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Orbital Angular Momentum entanglement by Spontaneous Four Wave Mixing
realized in a vapor by vortex beams of same handedness

Myrann Baker Rasooli, Laurence Pruvost∗

Laboratoire de Chimie Physique-Matière et Rayonnement (LCPMR),
CNRS, Sorbonne-Université, 75005 Paris France

(Dated: July 28, 2023)

Spontaneous Four Wave Mixing (SFWM) carried out in a vapor by two optical vortex beams
is analyzed in the case of same handedness input orbital angular momenta. We show that the
generated pair of waves carries orbital angular momenta whose entanglement strongly depends on
the chosen four-levels atomic scheme, asymmetric or not. The illustration is done with two schemes
of rubidium. In addition based on a theory-experiment comparison we show that the output is a
partially coherent superposition of modes preserving the entanglement.

I. INTRODUCTION

The route to quantum computing and simulation re-
quires entanglement and control including a minimiza-
tion of decoherence processes. Among the available quan-
tum systems, the photon offers many quantum variables
that can be entangled through light-matter interaction.
One of them is the photonic Orbital Angular Momentum
(OAM) which is associated to optical vortex beam.

The first ideas about optical vortex were introduced
by Coullet et al. [1] before Allen et al. defined its OAM
[2]. The first experimental realizations followed [3, 4].
Then, many applications of vortex beams appeared in
many fields. A review can be found in [5].

An optical vortex carries an helical phase whose num-
ber of branches and the handedness are given by an
signed integer ℓ. Upon electromagnetic propagation and
the Poynting vector analysis, the OAM is equal to ℏℓ
per photon. Beside the spin angular momentum, namely
the polarization, the OAM takes many values. It is the
reason why, quite early, OAM was pointed out as a perti-
nent variable for coding, multiplexing information and for
multi-space entanglement. In 2001, Mair et al. realized
the first OAM-entanglement by Spontaneous Parametric
Down-Conversion (SPDC) in a non-linear crystal [6].

In atomic vapors the atom-vortex interaction was first
demonstrated [7] using degenerated four-wave mixing
showing the OAM transfer from input to the idler beam.
This experiment has opened a new field to exploit the
atomic coherence and OAMs [8] followed by application
to quantum memories [9, 10].

SPDC and SFWM are well-adapted for entanglement,
because they produce pairs of photons correlated by
physical constraints. SFWM occurs when two lasers res-
onantly excite atoms to a state which decays with the
emission of two photons and via a short lifetime inter-
mediate level. The excitation and decay selection rules
determine how the photons are entangled. Often they
are polarization-entangled. If the excitation is realized
by vortex beams, they are also OAM-entangled.
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In this paper we examine OAM-entanglement as
SFWM is realized by two input vortex beams of same
handedness applied to a four-levels system. We compare
asymmetric and symmetric schemes (Fig. 1).

The analysis allows us to link the model to experimen-
tal data previously obtained on Rb atoms for the asym-
metric scheme [11–14]. The model also predicts OAM-
entanglement signatures for a symmetric scheme.

The model relies on fields decomposition onto
Laguerre-Gaussian (LG) modes. It provides the OAM se-
lection rules for SFWM realized with input LG modes. It
gives an analytic formula for the mode decomposition of
the generated beams. It explains the experimental obser-
vations and the observed partially-coherent interference
patterns. In addition it allows us to predict about SFWM
with vortex beams operated on a symmetric Rb four-
levels scheme, where SFWM leads to OAM-entanglement
signatures different from the asymmetric case.

(c)

(a) (b)

FIG. 1. Rubidium four-levels schemes and SFWM. (a) asym-
metric scheme decaying via 6P3/2 level; (b) the symmetric one
decaying via 6P3/2 level; (c) experiment scheme of SFWM op-
erated with co-propagating vortex beams.
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II. FOUR-LEVELS ATOM AND SPONTANEOUS
FOUR WAVE MIXING WITH VORTEX BEAMS

A. The considered problem

We consider four-levels atomic schemes as shown in
Fig.1. the atoms are excited by two lasers at wavelengths
λ1 and λ2 and decay with two emitted waves at λ3 and
λ4, so realizing SFWM.
For Rb atom, as treated in this paper, lasers at λ1 =

780 nm and λ2 = 776 nm realize the 5S → 5D two-
photon transition. SFWM depends on the chosen 5D
fine level. With 5D5/2 level it produces two waves at
λ3 = 5230 nm and λ4 = 420 nm (Fig.1(a)). Because
these wavelengths are very different this case is called
’asymmetric’. Experiments reported in [11–14] have been
done with this scheme. With 5D3/2 level, SFWM pro-
duces output waves at λ3 = 762 nm and λ4 = 795 nm
(Fig.1(b)). These wavelengths values being similar, this
scheme is called ’symmetric’.
For an atomic vapor excited by two co-propagating

vortex beams carrying respectively ℓ1 and ℓ2 OAMs,
SFWM produces two vortex beams with respectively ℓ3
and ℓ4 OAMs. If input beams are colinear and coprop-
agating as shown in Fig.1(c), due to energy and linear
moment conservation, the generated vortex are necessary
co-propagating. Experiments of [11–14] have been real-
ized with single-ring LG modes of same polarization as
input, so the outputs are waves of same polarization.

Each generated wave results of the non-linear inter-
action of the 3 others. The field of the third wave E3

is proportional to E1E2E
∗
4 . The proportional factor in-

volves the third order susceptibility χ(3) which depends
of the vapor density. Respectively, E4 is proportional to
the product E1E2E

∗
3 .

B. Laguerre-Gaussian modes

All involved vortex beams of our problem are LG
modes or combination of LG modes. Let us remind their
expressions and main properties. A LG mode at wave-
length λ is defined by its OAM ℓ and its radial number p.
We denote it by a compact notation

(
ℓ
p

)
. In cylindrical

coordinates (r, θ, z), a LG mode of waist w propagating
along z axis, has a Gouy number α = |ℓ|+ 2p+ 1 and a
Rayleigh range zR = πw2/λ. Its field is expressed by(

ℓ

p

)
= Aℓ,p eiℓθ e

iαAtan( z
zR

)
ei2πz/λ (1)

where Aℓ,p is the amplitude.
We do not give the general expression of Aℓ,p that can

be found in [15] because only ℓ ≥ 0, p = 0 modes are
involved in our study. The amplitude of a single-ring LG
mode (p = 0) is

Aℓ = Aℓ,0 =

√
2

πw2ℓ!

(2r2
w2

)ℓ/2
e−

r2

w2 (2)

It is normalized as 2π
∫∞
0

|Aℓ|2rdr = 1 by using [16].
Such a LG mode has one ring of light whose radius R

increases with ℓ as R = w
√
ℓ/2 and whose width ∆ is

given by ∆ = R+−R− where (R±)2 = w2(ℓ ±
√
ℓ) are

the inflection points of Aℓ.

C. Qualitative aspects

An optimal SFWM process is obtained if, at first, the
input beams overlap J in =

∫∫
Aℓ1Aℓ2 rdrdθ is maximum.

Using Eq.2 one gets

J in =
((ℓ1 + ℓ2)/2)!√

ℓ1! ℓ2!
(3)

which is maximum for ℓ1 = ℓ2. J in allows also to de-
fine the working diagram of Fig.2(a). The yellow region
indicates the favorite OAM couples (ℓ1, ℓ2) to be used.
The working diagram can be understood by qualita-

tive geometric considerations. Indeed we can impose an
overlap condition for the input LG modes by comparing
their radii and widths as R2 + ∆2/2 > R1 − ∆1/2 and
R2 −∆2/2 < R1 +∆1/2. This gives the following condi-
tions ℓ2+

√
ℓ2 > ℓ1−

√
ℓ1 and ℓ2−

√
ℓ2 < ℓ1+

√
ℓ1 which

delimite regions as shown by black lines in Fig.2(a). The
lines correspond to J in ∼ 0.6.

(a) (b) (c)

FIG. 2. Vortex beams overlap at the input and the output.
(a) overlap at the input giving the working diagram; (b) over-
lap at the output for the asymmetric scheme; (c) overlap at
the output for the symmetric scheme. The dark lines result
from qualitative considerations as explained in section II.C.

Similarly, the output LG overlap can be evaluated.
Assuming that output vortex beams are single-ring LG
modes (demonstrated in a next section), Jout is defined
by Jout =

∫∫
Aℓ3Aℓ4rdrdθ and its value is

Jout =
(ℓ3 + ℓ4)/2)!√

ℓ3! ℓ4!

wℓ3+ℓ4+2
out

wℓ3+1
3 wℓ4+1

4

(4)

with 2
w2

out
= 1

w2
3
+ 1

w2
4
.

Applying Boyd-Kleinman criterion [17], known to op-
timize non-linear wave mixing, which states that all in-
volved light beams have the same Rayleigh range, we
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rewrite Eq.4. Boyd-Kleinman criterion implies w2
3/λ3 =

w2
4/λ4 = w2/λ; we have put λ = λ1 = λ2 because the in-

put wavelengths differ by only 0.4%. In addition because
1/λ3 + 1/λ4 = 2/λ, it comes wout = w and then

Jout =
((ℓ3 + ℓ4)/2)!√

ℓ3! ℓ4!

√
λℓ3+ℓ4+2

λℓ3+1
3 λℓ4+1

4

(5)

Eq.5 shows that the output overlap Jout strongly de-
pends on the output wavelengths.

For the asymmetric scheme, as λ3 ≫ λ4, J
out is maxi-

mum at small values of ℓ3 as shown by the yellow region
of Fig.2(b). So ℓ3 = 0 is the most expected value in the
generated pair up to ℓ4 ∼ 10. For ℓ4 ≥ 12 pairs with
ℓ3 = 1 appear. The frontier is related to the wavelengths
ratio λ3/λ4 ∼ 12.
For the symmetric scheme, because λ3/λ4 ∼ 1, the

most expected output pairs satisfy ℓ3 ∼ ℓ4 as shown by
the yellow region of Fig.2(c).

Fig.2(b) and (c) illustrate how OAM-sharing in the
output pair strongly depends on the four-levels scheme.
We will check at this expectation by computing the out-
put modes probability amplitudes.

III. MODEL FOR SPONTANEOUS FOUR WAVE
MIXING WITH VORTEX BEAMS

A. Model and assumptions

Our approach consists in decomposing the generated
waves E3, E4, onto a LG modes basis, the coefficients of
the decomposition providing the mode probability am-
plitudes. Then, by propagating each mode, the intensity
of the generated waves is determined at any z position.
The approach differs from [18] where the model is based
on the Green’s function.

In the LG-decomposition model, the output pair
is expressed as

∑
ℓ3,p3ℓ4,p4

c(ℓ3, p3, ℓ4, p4)
(
ℓ3
p3

)(
ℓ4
p4

)
where

c(ℓ3, p3, ℓ4, p4) is the probability amplitude of the
(
ℓ3
p3

)(
ℓ4
p4

)
pair. If the mode superposition is coherent the output
fields are

E3 =
∑

ℓ3,p3,ℓ4,p4

c(ℓ3, p3, ℓ4, p4)

(
ℓ3
p3

)
(6)

E4 =
∑

ℓ3,p3,ℓ4,p4

c(ℓ3, p3, ℓ4, p4)

(
ℓ4
p4

)
(7)

Fortunately, selection rules associated to SFWM pro-
cess will reduce the number of involved modes and so
the number of c(ℓ3, p3, ℓ4, p4) to be determined (see sec-
tion III.B). Moreover, the mathematical form of the LG
modes will provide an analytical expression (III.C).

In addition, we impose assumptions related to experi-
ments. We assume the atoms to be excited by single-ring
LG beams (p = 0) of same waists w and carrying OAMs

of the same handedness, ℓ1 ≥ 0, ℓ2 ≥ 0. We also as-
sume that the medium length is short compared to the
Rayleigh range zR, so we neglect any beam divergence.
In respect with the experiments, all the waves involved
in SFWM have the same polarization, so the non-linear
optics model is scalar.
The last assumption is Boyd-Kleinman criterion as dis-

cussed in section II.C.

B. Selection rules and allowed output pairs

SFWM is ruled by phase-matching of the involved
waves from the relationship E3 ∝ E1E2E

∗
4 .

The azimutal phase-matching implies OAM conserva-
tion ℓ3 + ℓ4 = ℓ1 + ℓ2.

For modes with same Rayleigh range (Boyd-Kleinman
criterion), the Gouy phase-matching implies the conser-
vation of Gouy number as α3 + α4 = α1 + α2.

These two conditions will determine the allowed pairs
of LG modes at the output. For single-ring LG modes
with positive OAMs as input it gives

ℓ3 + ℓ4 = L (8)

|ℓ3|+ 2p3 + |ℓ4|+ 2p4 = L (9)

where L = ℓ1 + ℓ1 ≥ 0 defines the total input OAM.
Let us analyze the solutions of Eq.8,9. If ℓ3 and ℓ4

are negative, it is not possible to satisfy Eq.8. If one of
them is negative (e.g. ℓ4) Eq.9 gives ℓ4 − p3 − p4 = 0
implying p3 = p4 = ℓ4 = 0 because pi ≥ 0. So, the only
solutions are ℓ3 ≥ 0, ℓ4 ≥ 0 and p3 = p4 = 0. The ouputs
waves are thus composed by single-ring LG modes with
ℓ3 ranging [0, L] and ℓ4 = L− ℓ3.
The output is composed by L+1 pairs, so the fields are

E3 =

L∑
ℓ3=0

c(ℓ3, L− ℓ3)

(
ℓ3
0

)
(10)

E4 =

L∑
ℓ4=0

c(L− ℓ4, ℓ4)

(
ℓ4
0

)
. (11)

C. Probability amplitudes of output LG modes

The overlap of the four involved LG modes

J(ℓ3, ℓ4) =

∫∫
Aℓ1Aℓ2Aℓ3Aℓ4rdrdθ (12)

is the key-quantity to get the probability amplitude
c(ℓ3, ℓ4) of the modes in the output, c2(ℓ3, ℓ4) being the

probability to find the pair
(
ℓ3
0

)(
ℓ4
0

)
. Using the normal-

ization factor J defined by J2 =
∑L

ℓ3=0 J
2(ℓ3, L−ℓ3) we

have c(ℓ3, ℓ4) = J(ℓ3, ℓ4)/J .
Before computing Eq.12 we qualitatively determine the

J(ℓ3, ℓ4) maximum. The product of Aℓ1Aℓ2 is maxi-

mum at r = w
√

L/4. To get a good overlap the gen-
erated light has to be localized in this region giving an
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order of magnitude for the output mode radii R3 and R4

and of the associated OAMs. The comparison provides
w3

√
ℓ3/2 ∼ w4

√
ℓ4/2 ∼ w

√
L/4. With Boyd-Kleinman

criterion we get ℓ3 ∼ λ
2λ3

L and ℓ4 ∼ λ
2λ4

L.
For the asymmetric scheme it leads to ℓ3 ∼ 0.07L and

ℓ4 ∼ 0.93L. So, for L less than ∼ 12 the output would
mainly contain the (0, L) pair, the OAM being preferen-
tially transferred to wave 4 (at 420 nm). For larger values
of L the pair (1, L−1) would appear, then the (2, L−2) one
and so on. A completely different OAM-sharing would
occur in the symmetric scheme because ℓ3 ∼ 0.5L and
ℓ4 ∼ 0.6L.

Using Eq.2 and note [19] we establish

J(ℓ3, ℓ4) =
2

π

L!√
ℓ1!ℓ2!

w2L+2
t

wL+2

1√
ℓ3!ℓ4!

1

wℓ3+1
3 wℓ4+1

4

(13)

with 2
w2

t
= 2

w2 + 1
w2

3
+ 1

w2
4
.

For a given input set, the ℓ3, ℓ4 dependence in Eq.13
comes from the two last terms. We can thus ignore the
pre-factor which will disappear in the normalization and
so avoid to compute time-consuming factorials.

Furthermore, because ℓ4 = L−ℓ3, the amplitude c(ℓ3,
L−ℓ3) can be expressed as

c(ℓ3, L−ℓ3) =
1

c

√
L!

ℓ3!(L−ℓ3)!

1

wℓ3
3 wL−ℓ3

4

with c2 =
∑L

ℓ3=0
L!

ℓ3!(L−ℓ3)!
( 1
w2

3
)ℓ3( 1

w2
4
)L−ℓ3 . We recognize

the binomial formula c2 = ( 1
w2

3
+ 1

w2
4
)L ≡ ( 2

w2
out

)L. Then

c(ℓ3, L−ℓ3) =

√
L!

ℓ3!(L−ℓ3)!

(wout/
√
2)L

wℓ3
3 wL−ℓ3

4

(14)

Eq.14 provides an analytical expression of the am-
plitude probability, which is valid for any four-levels
schemes of atoms even different of rubidium.

It is convenient to express Eq.14 versus wavelengths
rather than waists. Applying Boyd-Kleinman criterion
and energy conservation (2/λ = 1/λ3 +1/λ4) it becomes

c(ℓ3, L−ℓ3) =

√
L!

ℓ3!(L−ℓ3)!

λL

2Lλℓ3
3 λL−ℓ3

4

(15)

Eq.15 shows a crucial dependence of the output versus
the ratio λ4

λ3
. This is illustrated in the following section.

IV. APPLICATION TO ASYMMETRIC AND
SYMMETRIC SCHEMES OF RUBIDIUM

In this section the LG-decomposition method is ap-
plied to rubidium schemes of Fig.1, to compare with
available experimental data (asymmetric) or to predict
patterns in the case of symmetric scheme.

(a)

(b)

FIG. 3. Mode analysis of the output : probability amplitudes
of modes versus the total input OAM. (a) for the asymmetric
scheme; (b) for the symmetric scheme. Blue, orange, green,
red and purple curves correspond to pair families (ℓ3, ℓ4) for
ℓ3 = 0 to 4. The insets show details where the families (0, L)
and (1, L−1) are crossing.

A. Probability amplitudes

Fig.3 presents the probability amplitudes c(ℓ3, L−ℓ3)
versus the total input OAM L for ℓ3 = 0 to 4. Each
plot color represents a pair family, blue for the (0, L)
one, orange for (1, L−1) one and so on. The insets show
the first L for which probability amplitudes are equal,
namely L = 12 for the asymmetric scheme and L = 1 for
the symmetric one.

For the asymmetric scheme, Fig.3(a) shows that the
(0, L) pair dominates in the output if L < 12. In this case
the input OAM L is mostly transferred to wave 4 (i.e. the
blue light). For L > 12 the pair (1, L−1) becomes the
most probable in the output. Around L = 12 the output
contains mainly the two pairs, (0, 12) and (1, 11), the
other being of weaker probability. In this L region, ℓ3-ℓ4
being entangled, the question of family entanglement is
open.

The symmetric scheme (Fig.3(b)) has a completely dif-
ferent behavior. Plots probability amplitudes exhibit
maximums in succession, each maximum correspond-
ing to the pair (L/2, L/2), which indicates an equitable
OAM-sharing in the output waves. Fig.3(b) shows more
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crossing of the families, also at low values of L, indicat-
ing a multimode character which appears at low L values.
For example, at L = 1 the pairs (0, 1) and (1, 0) are 50/50
mixed, which is different in a asymmetric case.

B. Experimental SFWM with vortex beams

Some elements are given here to describe the detected
signals in experiments and their signatures.

The principle of experiments reported in [11–14] con-
sists to apply to a rubidium vapor at about hundred de-
grees, two lasers beams previously phase-shaped into a
LG mode, in general using a spatial light modulator.
The beams are superimposed colinear co-propagating
and with the same circular polarization in order to opti-
mize the two-photon transition.

The waves generated by SFWM are extracted by wave-
length separation (filter or prism) and analyzed in inten-
sity and in phase. In the mentioned experiments the
generated blue beam at 420 nm has been detected. The
intensity after propagation (at z = ∞) has been recorded
on a CCD camera. The phase of the beam is analyzed
by optics interference.

Fig.4 gives a scheme of the detection used by A.
Chopinaud in his PhD work [15] with intensity detection
on CDD1 and phase detection on CCD2 after passing
through a modified Mach-Zehnder interferometer. The
”Dove-Mach-Zehnder” (DMZ) interferometer includes a
Dove prism which returns the field. If the DMZ inter-
ferometer is addressed by a pure LG beam carrying the
OAM ℓ then it produces an azimuthally-modulated pat-
tern (flower pattern) having a 2ℓ spatial frequency. Fig.4
shows the intensity and interference pattern of the blue
SFWM-generated beam obtained for L = 2.

BS BS

BS

Dove

FIG. 4. Detection of the intensity of wave 4 (CCD1) and
of its phase by a Dove-Mach-Zehnder interferometer (CCD2).
Intensity and interference patterns recorded for L = 2.

C. OAM-entanglement signatures

The LG-decomposition model is used to compute in-
tensity and DMZ interference patterns in order to com-
pare with experimental ones. We examine two situations,
one where the generated fields are fully coherent, the
other with partial coherence.

For both cases the field is considered at z = ∞.
The modification to put concerns the Gouy phase which
change for each LG mode due to the propagation. For
the ℓ4 component the Gouy phase is then π(ℓ4 + 1)/2.
For fully coherent fields the beam intensity is

I∞ =

∣∣∣∣∣
L∑

ℓ4=0

c(L−ℓ4, ℓ4)

(
ℓ4
0

)∣∣∣∣∣
2

(16)

and the DMZ pattern is

IDMZ
∞ =

∣∣∣∣∣
L∑

ℓ4=0

c(L−ℓ4, ℓ4)

[(
ℓ4
0

)
+

(
−ℓ4
0

)]∣∣∣∣∣
2

(17)

Eqs.16-17 computed for L = 2, 10, 20 with experimen-
tal parameters given in [15] provide plots of Fig.5(a).
They have been scaled to be compared to Fig.5(c) pic-
tures. The wave 4 intensities exhibit shapes as crescent
moon, which is not the case in Fig.5(c). Even if we intro-
duce a relative azimuthal phase between the LG modes
component (also random) the intensity is never perfectly
annular like in Fig.5(c). The DMZ interference patterns
show large modulations on the bright fringes. For L = 10
and 20 the bright fringes intensity goes down the mean
intensity value. Also for L = 20 a part of the pattern
is nearly dark. Such modulation is not observed on the
experimental data. That suggests a partial coherence.
With the assumption of partially coherent mode com-

position the intensity is

⟨I∞⟩ =
L∑

ℓ4=0

c2(L−ℓ4, ℓ4)

∣∣∣∣(ℓ40
)∣∣∣∣2 (18)

and its DMZ pattern is

⟨IDMZ
∞ ⟩ =

L∑
ℓ4=0

c2(L−ℓ4, ℓ4)

∣∣∣∣(ℓ40
)
+

(
−ℓ4
0

)∣∣∣∣2 (19)

Fig.5(b) shows the patterns computed by Eqs.18-19
with the same experimental parameter as before. As ex-
pected the wave 4 intensities are ring-shaped. The DMZ
interference patterns keep azimuthal modulations, but
the bright fringes never go down the mean intensity value.
It corresponds to observed data of Fig.5(c).
In addition we observe blurred regions and an alternat-

ing contrast along the light ring. Such an observation is
viewed in the experimental patterns, making it difficult
to count the fringe number. The alternating contrast is
well-reproduced if the relative phase between the modes
equals zero. This indicates that the generated modes
keep the same starting point for their azimuthal phase.
It is imposed by the input vortex beams and the third
order non-linear effect.
Even if the output is a partially coherent superposi-

tion of modes, signatures of the mode composition and
thus of the output pair families still persist in the DMZ
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(b) (c)(a)

FIG. 5. Intensities and DMZ interference patterns of wave 4, for the asymmetric scheme, for L = 2, 10 and 20. (a) fully-coherent
emission; (b) partially-coherent case as explained in IV.C. (c) experimental data from [15], intensities on the left and DMZ
patterns on the right. Red curves are azimuthal intensity profiles along the above indicated red dotted lines.

interference pattern. They are the fringes, their number
and the contrast. In principle the decomposition of the
blue beam over LG modes could be extracted either by
a fit procedure or by a decomposition of the DMZ az-
imuthal profile as a Fourier series. It would be tested
in a forthcoming work using systematic data and a wide
range of input OAM values. The key to get the informa-
tion relies on the generation in phase in SFWM, of the
two generated waves.

(a)

(b) (c)

FIG. 6. DMZ interference patterns for the symmetric scheme,
for L = 2 and 10. (a) Output mode probabilities, symmetric
(orange) compared to asymmetric (blue). (b) Patterns for a
fully-coherent emission. (c) Patterns for a partially-coherent
emission. Red curves are azimuthal intensity profiles along
the above indicated white dotted lines.

To end this study, we aim to predict at OAM-
entanglement signatures for the symmetric scheme. For
that, the DMZ interference patterns have been com-
puted using this LG-decomposition model. The results
for L = 2 and 10 are shown in Fig.6(b,c).
The DMZ interference patterns have completely differ-

ent forms from those obtained for asymmetric case. They
exhibit fringes with a stronger blurring and the number
of fringes is far from 2L. It is due to the output decom-
position (orange bars in Fig.6(a)) which is broad and has
a maximum at ℓ4∼L/2. The probabilities for the asym-
metric scheme is rather maximum at ℓ4∼L (blue bars in
Fig.6(a)).
The prediction could be validated with experiments.

The deduced decomposition of the blue beam over LG
modes using a Fourier series transform of the DMZ in-
terference patterns could be tested.

V. CONCLUSION

The LG-decomposition method to determine generated
pairs in the SFWM process has been developed providing
an analytical formula (Eq. 14) of mode probability am-
plitudes. The formula is valid for any four-level scheme
of atomic systems.
The method has been applied to analyze experimen-

tal data previously obtained for the asymmetric scheme
of rubidium. It shows that SFWM produces OAM-
entangled pairs which are partially-coherent but which
have the same azimuthal phase starting point. This con-
firms the strong constraint in phase imposed by the third
order non-linear process and that its ’spontaneous’ char-
acter is not intuitive.
In addition, the LG-decomposition method gives pre-

diction about the symmetric four-levels scheme, with sig-



7

natures in the DMZ pattern expected to be different.
This opens to experiments where multi-dimensional en-
tanglement would appear.
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