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Abstract. Automated lesion detection and segmentation might assist
radiation therapy planning and contribute to the identification of prog-
nostic image-based biomarkers towards personalized medicine. In this
paper, we propose a pipeline to segment the primary and metastatic
lymph nodes from fluorodeoxyglucose (FDG) positron emission tomogra-
phy and computed tomography (PET/CT) head and neck (H&N) images
and then predict recurrence free survival (RFS) based on the segmen-
tation results. For segmentation, an out-of-the-box nnUNet-based deep
learning method was trained and labelled the two lesion types as pri-
mary gross tumor volume (GTVp) and metastatic nodes (GTVn). For
RFS prediction, 2421 radiomic features were extracted from the merged
GTVp and GTVn using the pyradiomics package. The ability of each
feature to predict RFS was measured using the C-index. Only the fea-
tures with a C-index greater than Cmin, hyperparameter of the model,
were selected and assigned a +1 or –1 weight as a function of how they
varied with the recurrence time. The final RFS probability was calcu-
lated as the mean across all selected feature z-scores weighted by their
+/–1 weight. The fully automated pipeline was applied to the data pro-
vided through the HECKTOR 2022 MICCAI challenge. On the test data,
the fully automated segmentation model achieved 0.777 and 0.763 Dice
scores on the primary tumor and lymph nodes respectively (0.770 on
average). The binary-weighted radiomic model yielded a 0.682 C-index. AQ1

These results allowed us to rank first for outcome prediction and fourth
for segmentation in the challenge. We conclude that the proposed fully- AQ2

automated pipeline from segmentation to outcome prediction using a
binary-weighted radiomic model competes well with more complicated
models. Team: LITO. AQ3

Keywords: Medical imaging · Survival prediction · Segmentation ·
FDG PET/CT · Head and neck · Machine learning

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Andrearczyk et al. (Eds.): HECKTOR 2022, LNCS 13626, pp. 1–14, 2023.
https://doi.org/10.1007/978-3-031-27420-6_13
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2 L. Rebaud et al.

1 Introduction

Quantitative medical image analysis assists in patient staging, treatment plan-
ning and monitoring, and overall patient management. In head and neck (H&N)
cancer, fluorodeoxyglucose (FDG) positron emission tomography combined with
computed tomography (PET/CT) is a modality of choice for initial staging and
patient follow-up and contributes to radiation therapy planning. Indeed, H&N
cancer primary treatment mostly relies on radiotherapy and requires target vol-
ume delineation of the gross primary tumor volume (GTVp) and cancer node
volumes (GTVn) on PET/CT images, which is time-consuming and prone to
intra/inter-observer variabilities. Automated segmentation might allow radia-
tion oncologists to optimize the treatment plan in a shorter time while improv-
ing reproducibility. In addition, the prediction of the risk of relapse based on
medical images could help identify patients for whom treatment intensification
and close monitoring might be needed.

In the recent years, machine learning (ML) and radiomics have been instru-
mental in advancing automated image segmentation and building predictive
models. Yet, the diversity of datasets on which methods are designed and tested
makes it difficult to compare their performance and determine which one is best
suited in a particular context. Given the possible sensitivity of automated seg-
mentation and predictive models to image quality, multi-center evaluation of
these methods is absolutely needed before considering clinical deployment.

Challenges offer unique opportunities for testing and comparing the per-
formance of different methods on a common database using large multi-center
datasets. The HEad and neCK TumOR (HECKTOR) challenges organized as
part of MICCAI aims at establishing best-performing methods for segmentation
and prediction tasks [1,2]. In 2022, the HECKTOR challenge first task was to
automatically segment the H&N GTVp and GTVn from FDG PET/CT images.
The second task consisted in automatically predicting patient outcomes from a
PET/CT image, with or without clinical information, with PET/CT images and
clinical information collected from nine different centers.

Several contributions to the automated segmentation in the context of H&N
cancer have already been published. Guo et al. proposed a modified U-net app-
roach using dense blocks and reached 0.71 average Dice score on a public multi-
center dataset of 250 PET/CT H&N patients [3]. Their study also showed that
combining PET and CT in two channels substantially increased the segmenta-
tion performance compared to using PET (0.64 average Dice score) or CT (0.31
average Dice score) alone. Ren et al. compared several modality combinations
including PET, CT, and magnetic resonance imaging (MRI) on a multi-center
dataset of 153 patients for deep learning tumor segmentation using a U-net app-
roach [4]. All combinations including PET provided similar results (0.72 to 0.74
Dice score), while the anatomic-only combination (CT and MRI) led to a lower
score (0.58). More generally, automated medical image segmentation is currently
dominated by deep convolutional neural networks (CNN) [5–7]. Most methods
rely on U-net based approaches with several context-specific changes in model
architecture, training scheme, and data pre- or post-processing. In HECKTOR
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Simplicity Is All You Need 3

2021 challenge, the best-performing segmentation method used a tuned nnUNet
with squeeze and excitation (SE) layers on fused PET and CT images, yielding
a 0.779 Dice score on primary tumor [7,8].

Similarly, models have been proposed to predict patient outcome from
PET/CT images in H&N cancer (e.g., [9,10]). In HECKTOR 2021, two differ-
ent methods performed best at predicting the progression free survival [11,12].
Both were based on a CNN trained on unsegmented images using large bound-
ing boxes, and achieved 0.720 and 0.694 C-index on the test data respectively. A
logistic model based on radiomic features calculated from the segmented tumor
region also performed well with a 0.683 C-index [13].

This paper presents our simple and efficient pipeline for fully automatic seg-
mentation and outcome prediction method and its performance on the HECK-
TOR 2022 challenge data. For the segmentation task, we adapted the publicly
available nnUNet deep learning framework to detect and segment the H&N pri-
mary tumor (GTVp) and nodal gross tumor volumes (GTVn) [7]. For the pre-
diction task, we introduce a novel binary-weighted model operating on radiomic
features calculated from the tumor regions automatically segmented in the pre-
vious step. The evaluation was conducted on the HECKTOR 2022 challenge
data and the models are publicly available.

2 Materials and Methods

Here, we describe our proposed fully-automatic end-to-end framework to segment
lesions and predict outcome from 18F-FDG PET/CT images (Fig. 1). First, a
well established out-of-the-box nnUNet deep learning method was trained to
segment and label the GTVp and GTVn [7]. From the segmented GTVp and
GTVn regions, we extracted radiomic features. We then applied the binary-
weighted model to rank the patients as a function of their recurrence free survival.

Fig. 1. Proposed framework: schematic representation of the fully-automatic pipeline
from segmentation to outcome prediction.
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4 L. Rebaud et al.

2.1 Data

To develop and evaluate the proposed method, we used the HECKTOR 2022
data that included FDG PET/CT images, clinical and survival data of 524
patients from 7 centers for training and PET/CT and clinical data only of 359
patients from 3 centers for blind testing of the models [1,2]. In the training
data, reference segmentations of the primary tumor (GTVp) and metastatic
nodes (GTVn) were provided. Train and test PET/CT scans were provided
with 9 clinical features with some missing values: gender, age, weight (1.23%
missing values), tobacco (0 = no, 1 = yes) (61.1% missing), alcohol (0 = no,
1 = yes) (68.5% missing), performance status (56.0% missing), human papil-
lomavirus (HPV) status (0 = no, 1 = yes) (35.2% missing), surgery (0 = no,
1 = yes) (38.7% missing), and chemotherapy (0 = no, 1 = yes). RFS was pro-
vided for 488 patients in the train set, and 339 patients of the test set for whom
the outcome was known were concerned by the outcome prediction (task 2).

Data Pre-processing: The training CT images had an original median voxel-
size of 0.976 × 0.976 × 2.798 mm3 and the PET images had median voxel-size of
4.000×4.000×3.270 mm3. All PET/CT images and corresponding segmentations
were resampled to 2.0 × 2.0 × 2.0 mm3. CT and PET images were resampled
using a third-order spline. The segmentation mask was resampled using nearest
neighbor interpolation.

2.2 Tumor and Lymph Node Segmentation

Deep Learning Model: All CT images were clipped between 0.5th and 99.5th

percentile of the Hounsfield Units (HU) intensity values and normalized using z-
score based on all training images. To favor contrast-based features in PET, PET
standardized uptake values (SUV) were normalized using z-score patient-wise on
the whole image. We used a nnUNet in “3D full resolution” mode to detect and
segment the tumor and lymph nodes [7]. The pre-processed PET/CT images
were given to the model as two-channel input images (PET and CT). Each
PET/CT image was decomposed in random patches of 160× 160× 96× 2 voxels
before input into model training. The architecture of the 3D model was not
modified except for the output channel. The output was a 1 × 1 × 1 convolution
of size 160 × 160 × 96 × 2, where 2 corresponds to the tumor and lymph nodes
channels. A softmax non-linear activation was used at the output layer of the
3D nnUNet model.

Training Scheme: The train set consisting of 524 patients was randomly
divided into training and validation subsets using a five-fold cross-validation
technique. Each fold contained data from 104 or 105 validation patients and 420
or 419 training patients. The nnUNet model was trained using the sum of Dice
and cross-entropy losses. The initial number of feature maps in the architecture
was 32. Performance assessment and post-processing strategy were determined
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Simplicity Is All You Need 5

based on the five-fold cross-validation with 1000 epochs training, with an ini-
tial learning rate of 0.01 and a scheduler weight decay of 3e−5. We selected a
batch size of two. Other hyper-parameter settings, including data augmentation
techniques, were the default settings of nnUNet. Implementation was done in
Pytorch and training was performed using four GPUs: three NVIDIA Quadro
RTX 5000 with 16 GB and one NVIDIA RTX A6000 with 49 GB GPU memory.
On average, the training time was 141 s per epoch on NVIDIA Quadro RTX
5000 and 82 s on NVIDIA RTX A6000.

Post-processing: The segmentation output of the deep learning model had
a 2 × 2 × 2 mm3 voxel spacing. It was then resampled into the corresponding
original CT spacing. Then, a median filter with a 3 × 3 × 3 voxel kernel size was
applied to smooth out the staircase effect.

Prediction on the Test Set: For predictions on the test set, three strategies
were used. First we ensembled the five models trained during cross-validation.
Second, a bagging strategy was adopted to increase the number of ensembled
models to nine. Nine models were trained on random samples of size equal to the
whole dataset drawn with replacement (i.e. bootstrap samples). The predictions
from the models were then aggregated using majority voting. Nine was the max-
imum number of models we could train on our GPUs for this strategy within
the allotted time of the challenge. Finally, we increased the number of epochs to
1500 and trained only one model on the whole dataset.

2.3 Outcome Prediction

Our prediction model was based on engineered radiomic features extracted
from the tumor regions segmented using the automated approach described in
Sect. 2.2. These features were then analyzed using an original approach yielding
what we call a binary-weighted model.

Radiomic Features Extraction: We used the segmentation mask produced
by the deep learning model described in Sect. 2.2. Primary tumor and lymph
node regions were merged as a single “lesion” mask. To make the model less
sensitive to potential segmentation errors, multiple masks were created from
this binary lesion mask:

• Original lesion mask
• Smallest bounding box enclosing all the lesions
• Lesion mask refined by removing all voxels in which SUV was less than 2.5
• Lesion mask refined by removing all voxels in which SUV was less than 4
• Lesion mask re-segmented with a threshold of 40% of global SUVmax
• Lesion mask dilated by 1mm (resp 2, 4, 8 and 16 mm)
• A 2mm (resp 4, 8 mm) thick shell surrounding each connected component of

the lesion mask
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6 L. Rebaud et al.

For each of these 13 masks, 93 radiomic features were computed on the PET
image and 93 on the CT image with pyradiomics [14]. These features were the
default features from pyradiomics, composed of features reflecting the ROI shape,
and the signal intensity and texture. A fixed-bin size of 0.3 SUV units was used
for PET images and 10 HU for the CT. Three handcrafted features were added:
the number of tumor masses, the number of lymph nodes, and a binary variable
indicating whether the scan was a whole-body scan or included only the H&N
region. This was determined by calculating the length of the scan in the axial
direction from the image volume. Used together with the provided nine clinical
features, this pipeline produced 2430 features.

Binary-weighted Model: From the literature and our experience, we hypoth-
esize that it is difficult to accurately estimate biomarker importance in outcome
prediction. For instance, Adams et al. found the national comprehensive cancer
network international prognostic index to be more predictive of progression free
survival than whole-body total metabolic tumor volume in diffuse large B-cell
lymphoma, while Cottereau et al. observed the opposite [15,16]. Indeed, noise in
the data, censoring of the target, e.g. progression free survival, and relatively low
number of training samples might increase the risk of biased estimation of the
feature weights. To mitigate this effect, we propose to reduce the learned infor-
mation to the bare minimum and only estimate a sign to be assigned to each
feature for estimating the target. This is the core mechanism of the introduced
binary-weighted model.

Definition: Our training dataset includes N samples and M features. Many
radiomic features are highly correlated. To comply with the basic assumption of
our binary-weighted model, only one among a set of correlated features should
be kept because if they are all input to the model, this will artificially give a
large weight to the information reflected by the feature. We thus perform feature
selection by calculating the absolute value of the Pearson correlation coefficient
for all pairs of features. A threshold ρ is used to set the value above which
two features are deemed too correlated. In such case, one of the two features is
randomly selected and dropped.

Let’s Cindex be the Harrell’s concordance index [17]. Each feature xi is eval-
uated on its ability to correctly predict the target value y with:

ci = Cindex(xi, y) (1)

To reduce the risk of wrong estimation of the sign, the features with |ci| <
Cmin are dropped, where |ci| = max{1 − ci, ci} and Cmin is a hyperparameter
in [0.5, 1]. The remaining features are assigned a sign as follows:

si =

{
+1, if ci ≥ 0.5
−1, otherwise

(2)
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Simplicity Is All You Need 7

A normalization step is necessary to scale the feature values to the same
range. Otherwise, features with large absolute values would have a higher weight
in the final prediction. To do so, the model computes the z-score of each feature:

zi =
xi − µi

σi
(3)

where µi and σi are the mean and standard deviation of xi in the train set. The
estimate ŷ of the target y is computed with:

ŷ =
1
M

M∑

i

si × zi (4)

The computation of ŷ, µi and σi are done by ignoring the missing values of
the dataset. This allows the model to use features with missing values.

Here, Cmin and ρ are the only two hyperparameters of the model.

Curse of Dimensionality: The curse of dimensionality is a phenomenon where
we observe a loss in performance of ML models when too many features are
given as an input. This especially occurs in medical datasets when the data are
high-dimensional and the number of samples is low [18]. We hypothesize that the
binary-weighted model is resilient to this phenomenon. We tested this hypothesis
on the train set of the HECKTOR dataset by gradually increasing the number
of features input to the model.

Ensembling: To produce a more precise and stable estimate ŷ, a bagging strat-
egy was adopted as described in Sect. 2.2. An ensemble of E binary-weighted
models were trained, each model being trained on a random sample of size N of
the training data drawn with replacement. Each model also randomly selected
F features to work with. The models were trained on their bootstrap sample
from the train set and predicted ŷ on the test set. The E predictions from the
E models were then aggregated with the median. F is a hyperparameter of the
ensemble model. Our experiments on the train set suggested that the higher E,
the better the performance. We used E = 105 on the test set, a number large
enough to ensure good results while keeping computational cost reasonable.

Cross-validation: To evaluate a model from the train set, we used a two-
hundred-fold Monte Carlo cross-validation with a validation set of size 0.5 × N
(CV). This large number of folds was used to ensure precise comparison of the
numerous tested algorithms, with reproducible results. The model prediction on
the validation set was evaluated with Harrell’s C-index. The average score and
its confidence interval were reported.
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8 L. Rebaud et al.

Hyperparameters Optimization: The ensemble model has 3 hyperparame-
ters: F , Cmin and ρ. To determine the best hyperparameter set, random search
was used. 1000 hyperparameter sets were randomly drawn and evaluated using
CV. The hyperparameter sets were then ranked by their CV scores. To reduce
the risk of overfitting the hyperparameter choice on the train set, the B best
hyperparameter sets were selected, and for the prediction on the test set, an
ensemble model was trained with each binary-weighted model randomly select-
ing a hyperparameter set from the selected B. The B value was optimized with an
additional CV. Three bagged models were evaluated in the train and test sets
of the HECKTOR challenge. While similar, each model used more and more
hyperparameter sets in its random search, each time increasing the probability
of overfitting on the train set. The number of hyperparameter sets tested was
increased gradually through the 3 attempts given to the participating teams.

Feature Importance: While the binary-weighted model only gives weights of –
1 or +1, after bagging, an approximation of feature importance can be computed
by taking the average sign of each feature across all models. Feature importance
was determined on the train set of HECKTOR.

3 Results

3.1 Segmentation Evaluation

In this section, except for the visual evaluation where it was assessed patient-
wise, the Dice score was always computed on pseudo-volumes of the validation
sets during cross-validation (aggregated Dice score).

Cross-validation: The Dice score across all images through the cross-validation
was 0.850 for GTVp and 0.789 for GTVn (0.821 on average). For thorough com-
parison, Table 1 reports the Dice score across the different centers of acquisition.

Table 1. Dice scores for primary tumor and lymph node segmentation across the
different centers evaluated on a five-fold cross-validation on the train set.

Center Nb of patients GTVp Dice GTVn Dice Average Dice

CHUP 72 0.868 0.687 0.778

CHUV 53 0.823 0.781 0.803

MDA 198 0.821 0.813 0.817

HMR 18 0.846 0.811 0.829

CHUS 72 0.865 0.805 0.835

CHUM 56 0.849 0.831 0.840

HGJ 55 0.883 0.829 0.856

All 524 0.850 0.789 0.821
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Test: Table 2 displays the class-specific Dice scores for our three submitted
models for evaluation on the test set. The model trained on all training data for
1500 epochs achieved the highest scores (highlighted in bold).

Table 2. Dice scores from our 3 methods on the test set of HECKTOR.

Method GTVp Dice GTVn Dice Average Dice

Ensembled 5 folds 0.778 0.761 0.769

Bagging 9 samples 0.779 0.759 0.769

Whole train set 0.777 0.763 0.770

3.2 Qualitative Assessment

PET/CT images, ground truth and predicted segmentations are shown in Fig. 2
for 5 patients. The examples were selected based on the Dice scores. The top two
rows display high Dice scoring patients (average Dice 0.922 and 0.910 respec-
tively), the third row a patient with an average score (0.761), while the fourth
(0.303) and fifth (0.000) rows display patients with the lowest scores.

Results for patients (1) and (2) were very satisfactory. In patient (3), the
model accurately identified the two nodes and the tumor but missed some voxels,
especially at the sharp edges. In patient (4), false positive node voxels were
labeled by the model (not shown in the figure because not in the slice). Last,
patient (5) shows an example of accurate detection and segmentation but with
complete class mismatch. The green contour representing the tumor is precisely
delineated by the model but labelled as a node, as shown by the pink predicted
contour, yielding a Dice equal to zero.

3.3 Performance of the Outcome Prediction Model

Table 3 shows the results of the different models tested during the challenge. A
binary-weighted model without bagging was evaluated only on the train set and
not submitted because its performances were below the bagged models on the
train set. The performance of the three submitted bagged models is correlated
with the number of hyperparameter sets evaluated on the train set. The best
model was the one which had the most extensive search of hyperparameters.

3.4 Resilience to the Curse of Dimensionality

Figure 3 shows the result of the experiment using the train set to test our hypoth-
esis stating that binary-weighted models do not suffer from the curse of dimen-
sionality. The performance plateaued when increasing the number of features
used by the model up to the maximum number of available features.
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10 L. Rebaud et al.

Fig. 2. Examples of PET/CT images, ground truth and predicted segmentation for
five patients from the validation sets of the five-fold cross-validation. Green and blue
ground truth contours correspond to tumor and lymph node respectively. Red and pink
contours correspond to the predicted segmentation for tumor and lymph node. (Color
figure online)

3.5 Feature Importance

The importance of the clinical and some representative radiomic features evalu-
ated on the train set is presented in Fig. 4. The error bars are not shown because
by construction of the model, they are unnecessary (the higher the absolute
value, the lower the standard deviation).

4 Discussion

4.1 Segmentation

Our segmentation method was inspired by Xie and Peng [8] using Isensee et
al. [7] framework. Our choice of not using the SE layers and keep PET and
CT separated as two channels was based on the intuition that approaching the
problem in a straightforward way would increase its robustness. Overall, our
segmentation results were satisfactory, ranking fourth in the challenge with 0.770
average Dice, compared to the 0.788 Dice achieved by the winner.
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Simplicity Is All You Need 11

Table 3. C-index and number of hyperparameters searched for the prediction models
evaluated on the train and test set of the HECKTOR challenge. On the train set, the
mean C-index over the CV is reported as well as the confidence interval (CI).

Model CV C-index train set (CI) C-index
test set

Nb tested sets of
hyperparameters

Binary-weighted 0.645 (0.585 – 0.707) 10

Binary-weighted bagged 0.668 (0.605 – 0.730) 0.670 10

Binary-weighted bagged 0.675 (0.613 – 0.731) 0.673 100

Binary-weighted bagged 0.688 (0.642 – 0.732) 0.682 1000

Fig. 3. Cross-validated C-index of a binary-weighted model (not bagged) when increas-
ing the number of features. The features and hyperparameters were selected randomly.

Fig. 4. Importance of the clinical and representative radiomic features. A positive value
(red) shows a positive correlation with the risk and a negative value (blue) is a negative
correlation. The higher the absolute value of the average sign, the more important the
feature. “Whole-body scan” is 1 if the scan is whole-body or 0 if only H&N. (Color figure
online)
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12 L. Rebaud et al.

Although the centers had different numbers of patients, Dice scores were con-
sistently lower for lymph nodes than for primary tumor in all centers, demon-
strating they are more difficult to segment. Mislabelling of node regions as seen
in Fig. 2 decreased Dice value although contours were accurately delineated. One
way to address this mislabelling could be to set higher weight to the lymph node
class in the loss function.

According to our test results, the deployment strategy did not have a big
impact on performance. Indeed, ensembling the cross-validation models, using
a bagging strategy while increasing the number of models, or training only one
model on the whole dataset, led to very similar performance.

Based on the qualitative visual assessment, our model tends to perform bet-
ter on smooth connected components. Complex structures and sharp contours
are more prone to errors. Processing and training methods adapted to higher
resolution input images might have reduced these errors.

4.2 Binary-weighted Model

Our results suggest that the binary-weighted model is a competitive and robust
method. This implies that it might indeed be challenging to accurately estimate
feature weights. The more degrees of freedom in a model, the higher the risk of
overfitting. In problems with weak and noisy targets and low number of training
samples, reducing the training to the bare minimum could be of utmost interest.
For the HECKTOR challenge, it probably helped mitigate the overfitting.

Figure 3 shows that the binary-weighted model does not suffer from the curse
of dimensionality. The vast majority of ML algorithms need some feature selec-
tion to avoid a drop in performance due to too many features. We hypothesized
that in our binary-weighted model, the features would work together to cancel
their noise and biases, analogous to the wisdom of the crowd phenomenon where
errors of individuals cancel each other out. Adding more features does not result
in loss in performance as in other traditional ML methods.

Features importance shed light on the model interpretation (Fig. 4). For
instance, a high performance status is associated with worse prognosis. Tobacco
is also associated with a higher risk in our model. Large tumor diameter and
high SUV values in the lesions are associated with increased risk. Other features,
such as chemotherapy, can be interpreted as indirect measure of the patient con-
dition. Interestingly, the number of affected lymph nodes appears to be a strong
prognostic factor. In future work, the respective contribution of the different seg-
mentation masks will be investigated. More importantly, separating GTVp and
GTVn would make it possible to assess the individual role of these two lesion
types.

5 Conclusions

We proposed a new, fully automated framework to predict outcomes in H&N
patients from a given PET/CT image and clinical information. It involves deep
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learning-based GTVp and GTVn segmentation, radiomic feature extraction, and
outcome prediction. Our pipeline including the novel binary-weighted radiomic
model outperformed other methods for outcome prediction while providing accu-
rate segmentation, ranking first for prediction and fourth for segmentation in the
HECKTOR 2022 challenge. The number of lymph nodes was one of the prog-
nostic features, highlighting the importance of lymph node segmentation for
predicting the outcome in H&N cancer.

We created an easy-to-use package for the binary-weighted model, called
Individual Coefficient Approximation for Risk Estimation (ICARE). The code
is publicly available at: github.com/Lrebaud/ICARE.

References

1. Oreiller, V., et al.: Head and neck tumor segmentation in PET/CT: the HECKTOR
challenge. Med. Image Anal. 77, 102336 (2022)

2. Andrearczyk, V., et al.: Overview of the HECKTOR Challenge at MICCAI 2022:
automatic head and neck tumor segmentation and outcome prediction in PET/CT.
In: Head and Neck Tumor Segmentation and Outcome Prediction (2023)

3. Guo, Z., et al.: Gross tumor volume segmentation for head and neck cancer radio-
therapy using deep dense multi-modality network. Phys. Med. Biol. 64(20), 205015
(2019)

4. Ren, J., et al.: Comparing different CT, PET and MRI multi-modality image com-
binations for deep learning-based head and neck tumor segmentation. Acta Oncol.
60(11), 1399–1406 (2021)

5. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark
(BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

6. Antonelli, M., et al.: The medical segmentation decathlon. Nat. Commun. 13(1),
1–13 (2022)

7. Isensee, F., et al.: nnU-Net: a self-configuring method for deep learning-based
biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

8. Xie, J., Peng, Y.: The head and neck tumor segmentation based on 3D U-Net.
In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) Head and
Neck Tumor Segmentation and Outcome Prediction. HECKTOR 2021. LNCS, vol.
13209. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98253-9 8

9. Vallières, M., et al.: Radiomics strategies for risk assessment of tumour failure in
head-and-neck cancer. Sci. Rep. 7(1), 1–14 (2017)

10. Diamant, A., et al.: Deep learning in head & neck cancer outcome prediction. Sci.
Rep. 9(1), 1–10 (2019)

11. Saeed, N., Al Majzoub, R., Sobirov, I., Yaqub, M.: An Ensemble Approach for
Patient Prognosis of Head and Neck Tumor Using Multimodal Data. In: Andrea-
rczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) Head and Neck Tumor Seg-
mentation and Outcome Prediction. HECKTOR 2021. LNCS, vol. 13209. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-98253-9 26

12. Naser, M.A., et al.: Progression free survival prediction for head and neck cancer
using deep learning based on clinical and PET/CT imaging data. In: Andrearczyk,
V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) Head and Neck Tumor Segmen-
tation and Outcome Prediction. HECKTOR 2021. LNCS, vol. 13209. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-98253-9 27

A
ut

ho
r 

Pr
oo

f



14 L. Rebaud et al.

13. Salmanpour, M.R., et al.: Advanced automatic segmentation of tumors and sur-
vival prediction in head and neck cancer. In: Andrearczyk, V., Oreiller, V., Hatt,
M., Depeursinge, A. (eds.) Head and Neck Tumor Segmentation and Outcome Pre-
diction. HECKTOR 2021. LNCS, vol. 13209. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-98253-9 19

14. Griethuysen, V., et al.: Computational radiomics system to decode the radiographic
phenotype. Can. Res. 77(21), e104–e107 (2017)

15. Adams, H.J.A., et al.: Prognostic superiority of the national comprehensive cancer
network international prognostic index over pretreatment whole-body volumetric-
metabolic FDG-PET/CT metrics in diffuse large B-cell lymphoma. Eur. J. Haema-
tol. 94(6), 532–539 (2015)

16. Cottereau, A.-S., et al.: Risk stratification in diffuse large B-cell lymphoma
using lesion dissemination and metabolic tumor burden calculated from baseline
PET/CT. Ann. Oncol. 32(3), 404–411 (2021)

17. Harrell, F.E., Jr., et al.: Multivariable prognostic models: issues in developing mod-
els, evaluating assumptions and adequacy, and measuring and reducing errors. Stat.
Med. 15(4), 361–387 (1996)

18. Berisha, V., et al.: Digital medicine and the curse of dimensionality. NPJ Digit.
Med. 4(1), 1–8 (2021)

A
ut

ho
r 

Pr
oo

f

View publication stats

https://www.researchgate.net/publication/369351722

