting for age, age2,
height and sex. Principal components were not included since no evidence of population strati-
fication was found in the study.

Replication of a SNP was defined based on evidence from Stage 2 only, rather than on com-
bined evidence from Stage 1 and Stage 2, since this protects against the winner’s curse, an
upwards bias typical of the screening stage[23]. We considered a SNP replicated if the effect
estimate was in the same direction as in Stage 1 and the one-side p-value survived Bonferroni
correction for multiple testing (p<0.002) in either adults or children. We considered replica-
tion evidence as suggestive if the p-value was significant only at nominal level.

Lung eQTL data
For SNPs with evidence of replication, we investigated their effects on the expression of nearby
genes (genes within 100 kb up and downstream from the SNP) in lung samples from the Lung
QTL consortium. This includes data on 1,111 individuals undergoing lung surgery, recruited at
Laval University (n = 409), University of British Columbia (n = 339) and University of Gro-
ningen (n = 363)[24].

Gene expression and genotyping profiles were obtained using a custom Affymetrix array
(GEO platform GPL10379) and the Illumina Human1M-Duo BeadChip array, respectively.
Expression values were extracted using the Robust Multichip Average method[25] imple-
mented in the Affymetrix Power Tools software. Expression values were analysed with a robust
regression model adjusted for age, sex and smoking status, using the R statistical package
MASS (rlm function).

Genetic associations were performed in PLINK 1.9. A fixed-effect meta-analysis was used to
pool the results across the three sites.

Results
Stage 1 study-specific and meta-analysis results are reported in Table 2 for the best SNP of the
top 25 genes, and in S1 Table for all 24,728 SNPs. Replication could only be performed for 24
SNPs, since no data were available for EYA1 rs12549242 or any proxy (defined as a SNP with
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linkage disequilibrium, LD, R2>0.8) in CHARGE and SpiroMeta and ALSPAC. In Stage 2, one
gene showed strong replication in children, NCOR2, with replication unavailable for adults due
to low imputation quality; other two genes showed suggestive evidence of replication, one in
both adults and children, SERPINE2, and the other in adults but not in children,WNT16
(Table 3). The regional association plots for their lead SNP are presented in S1 Fig.

NCOR2-rs12708369 replicated in ALSPAC children with an effect of 26.9 ml/allele (95%
confidence interval: 12.0 to 41.8) and a p-value well below Bonferroni correction (p = 0.0002).
The estimate was very similar to that of Stage 1 (26.1; 7.5 to 44.7), suggesting a relatively stron-
ger effect in children given their lower FVC, although the confidence intervals are wide and
conclusions as to a difference in effect sizes cannot be deduced. In line with this, the proportion
of FVC residual variance explained by this SNP was much higher in children than in adults
from Stage 1, 0.65% vs. 0.11%. Replication of NCOR2-rs12708369 could not be performed in
adults because of low imputation quality (imputation R2 = 0.4) and no proxy available. Using
publicly available epigenomic profiling data (ChIP-seq) from ENCODE[26] via the UCSC
Genome Browser (http://genome.cse.ucsc.edu), we found that the intronic variant NCOR2-
rs12708369 is in a region with regulatory function in lung tissue. The SNP is located within a
DNase I hypersensitivity site, in a strong enhancer element with histone mark H3K27ac indi-
cating active chromatin in lung fibroblasts. Unfortunately neither NCOR2-rs12708369 nor any
proxy could be tested in the lung eQTL analysis due to failed imputation quality control.

Table 2. Results for the best SNP of the top 25 genes in Stage 1: NFBC 1966, ECRHS, EGEA, andmeta-analysis. Chr: chromosome; EA: effect allele;
EAF: effect allele frequency, calculated as weighted average across the three studies; β (standard error, SE): estimate of the per-allele effect on FVC (ml); I2:
magnitude of the between-study heterogeneity of effect estimates

SNP Gene Chr Position EA EAF NFBC1966(N = 5,218) ECRHS(N = 1,662) EGEA(N = 869) Meta-analysis

β SE P β SE P β SE P β SE P I2 (%)

rs2820472 WLS 1 68,694,307 C 0.70 31.0 11.3 0.0061 30.3 21.7 0.1621 -17.5 32.0 0.5851 26.5 9.6 0.0055 4

rs832169 PKP1 1 201,256,771 A 0.17 29.2 15.8 0.0646 50.0 22.4 0.0257 41.1 31.9 0.1984 36.9 12.0 0.0021 0

rs7527525 ACTN2 1 236,902,560 C 0.33 20.0 11.7 0.0875 33.6 20.2 0.0960 63.7 28.0 0.0238 28.1 9.5 0.0032 8

rs3905417 CTNNA2 2 80,181,443 A 0.23 29.9 12.2 0.0144 30.4 24.4 0.2127 45.7 34.0 0.1796 31.4 10.4 0.0025 0

rs6754561 SERPINE2 2 224,839,696 C 0.30 -29.6 12.2 0.0151 -23.0 19.3 0.2350 -11.4 26.8 0.6707 -25.6 9.6 0.0077 0

rs11926758 RARB 3 25,552,252 G 0.94 52.5 22.9 0.0219 51.3 37.7 0.1734 48.8 48.1 0.3119 51.7 18.1 0.0044 0

rs11716871 TP63 3 189,582,501 A 0.92 -55.4 19.1 0.0037 -32.5 34.0 0.3404 -36.1 47.2 0.4444 -48.4 15.7 0.0021 0

rs4712047 SIRT5 6 13,590,185 A 0.66 34.0 11.2 0.0024 9.9 22.7 0.6622 27.9 32.3 0.3882 29.2 9.6 0.0023 0

rs2722322 SFRP4 7 37,948,714 A 0.15 51.7 15.4 0.0008 36.8 24.3 0.1298 16.3 35.3 0.6437 43.7 12.2 0.0003 0

rs17172023 GLI3 7 42,245,499 C 0.78 36.4 13.8 0.0082 25.2 24.4 0.3034 10.2 33.8 0.7644 31.1 11.3 0.0060 0

rs1049337 CAV1 7 116,200,587 C 0.70 33.6 11.6 0.0038 28.1 19.8 0.1562 -10.3 29.3 0.7254 27.8 9.5 0.0034 0

rs2707469 WNT16 7 120,976,886 A 0.83 34.2 14.3 0.0168 23.6 25.9 0.3611 34.5 39.1 0.3787 32.0 11.9 0.0073 0

rs12549242 EYA1 8 72,216,430 C 0.14 -38.6 16.1 0.0167 -53.8 24.3 0.0267 -72.2 43.4 0.0972 -45.8 12.8 0.0004 0

rs2812427 DLG5 10 79,553,236 A 0.67 33.3 11.2 0.0029 14.8 19.8 0.4548 63.1 28.5 0.0274 32.4 9.2 0.0004 0

rs1994450 PDGFD 11 103,797,349 A 0.13 -41.9 18.0 0.0201 -64.3 29.3 0.0283 2.1 38.9 0.9573 -41.3 14.3 0.0038 0

rs12708369 NCOR2 12 124,875,577 C 0.56 25.1 11.5 0.0291 46.0 20.7 0.0263 -9.1 30.1 0.7626 26.1 9.5 0.0062 13

rs11865499 KAT8 16 31,132,250 A 0.69 33.7 11.3 0.0029 20.4 19.9 0.3061 6.2 28.9 0.8304 27.9 9.3 0.0027 0

rs1880756 CRHR1 17 43,826,666 C 0.58 -26.5 10.6 0.0122 -28.6 19.4 0.1418 -5.4 27.8 0.8472 -24.8 8.8 0.0049 0

rs948589 SMAD4 18 48,586,184 A 0.91 -47.2 19.0 0.0131 -56.4 34.4 0.1013 -78.5 50.7 0.1227 -52.2 15.8 0.0010 0

rs2425024 MMP24 20 33,844,938 A 0.66 25.0 11.3 0.0274 23.9 19.4 0.2184 55.7 26.9 0.0390 28.4 9.2 0.0020 0

rs6061580 CDH4 20 60,058,986 C 0.92 -60.4 22.3 0.0067 -41.5 37.3 0.2657 -7.6 47.0 0.8717 -48.7 17.7 0.0060 0

rs2051179 RUNX1 21 36,326,553 A 0.45 -32.0 10.9 0.0032 -15.7 18.8 0.4038 -16.1 25.9 0.5336 -26.6 8.8 0.0026 0

rs730265 CLDN14 21 37,871,886 A 0.15 -25.8 15.6 0.0973 -41.8 24.2 0.0837 -55.2 33.7 0.1020 -33.7 12.2 0.0057 0

rs2871029 CLDN5 22 19,513,930 A 0.14 31.4 15.1 0.0375 66.5 27.6 0.0161 -10.3 40.0 0.7969 34.6 12.6 0.0060 24

rs5749524 TIMP3 22 33,224,285 C 0.89 49.7 17.0 0.0035 22.4 29.3 0.4452 58.5 38.1 0.1259 44.9 13.7 0.0011 0

doi:10.1371/journal.pone.0147388.t002
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SERPINE2-rs6754561, a variant located 133 bp downstream from the gene, replicated at
nominal level in adults from the CHARGE and SpiroMeta consortia (-7.1 ml/allele; p = 0.036),
where there was no heterogeneity across the 24 studies (I2 = 0%), and ALSPAC children
(-12.0 ml/allele; p = 0.045). The proportion of FVC residual variance explained was only 0.01%
in adults, but 0.11% in children (0.09% in adults from Stage 1). SERPINE2-rs6754561 did not
show association with the expression of SERPINE2 or any nearby genes in the lung eQTL
dataset.

The intronic variantWNT16-rs2707469 replicated at nominal level in adults (10.0 ml/allele;
p = 0.026; I2 = 6%), but not in children (11.8 ml/allele; p = 0.105). The proportion of FVC resid-
ual variance explained was only 0.01% in adults from the CHARGE and SpiroMeta consortia
(0.10% in Stage 1). This variant is in a conserved region and is located in a DNase I hypersensi-
tivity site in lung fibroblasts.WNT16-rs2707469 was not associated withWNT16 expression
but showed suggestive evidence of an effect on a nearby gene, CPED1, with the FVC-lowering

Table 3. Replication findings for the best SNP of the top 25 genes. Chr: chromosome; EA: effect allele; EAF: effect allele frequency; β (standard error,
SE): per-allele effect on FVC (ml); Repl P: one-side replication p-value, calculated and reported only for estimates in the same direction as the original ones;
I2: between-study heterogeneity; Imp R2 = imputation quality R2 (for CHARGE and SpiroMeta: average imputation R2 across studies)

SNP Gene Chr EA EAF STAGE 1meta-
analysis(N = 7,749)

STAGE 2

CHARGE and SpiroMeta meta-
analysis(N = 46,103—Adults)

ALSPAC(N = 5,062—Children)

β SE P β SE Repl P I2 (%) Imp R2 β SE Repl P Imp R2

rs2820472 WLS 1 C 0.70 26.5 9.6 0.0055 0.7 4.7 0.444 35 0.92 1.6 8.3 0.423 0.97

rs832169 PKP1 1 A 0.17 36.9 12.0 0.0021 -7.0 4.9 / 23 0.85 -2.1 8.3 / 0.94

rs7527525 ACTN2 1 C 0.33 28.1 9.5 0.0032 -4.2 4.6 / 24 0.71 11.2 7.2 0.059 0.90

rs3905417 CTNNA2 2 A 0.23 31.4 10.4 0.0025 2.5 5.2 0.312 0 0.95 13.2 9.0 0.071 0.99

rs6754561 SERPINE2 2 C 0.30 -25.6 9.6 0.0077 -7.1 3.9 0.036* 0 0.96 -12.0 7.1 0.045* 1.00

rs11926758 RARB 3 G 0.94 51.7 18.1 0.0044 -4.1 7.4 / 26 0.98 3.1 12.2 0.401 0.99

rs11716871 TP63 3 A 0.92 -48.4 15.7 0.0021 17.8 7.5 / 0 0.86 -14.4 12.5 0.125 0.98

rs4712047 SIRT5 6 A 0.66 29.2 9.6 0.0023 0.6 4.7 0.447 18 0.72 -4.7 8.5 / 0.70

rs2722322 SFRP4 7 A 0.15 43.7 12.2 0.0003 -1.7 5.1 / 18 0.94 12.0 8.8 0.088 1.00

rs17172023 GLI3 7 C 0.78 31.1 11.3 0.0060 -9.6 5.3 / 27 0.84 8.4 10.0 0.202 0.75

rs1049337 CAV1 7 C 0.70 27.8 9.5 0.0034 -4.5 5.1 / 35 0.69 0.3 7.4 0.484 1.00

rs2707469 WNT16 7 A 0.83 32.0 11.9 0.0073 10.0 5.2 0.026* 6 0.92 11.8 9.4 0.105 0.90

rs2812427 DLG5 10 A 0.67 32.4 9.2 0.0004 4.5 4.1 0.138 0 0.95 2.1 7.1 0.382 1.00

rs1994450 PDGFD 11 A 0.13 -41.3 14.3 0.0038 -1.7 5.5 0.380 0 0.76 -10.7 9.6 0.132 0.79

rs12708369 NCOR2 12 C 0.56 26.1 9.5 0.0062 NA1 NA1 NA1 38 0.38 26.9 7.6 0.0002** 0.78

rs11865499 KAT8 16 A 0.69 27.9 9.3 0.0027 4.2 4.6 0.181 30 0.84 10.6 7.5 0.078 1.00

rs1880756 CRHR1 17 C 0.58 -24.8 8.8 0.0049 -5.0 4.0 0.108 15 0.96 2.9 7.0 / 1.00

rs948589 SMAD4 18 A 0.91 -52.2 15.8 0.0010 8.8 6.7 / 0 0.96 -14.7 12.2 0.114 1.00

rs2425024 MMP24 20 A 0.66 28.4 9.2 0.0020 3.3 4.0 0.205 0 0.96 -11.3 7.1 / 1.00

rs6061580 CDH4 20 C 0.92 -48.7 17.7 0.0060 9.0 8.6 / 3 0.73 2.6 13.9 / 0.92

rs2051179 RUNX1 21 A 0.45 -26.6 8.8 0.0026 -3.8 3.8 0.159 26 0.94 -5.9 6.7 0.188 0.97

rs730265 CLDN14 21 A 0.15 -33.7 12.2 0.0057 -3.0 7.2 0.338 20 0.50 8.0 8.0 / 0.99

rs2871029 CLDN5 22 A 0.14 34.6 12.6 0.0060 -0.7 5.8 / 47 0.90 6.0 9.7 0.269 1.00

rs5749524 TIMP3 22 C 0.89 44.9 13.7 0.0011 2.0 6.0 0.371 0 0.94 1.4 10.4 0.448 1.00

* Nominal significance (p<0.05)

** Significance after Bonferroni correction (p<0.002)
1 Results not available: the SNP had a very low average imputation R2 (0.38) and no proxies (LD R2>0.80) were available

doi:10.1371/journal.pone.0147388.t003
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allele G associated with higher CPED1mRNA expression levels (p = 0.087; I2 = 0%; S2 Fig). We
investigated this further and found that the effect on CPED1 expression was stronger (p = 0.004;
I2 = 0%) for a SNP in high LD withWNT16-rs2707469 (R2 = 0.94), rs2536166 (S2 Fig).

Discussion
By testing the association of FVC with genes related to lung development, we have identified a
new gene, NCOR2, in the retinoic acid signalling pathway pointing to a role of vitamin A
metabolism in the regulation of FVC. Our study also provides support for SERPINE2, a gene
which has previously shown weak evidence of association with FVC, and suggestsWNT16 as a
promising candidate requiring further investigation.

NCOR2 (nuclear receptor corepressor 2), also known as SMRT (silencing mediator of reti-
noid and thyroid hormone), is a potent regulator of retinoid and thyroid hormone signalling.
Nuclear receptors are ligand-activated transcription factors that regulate many developmental
and physiological processes. Retinoic acid is the biologically active metabolite of vitamin A
(retinol) which has a well described role in organogenesis and epithelial homeostasis directing
growth, patterning and differentiation of many organs including the lung[27]. NCOR2 is a
transcriptional “platform” protein that acts as a repressive co-regulatory factor for multiple
transcription factor pathways. Publicly available data retrieved from BioGPS[21] (Human
U133A/GNF1H Gene Atlas database) show that the expression of NCOR2 in the adult lung is
very high and that the gene is also expressed in foetal lung. In this study we found an associa-
tion of NCOR2 (rs12708369) with FVC in adults, which strongly replicated in children. Repli-
cation in adults from the CHARGE and SpiroMeta consortia could not be performed due to
low imputation quality and no data on proxies available either. The NCOR2-rs12708369 intro-
nic variant is in a strong transcriptional enhancer element in lung fibroblasts and may therefore
affect gene expression levels[28], although we were not able to test this due to the same prob-
lem of low imputation quality in the Lung eQTL dataset. The replication of NCOR2 in children
and the known central developmental roles of retinoic acid and thyroid hormone signalling
during alveologenesis[29] suggest that this gene may influence lung growth and ultimately
FVC. Although retinoic acid has also been postulated to have a role in ongoing alveolar mainte-
nance and regeneration[30], in our study the NCOR2-rs12708369 effect in adults could be esti-
mated only in Stage 1 mostly based on 31-year olds, so potential effects on FVC decline would
not have been detected. Interestingly, another related gene, the RARB encoding the retinoic
acid receptor beta, was selected in Stage 1, although it could not be replicated possibly due to
the low minor allele frequency of its selected SNP (rs11926758; MAF = 0.06). This gene has
been previously associated with measures of airway obstruction in adults and children (FEV1/
FVC)[31, 32], and in infants (V’maxFRC)[33]. Overall our findings point to a role of vitamin
A/thyroid metabolism in the regulation of FVC, and suggest the importance of further research
investigating genes in related pathways as well as gene-environment interactions with vitamin
A intake.

SERPINE2 is a member of a gene family encoding serpins, highly conserved proteins that
help maintain tissue integrity by controlling the activity of proteases in diverse biological pro-
cesses, in particular by inhibiting serine proteases such as trypsin. SERPINE2 has a known link
to airway obstruction, with strong evidence of association with COPD[34] and some evidence
of association with childhood asthma[35]. Our findings support an association with a marker
of lung restriction too, FVC, in both adults and children, in line with previous findings of an
association with FVC in children that could not be replicated[36]. SERPINE2-rs6754561
showed no effect on the expression of SERPINE2 or nearby genes in the lung. However,
although the Lung eQTL dataset represents the largest eQTL mapping study of human lung
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samples currently available, weak to moderate effects on gene expression may not have been
detected due to insufficient statistical power. Cellular heterogeneity in lung tissue may also
impair the detection of cell type-specific eQTL[37].

We also found suggestive evidence of an association ofWNT16 with FVC in adults.WNT16
belongs to a family of genes encoding 19 Wnt ligands, secreted signalling proteins involved in
many developmental processes. Although Wnts are critical for normal lung development[18,
38], Wnt16 has not been previously studied in relation to lung function and disease. In addition
to lung development, evidence from mouse models suggests that Wnt16 plays a role in tissue
repair[39] and in the response to cellular damage[40]. TheWNT16-rs2707469 intronic variant
is in a conserved region with regulatory function in lung fibroblasts. This variant showed no
eQTL effect onWNT16 in the lung, but an effect on a nearby gene, CPED1 (cadherin-like and
PC-esterase domain containing 1). CPED1 has both a cadherin-like domain, thought to have a
carbohydrate binding function, and a PC-esterase domain, predicted to modify cell surface bio-
molecules like glycoproteins. It is possible that Wnt16, which is a glycoprotein containing car-
bohydrates, could bind to, and/or be modified by, CPED1.

By focusing on genetic pathways related to lung development, which represent highly plau-
sible candidates for low FVC, our study identifies a novel gene and proposes two further prom-
ising candidates which had not been identified in the previous GWAmeta-analysis[9]. This
shows how a comprehensive hypothesis-driven approach can complement hypothesis-free
GWA analyses in identifying variants which failed to reach the strict significance level needed
to protect against false positives in genome-wide investigations (typically 5x10-8). However, we
did miss the association of one of the genes we tested, PTCH1, a gene which has shown associa-
tion with FVC in the previous GWAmeta-analysis[9] and had been identified before as associ-
ated with FEV1/FVC[32, 41]. The three SNPs previously identified in PTCH1 had non-
significant p-values in our Stage 1 analysis, most likely due to their relatively low minor allele
frequency (MAF between 0.08 and 0.10), which made our analysis underpowered to detect
them.

In conclusion, this study identifies NCOR2 as a new gene for FVC, indicating the impor-
tance of further research into the role of vitamin A intake/supplementation and its interactions
with related genes in the regulation of FVC. Our findings also suggest other biological path-
ways as promising candidates for future investigation. We might expect genes involved in lung
development to show stronger effects in childhood, and the relatively large replication estimate
of the effect of NCOR2-rs12708369 in children seems to support this. We speculate that future
investigation of genes involved in lung development in larger samples of children and young
adults could identify further genetic variants associated with FVC through their effect on lung
growth and maximum level attained.
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