
HAL Id: hal-04306163
https://hal.science/hal-04306163

Submitted on 24 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Artificial Intelligence in Nuclear Medicine:
Opportunities, Challenges, and Responsibilities Toward

a Trustworthy Ecosystem
Babak Saboury, Tyler Bradshaw, Ronald Boellaard, Irène Buvat, Joyita
Dutta, Mathieu Hatt, Abhinav K Jha, Quanzheng Li, Chi Liu, Helena

McMeekin, et al.

To cite this version:
Babak Saboury, Tyler Bradshaw, Ronald Boellaard, Irène Buvat, Joyita Dutta, et al.. Artificial Intel-
ligence in Nuclear Medicine: Opportunities, Challenges, and Responsibilities Toward a Trustworthy
Ecosystem. Journal of Nuclear Medicine, 2023, 64 (2), pp.188-196. �10.2967/jnumed.121.263703�.
�hal-04306163�

https://hal.science/hal-04306163
https://hal.archives-ouvertes.fr


- 1 

Artificial Intelligence in Nuclear Medicine: Opportunities, Challenges, and Responsibilities 
Toward a Trustworthy Ecosystem 
 
Babak Saboury1, Tyler Bradshaw2, Ronald Boellaard3, Irene Buvat4, Joyita Dutta5, Mathieu 
Hatt6, Abhinav K. Jha7, Quanzheng Li8, Chi Liu9, Helena McMeekin10, Michael A. Morris1, 
Peter J.H. Scott11, Eliot Siegel12, John J. Sunderland13, Neeta Pandit-Taskar14, Richard L. 
Wahl15, Sven Zuehlsdorff16, and Arman Rahmim17 
 
1. Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of 

Health, Bethesda, Maryland;  
2. Department of Radiology, University of Wisconsin–Madison, Madison, Wisconsin; 
3. Department of Radiology and Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam 

University Medical Centres, Amsterdam, The Netherlands; 
4. Institut Curie, Universite PSL, INSERM, Universite Paris–Saclay, Orsay, France; 
5. Department of Electrical and Computer Engineering, University of Massachusetts Lowell, 

Lowell, Massachusetts;  
6. LaTIM, INSERM, UMR 1101, University of Brest, Brest, France;  
7. Department of Biomedical Engineering and Mallinckrodt Institute of Radiology, 

Washington University, St. Louis, Missouri; 
8. Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 

Boston, Massachusetts;  
9. Department of Radiology and Biomedical Imaging, Yale University, New Haven, 

Connecticut;  
10. Department of Clinical Physics, Barts Health NHS Trust, London, United Kingdom; 
11. Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan; 
12. Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, 

Baltimore, Maryland;  
13. Departments of Radiology and Physics, University of Iowa, Iowa City, Iowa; 
14. Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; 
15. Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri;  
16. Siemens Medical Solutions USA, Inc., Hoffman Estates, Illinois;  
17. Departments of Radiology and Physics, University of British Columbia, Vancouver, British 

Columbia, Canada 
 



 

Abstract 
Trustworthiness is a core tenet of medicine. The patient–physician relationship is evolving 
from a dyad to a broader ecosystem of health care. With the emergence of artificial 
intelligence (AI) in medicine, the elements of trust must be revisited. We envision a road 
map for the establishment of trustworthy AI ecosystems in nuclear medicine. In this report, 
AI is contextualized in the history of technologic revolutions. Opportunities for AI 
applications in nuclear medicine related to diagnosis, therapy, and workflow efficiency, as 
well as emerging challenges and critical responsibilities, are discussed. Establishing and 
maintaining leadership in AI require a concerted effort to promote the rational and safe 
deployment of this innovative technology by engaging patients, nuclear medicine physicians, 
scientists, technologists, and referring providers, among other stakeholders, while protecting 
our patients and society. This strategic plan was prepared by the AI task force of the Society 
of Nuclear Medicine and Molecular Imaging. 



 

Introduction 
Medicine uses science, practical wisdom, and the best available tools in the art of 
compassionate care. The necessity of dealing with maladies has motivated physicians to 
incorporate inventions into medical practice to decrease or eliminate patient suffering. 
During the past two centuries, along with technologic revolutions, new medical devices have 
become the standard of care, from the stethoscope and electrocardiogram to cross-sectional 
imaging (Fig. 1). The stethoscope, which arose out of the first industrial revolution, is so 
pervasive that it has become the symbol of health-care professionals today. Compared with 
other medical equipment, it has the highest positive impact on the perceived 
trustworthiness of the practitioner seen with it (1). 
Nuclear medicine has always embraced the progress of technology. With the emergence of 
AI, we will again be poised to experience a modern renaissance, similar to the one 
experienced after David Kuhl’s and Roy Edwards’ groundbreaking work in the 1960s. By 
applying the concepts of radon transform through newly available computing technology, 
they introduced volumetric crosssectional medical imaging with SPECT, which was 
subsequently followed by the development of x-ray–based CT and PET (2). 
The past decades have seen tremendous advances in information technology and in its 
integration into the practice of medicine. The application of artificial intelligence (AI) to 
medicine represents the actualization of a new era. Such transformative technologies can 
affect all facets of society, yielding advances in space exploration, defense, energy, industrial 
processes, and finance; and even in cartography, transportation, and food service, among 
others. 
The addition of AI into clinical practice in nuclear medicine poses opportunities and 
challenges. The full benefits of this new technology will continuously evolve. It is important 
to recognize that the nuclear medicine community must be actively involved to ensure safe 
and effective implementation. Establishing and maintaining AI leadership in the realm of 
nuclear medicine requires a comprehensive strategy to promote the application of 
innovative technology while protecting our patients and society, executing our professional 
and ethical obligations, and promoting our values. A potential advantage of deploying AI 
techniques is that nuclear medicine methodologies may become more widely available, 
increasing the access of patients to high-quality nuclear medicine procedures. 
Nuclear medicine professional societies such as the Society of Nuclear Medicine and 
Molecular Imaging (SNMMI) and others provide leadership to ensure that we recognize the 
benefits of technologic advances in a manner consistent with our core values, medical ethics, 
and society’s best interests. In July 2020, the SNMMI formed an AI task force by bringing 
together experts in nuclear medicine and AI, medicine and AI, including physicists, 
computational imaging scientists, physicians, statisticians, and representatives from industry 
and regulatory agencies. This article serves as both a strategic plan and a summary of the 
deliberations of the SNMMI AI task force over the past year in conjunction with other 
focused topics, including best practices for development (3) and evaluation (4) (Table 1). 
 
Opportunities 
Quantitative Imaging and Process Improvement 



 

Nuclear medicine is evolving toward even better image quality and more accurate and 
precise quantification in the precision medicine era, most recently in the paradigm of 
theranostics. 

 

Diagnostic Imaging 

AI techniques in the patient-to-image subdomain improve acquisition, and models in the 
image-to-patient subdomain improve decision making for interventions on patients (Fig. 2) 
(3). 

Image generation considerations are elaborated in the supplemental section 
“Opportunities,” part A (supplemental materials are available at http://jnm.snmjournals.org 
(5–40)); however, examples include improved image reconstruction from raw data (list-
mode, sinogram); data corrections including for attenuation, scatter, and motion; and 
postreconstruction image enhancement, among others (41–43). These enhancements could 
impact PET and SPECT in clinical use today. Multiple–time-point acquisitions and PET/MRI 
may see improved feasibility. 

Specific opportunities in image analysis are elaborated in the supplemental section 
“Opportunities,” part B. A few examples include image registration, organ and lesion 
segmentation, biomarker measurements and multiomics integration, and kinetic modeling 
(44). 

Opportunities for clinical use of AI in nuclear medicine practice were extensively reviewed 
recently, including brain imaging (45), head and neck imaging (46), lung imaging (47), cardiac 
imaging (48,49), vascular imaging (49,50), bone imaging (51), prostate imaging (52), and 
imaging of lymphoma (53). Neuroendocrine tumors, other cancers (including 
gastrointestinal, pancreatic, hepatobiliary, sarcoma, and hereditary), infection, and 
inflammation are some examples of additional areas requiring further consideration. 

Emerging nuclear imaging approaches 

New developments are also emerging such as total-body PET (54), which presents unique 
data and computational challenges. Another potential use of AI is to separate multichannel 
data from single-session multiisotope dynamic PET imaging. This pragmatic advancement 
could be valuable to extract greater phenotyping information in the evaluation of tumor 
heterogeneity (55). 

Radiopharmaceutical therapies (RPTs) 

There are several areas in which AI is expected to significantly impact RPTs. 

AI-Driven Theranostic Drug Discovery and Labeling. The use of AI for molecular discovery has 
been explored to select the most promising leads to design suitable theranostics for the 
target in question. For example, machine learning models could be trained using parameters 
from past theranostic successes and failures (e.g., partition coefficient, dissociation constant, 
and binding potential) to establish which best predict a given outcome (e.g., specific binding, 
blood–brain barrier penetration, and tumor-to-muscle ratio). New AI approaches are 
revolutionizing our understanding of protein–ligand interactions (56). New hit molecules 
(e.g., from the literature or high-throughput screens) can then serve as the test set in such AI 
models to speed up hit-to-lead optimization. Subsequently, with lead molecules identified, 
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AI could also predict optimal labeling precursors and synthesis routes to facilitate fast and 
efficient development of theranostic agents (57,58). By defining parameters from existing 
synthetic datasets (e.g., solvents, additives, functional groups, and nuclear magnetic 
resonance shifts), models can be trained to predict radiochemical yield for a given substrate 
using different precursors and radiosynthetic methods. Subjecting new lead candidates as 
test sets in the models will enable rapid identification of appropriate precursors and labeling 
strategies for new theranostics, minimizing resource-intensive manual synthetic 
development. 

Precision Dosimetry. The field of radiopharmaceutical dosimetry is progressing rapidly. After 
administration of radiopharmaceuticals, dynamic and complex pharmacokinetics results in 
time-variable biodistribution. Interaction of ionizing particles arising from the injected agent 
with the target and normal tissue results in energy deposition. Quantification of this 
deposited energy and its biologic effect is the essence of dosimetry, with opportunities to 
link the deposited energy to its biologic effect on diseased and normal tissues (Fig. 3). 

In dosimetry, SPECT serves as a posttreatment quantitative measuring device. One challenge 
is the difficulty for patients to remain flat and motionless on the scanning table for the 
required time. AI-based image reconstruction or enhancement methods can reduce the 
required SPECT scanning time for patients while maintaining or enhancing the accuracy of 
quantification (59) and enable attenuation correction in SPECT (60). 
Multiple steps in dosimetry potentially can be enhanced by AI methods, including 
multimodality and multiple–time-point image registration, segmentation of organs and 
tumors, time–activity curve fitting, time-integrated activity estimation, conversion of time-
integrated activity into absorbed dose, linking macroscale dosimetry to microscale 
dosimetry, and arriving at comprehensive patient dose profiling (61). 
 
Predictive Dosimetry and Digital Twins. Existing models can perform dosimetry before (e.g., 
131I-metaiodobenzylguanidine) or after treatment. Personalized RPTs require predictive 
dosimetry for optimal dose prescription in which AI can play a role. Pretherapy (static or 
dynamic) PET scans could model radiopharmaceutical pharmacokinetics and absorbed doses 
in tumors and normal organs. Furthermore, it is possible to additionally use intratherapy 
scans (e.g., single–time-point SPECT in the first cycle of RPTs) to better anticipate and adjust 
doses in subsequent cycles. 
Overall, a vision of the future involves accurate and rapid evaluation of different RPT 
approaches (e.g., varying the injected radioactivity dose and rate, site of injec- tion, and 
injection interval and coupling with other therapies) using the concept of the theranostic 
digital twin. The theranostic digital twin can aid nuclear medicine physicians in complex 
decision-making pro- cesses. It enables experimentation (in the digital world) with different 
treatment scenarios, thus optimizing delivered therapies. The opportunities discussed in the 
RPT section above are further described in the supplemental section “Opportunities,” part C.  
 
Clinical workflow: Increase throughput while maintaining excellente 
AI may impact operations in nuclear medicine, such as patient scheduling and resource use 
(62), predictive maintenance of devices to minimize unexpected downtimes, monitoring of 
quality control measurement results to discover hidden patterns and indicate potential for 
improvement, and monitoring of the performance of devices in real time to capture errors 



 

and detect aberrancies (62,63). These processes will make the practice of nuclear medicine 
safer, more reliable, and more valuable. 
Triage of urgent findings and augmentation of time-consuming tasks could improve the 
report turnaround time for the most critical cases and increase the efficiency of nuclear 
medicine physicians, allowing them to more effectively care for patients. It is important to 
ensure that AI systems in nuclear medicine are sustainable through developing new current 
procedural terminology codes and assigning appropriate relative value units for the technical 
and professional components. It is also possible that increased efficiencies in interpretation 
(more cases read accurately per unit time) may allow AI to be deployed into clinical 
workflows in an overall cost-effective manner.  
 
AI Ecosystem 
Actualization of Opportunities and Contextualization of Challenges  
Although early nuclear medicine AI systems are already emerging, many opportunities 
remain in which the continuous propagation of AI technology could augment our precision 
patient care and practice efficiencies. The environment in which AI development, evaluation, 
implementation, and dissemination occurs needs a sustainable ecosystem to enable 
progress, while appropriately mitigating concerns of stakeholders. 
The total life cycle of AI systems, from concept to appropriation of training data, model 
development and prototyping, production testing, validation and evaluation, 
implementation and deployment, and postdeployment surveillance, occurs within a 
framework that we call the AI ecosystem (Fig. 4). An appropriate AI ecosystem can 
contribute to enhancing the trustworthiness of AI tools throughout their life cycle through 
close collaboration among stakeholders. 

Challenges for development, validation, deployment, and implementation 
Development of AI Applications and Medical Devices  
Five challenges that should be addressed include availability of curated data, optimization of 
network architecture, measurement and communication of uncertainty, identification of 
clinically impactful use cases, and improvements in team science approaches (supplemental 
section “Development Challenges”). 
 

Evaluation (Verification of Performance) 
Theories on appropriate evaluation of AI software are a broad and active area of current 
investigation. Establishing clear and consistent guidelines for performance profiling remains 
challenging. Most current verification studies evaluate AI methods on the basis of metrics 
that are agnostic to performance on clinical tasks (64). Although such evaluation may help 
demonstrate promise, there is an important need for further testing on specific clinical tasks 
before the algorithms can be implemented. Failure-mode profiling is among the most 
important challenges (supplemental section “Evaluation Challenges”). 
 
Ethical, Regulatory, and Legal Ambiguities 
Major ethical concerns include informed consent for data use, replication of historical bias 
and unfairness embedded in training data, unintended consequences of AI device agency, 
the inherent opaqueness of some algorithms, concerns about the impact of AI on health-



 

care disparities, and trustworthiness (supplemental section “Ethical, Regulatory, and Legal 
Ambiguities”). AI in nuclear medicine has a limited legal precedent (65). 
 
Implementation of Clinical AI Solutions and Postdeployment Monitoring 
The lack of an AI platform integrating AI applications in the nuclear medicine workflow is 
among the most critical challenges of implementation (66). Barriers of dissemination can be 
categorized at the individual level (health-care providers), at the institutional level 
(organization culture), and at the societal level (67). Deployment is not the end of the 
implementation process (supplemental section “Implementation of Clinical AI Solutions and 
Post-Deployment Monitoring”). 
 
Trust and trustworthiness 
In medicine, trust is the essence, not a pleasance. 
Successful solutions to the above-mentioned challenges are necessary but not sufficient for 
the sustainability of AI ecosystems in medicine. Well-developed and validated AI devices 
with supportive regulatory context, appropriate reimbursement, and successful primary 
implementation may still fail if physicians, patients, and society lose trust because of lack of 
transparency and other critical elements of trustworthiness such as perceived inattention to 
health disparity or racial injustice. In a recent survey, Martinho et al. (68) found significant 
perceived mistrust among health-care providers with regard to AI systems and the AI 
industry while realizing the importance and benefits of this new technology. Responders also 
emphasized the importance of ethical use, and the need for physician-in-the-loop 
interactions with AI systems, among the other factors. There is a need for a comprehensive 
analysis of the AI ecosystem to define and clarify the core elements of trustworthiness in 
order to realize the benefits of AI in clinical practice. 
 
Responsibilities toward trustworthy AI 
When the safety, well-being, and rights of our patients are at stake, SNMMI should be 
committed to support principles that are future-proof and innovation-friendly. 
The willingness of physicians and patients to depend on a specific tool in a risky situation is 
the measure of the trustworthiness of that tool (69). In the case of AI systems, that 
willingness is based on a set of specific beliefs about the reliability, predictability, and 
robustness of the tool, as well as the integrity, competency, and benevolence of the people 
or processes involved in the AI system’s life cycle (development, evaluation/validation, 
deployment/ implementation, and use). 
A trustworthy medical AI system depends on the trustworthiness of the AI system itself, as 
well as the trustworthiness of all people and processes that are part of the system’s life cycle 
(Fig. 5). 
Trustworthy medical AI systems require a societal and professional commitment to the 
ethical AI framework, which includes 4 principles rooted in the fundamentals of medical 
ethics: respect for patients’ and physicians’ autonomy, prevention of harm, beneficence to 
maximize the well-being of patients and society, and fairness. These principles should be 
observed in various phases of the AI system life cycle. In what follows, we outline 12 key 
elements that need to be consistently present in AI systems. 

 



 

12 key elements of trustworthy AI systems 
Human Agency. AI systems should empower physicians and patients, allowing them to make 
better-informed decisions and foster their autonomy (70). Effects of the AI algorithms on 
human independence should be considered. It should be clear to patients and physicians the 
extent to which AI is involved in patient care and the extent of physician oversight. There 
must be checks to avoid automation bias, which is the propensity of humans to value and 
overly rely on observations and analyses from computers over those of human beings (71). 

Oversight. There must be sufficient oversight of AI decision making, which can be achieved 
through human-in-the-loop and human-in-command approaches (72). AI systems that are 
involved in higher-risk tasks (e.g., those that drive clinical management and diagnose or treat 
disease) must be closely monitored through post- market surveillance by independent 
professional credentialing organizations analogous to certification and recertification of 
medical professionals. Peer review processes in practices can be adapted to consider the 
combined physician–AI decision-making process. 

Technical Robustness. AI systems must perform in a dependable manner (sufficient accuracy, 
reliability, and reproducibility) (73). This performance should be resilient to the breadth of 
clinical circumstances related to their prescribed use (generalizability). The AI tool should 
explicitly convey a degree of certainty about its output (confidence score) and have a 
mechanism in place to monitor the accuracy of outputs as part of a continuous quality 
assurance program. Failure modes of the algorithm should be well-characterized, 
documented, and understood by users. 

Safety and Accountability. According to the concepts of safety-critical systems (74), AI 
systems should prioritize safety above other design considerations (e.g., potential gains in 
efficiency, eco- nomics, or performance). When adverse events occur, mechanisms should be 
in place for ensuring accountability and redress. Vendors must be accountable for the claims 
made of their AI systems. Physicians must be accountable for the way in which AI systems 
are implemented and used in the care of patients. The ability to independently audit the root 
cause of a failure in an AI system is important. Protection must be provided for individuals or 
groups reporting legitimate concerns in accordance with the principles of risk management. 

Security and Data Governance. AI systems must include mechanisms to minimize harm, as 
well as to prevent it whenever possible. They must comply with all required cybersecurity 
standards. There should be an assessment of vulnerabilities such as data poisoning, model 
evasion, and model inversion. Assurances should be made to mitigate potential 
vulnerabilities and avoid misuse, inappropriate use, or malicious use (such as a deep fake) 
(75).  

Predetermined Change Control Plan. AI tools can be highly iterative and adaptive, which may 
lead to rapid continual product improvement. The plan should include types of anticipated 
modifications (software-as-a-medical-device prespecifications). There must be a clear and 
well-documented methodology (algorithm change protocol) to evaluate the robustness and 
safety of the updated AI system. The algorithm change protocol should include guidelines for 
data management, retraining, performance evaluation, and update procedures. Vendors 
should maintain a culture of quality and organizational excellence.  

Diversity, Bias Awareness, Nondiscrimination, and Fairness. AI systems can be affected by 
input data maladies (incomplete data, inadvertent historically biased data), algorithm design 



 

insufficiencies, or suboptimal performance assessment or monitoring strategies. These 
issues may result in biases leading to unintended prejudice and cause harm to patients. 
Discriminatory bias should be removed from AI systems in the development phase when 
possible (67).  

AI system performance should be evaluated in a wide spectrum of diseases and in patients 
with a particular condition regardless of extraneous personal characteristics. No particular 
group of patients should be systematically excluded from AI device development. Patients 
who are underrepresented or have rare diseases should not be excluded from AI system 
development or evaluation—though such datasets will be sparse and most likely could be 
used in the evaluation of AI methods developed only in larger populations (for 
generalizability). Appropriate validation testing on standard- ized sets that incorporate 
patient diversity, including rare or unusual presentations of disease, are critical to evaluate 
the presence of bias in results regardless of the training data used (76).  

AI systems should be user-centric and developed with an aware- ness of the practical 
limitations of the physician work environment. Accessibility features should be provided to 
those individuals with disabilities to the extent necessary according to universal design 
principles.  

Stakeholder Participation. Throughout the life cycle of an AI system, all stakeholders who 
may directly or indirectly be affected should actively participate to help, advise, and oversee 
the developers and industry. Participation of patients, physicians, and all relevant providers, 
health-care systems, payors, regulatory agencies, and professional societies is imperative. 
This inclusive and transparent engagement is essential for a trustworthy AI ecosystem. 
Regular clinical feedback is needed to establish longer-term mechanisms for active 
engagement.  

Transparency and Explainability. Vendors should openly communicate how an AI system is 
validated for the labeled claim (purpose, criteria, and limitations) by describing the clinical 
task for which the algorithm was evaluated; the composition of the patient population used 
for validation; the image acquisition, reconstruction, and analysis protocols; and the figure of 
merit used for the evaluation (4,73). There must be appropriate training material and 
disclaimers for health-care professionals on how to adequately use the system. It should be 
clear which information is communicated from the AI system and which information is 
communicated by a health-care professional. AI systems should incorporate mechanisms to 
log and review which data, AI model, or rules were used to generate certain outputs 
(auditability and traceability). The effect of the input data on the AI system’s output should 
be conveyed in a manner whereby their relationship can be understood by physicians and, 
ideally, patients (explainability) in order to allow a mechanism to critically evaluate and 
contest the AI system outputs. For diagnostic applications, the AI system should 
communicate the degree of confidence (uncertainty) together with its decision. To the 
extent possible, in high-stakes tasks the use of black box AI systems without proper emphasis 
on transparency should be avoided (77).  

Sustainability of Societal Well-Being. It is important to acknowledge that exposure to AI 
could negatively impact social relationships and attachment within the health-care system 
(social agency) (78). AI systems should be implemented in a manner that enhances the 
physician–patient relationship. AI systems should not interfere with human deliberation or 
deteriorate social interactions. The societal and environmental impact of an AI tool should 



 

be care- fully considered to ensure sustainability. Health-care workers who are impacted by 
the implementation of AI systems should be given an opportunity to provide feedback and 
contribute to its implementation plan. Professional societies and training programs should 
take steps to ensure that AI systems do not result in deskilling of professionals, such as by 
providing opportunities for reskilling and upskilling. A new set of skills, including physician 
oversight and interaction with AI tools, will evolve and must be refined.  

Privacy. AI systems should have appropriate processes in place to maintain the security and 
privacy of patient data. The amount of personal data used should be minimized (data 
minimization).  

There should be a statement on measures used to achieve privacy by design, such as 
encryption, pseudoanonymization, aggregation, and anonymization. Systems should be 
aligned with standards and protocols for data management and governance.  

Fairness and Supportive Context of Implementation. Early development efforts can pose 
more risk to developers and consumers. To address liability concerns, there have been 
successful programs in other industries to encourage adoption of new technology and 
support consumer protection, such as for vaccines and autonomous vehicles (65).  

Strategies for success 
Part 1: SNMMI Initiatives  

In July 2022, SNMMI created an AI task force to strategically assess the emergence of AI in 
nuclear medicine (supplemental section “SNMMI Initiatives”). An area of important focus 
was to designate working groups, such as the AI and dosimetry working group for predictive 
dosimetry and treatment planning.  

Part 2: SNMMI Action Plan  

The AI task force recommends the establishment of an SNMMI AI Center of Excellence to 
facilitate a sustainable AI ecosystem (supplemental section “SNMMI Action Plan”). A nuclear 
medicine imaging archive will address the need for meaningful data access. A coalition on 
trustworthy AI in medicine and society will address the need for an AI bill of rights (79).  

Part 3: SNMMI Recommendations  

Recommendations for the future are also provided in the supple- mental section “SNMMI 
Recommendations.”  

Conclusion 
There are immense and exciting opportunities for AI to benefit the practice of nuclear 
medicine. Meanwhile, there are challenges that must and can be addressed head-on. As 
current challenges are addressed and new AI solutions emerge, SNMMI and the nuclear 
medicine community have the responsibility to ensure the trustworthiness of these tools in 
the care of patients. 

We can all benefit from efforts to ensure fairness, inclusion, and lack of bias in the entire life 
cycle of AI algorithms in different settings. 

There are 3 levels of facilitation that can support and enable the appropriate environment 
for trustworthy AI. First, our community must establish guidelines, such as those referenced 
in this article, to promote the natural development of trustworthy AI. Second, we can 



 

facilitate trustworthy AI through an SNMMI AI Center of Excellence. Third, we can make 
trustworthy AI occur through active engagement and communicative actions. 

By encouraging the establishment of trustworthy AI in nuclear medicine, SNMMI aims to 
decrease health disparity, increase health system efficiency, and contribute to the improved 
overall health of society using AI applications in the practice of nuclear medicine 

 

References 

1. Jiwa M, Millett S, Meng X, Hewitt VM. Impact of the presence of medical equipment in 
images on viewers’ perceptions of the trustworthiness of an individual onscreen. J Med 
Internet Res. 2012;14:e100. 

2. Dunnick NR, David E. Kuhl, MD. Radiology. 2017;285:1065. 
3. Bradshaw TJ, Boellaard R, Dutta J, et al. Nuclear medicine and artificial intelligence: best 

practices for algorithm development. J Nucl Med. 2022;63:500–510. 
4. Jha AK, Bradshaw TJ, Buvat I, et al. Nuclear medicine and artificial intelligence: best 

practices for evaluation (the RELAINCE guidelines). J Nucl Med. 2022;63: 1288–1299. 
5. Saboury B, Rahmim A, Siegel E. PET and AI trajectories finally coming into alignment. PET 

Clin. 2021;16:15–16. 
6. Saboury B, Rahmim A, Siegel E. Taming the complexity: using artificial intelligence in a 

cross-disciplinary innovative platform to redefine molecular imaging and 
radiopharmaceutical therapy. PET Clin. 2022;17:17–19. 

7. Reader AJ, Schramm G. Artificial intelligence for PET image reconstruction. J Nucl Med. 
2021;62:1330–1333. 

8. Shiri I, Ghafarian P, Geramifar P, et al. Direct attenuation correction of brain PETimages 
using only emission data via a deep convolutional encoder-decoder (DeepDAC). Eur Radiol. 
2019;29:6867–6879. 

9. Yu Z, Rahman MA, Schindler T, Laforest R, Jha AK. A physics and learningbased 
transmission-less attenuation compensation method for SPECT. Proc SPIE Int Soc Opt Eng. 
2021:11595. 

10. Shiri I, Arabi H, Geramifar P, et al. Deep-JASC: joint attenuation and scatter correction in 
whole-body 18F-FDG PET using a deep residual network. Eur J Nucl Med Mol Imaging. 
2020;47:2533–2548. 

11. Liu F, Jang H, Kijowski R, Zhao G, Bradshaw T, McMillan AB. A deep learningapproach for 
18F-FDG PET attenuation correction. EJNMMI Phys. 2018;5:24. 

12. Van Hemmen H, Massa H, Hurley S, Cho S, Bradshaw T, McMillan A. A deeplearning-based 
approach for direct whole-body PET attenuation correction [abstract]. J Nucl Med. 
2019;60(suppl 1):569. 

13. Rahman A, Zhu Y, Clarkson E, Kupinski MA, Frey EC, Jha AK. Fisher information analysis of 
list-mode SPECT emission data for joint estimation of activity and attenuation distribution. 
Inverse Probl. 2020;36:084002. 



 

14. Qian H, Rui X, Ahn S. Deep learning models for PET scatter estimations. In: 2017 IEEE 
Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE; 2017:1–5. 

15. Arabi H, Bortolin K, Ginovart N, Garibotto V, Zaidi H. Deep learning-guided 
jointattenuation and scatter correction in multitracer neuroimaging studies. Hum Brain 
Mapp. 2020;41:3667–3679. 

16. Sanaat A, Arabi H, Mainta I, Garibotto V, Zaidi H. Projection space implementation of deep 
learning-guided low-dose brain PET imaging improves performance over implementation 
in image space. J Nucl Med. 2020;61:1388–1396. 

17. Yu Z, Rahman MA, Schindler T, et al. AI-based methods for nuclear-medicineimaging: need 
for objective task-specific evaluation [abstract]. J Nucl Med. 2020; 61(suppl 1):575. 

18. Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X. Deep learning in medical imageregistration: a 
review. Phys Med Biol. 2020;65:20TR01. 

19. Yousefirizi F. Pierre Decazes, Amyar A, Ruan S, Saboury B, Rahmim A. AI-based detection, 
classification and prediction/prognosis in medical imaging: towards radiophenomics. PET 
Clin. 2022;17:183–212. 

20. Cui J, Gong K, Guo N, Kim K, Liu H. CT-guided PET parametric image reconstruction using 
deep neural network without prior training data. In: Proceedings of SPIE 10948, Medical 
Imaging 2019: Physics ofMedical Imaging. SPIE; 2019:109480Z. 

21. Xie N, Gong K, Guo N, et al. Clinically translatable direct Patlak reconstructionfrom 
dynamic PET with motion correction using convolutional neural network. In: Medical 
Image Computing and Computer Assisted Intervention: MICCAI 2020. Springer 
International Publishing; 2020:793–802. 

22. Gong K, Catana C, Qi J, Li Q. Direct reconstruction of linear parametric imagesfrom 
dynamic PET using nonlocal deep image prior. IEEE Trans Med Imaging. 2022;41:680–689. 

23. Jackson P, Hardcastle N, Dawe N, Kron T, Hofman MS, Hicks RJ. Deep learningrenal 
segmentation for fully automated radiation dose estimation in unsealed source therapy. 
Front Oncol. 2018;8:215. 

24. Akhavanallaf A, Shiri I, Arabi H, Zaidi H. Whole-body voxel-based internaldosimetry using 
deep learning. Eur J Nucl Med Mol Imaging. 2021;48:670–682. 

25. Langlotz CP, Allen B, Erickson BJ, et al. A roadmap for foundational research onartificial 
intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the Academy Workshop. 
Radiology. 2019;291:781–791. 

26. Morris MA, Saboury B, Burkett B, Gao J, Siegel EL. Reinventing radiology: bigdata and the 
future of medical imaging. J Thorac Imaging. 2018;33:4–16. 

27. Sitek A, Ahn S, Asma E, et al. Artificial intelligence in PET: an industry perspective. PET Clin. 
2021;16:483–492. 

28. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional 
neural networks. In: Advances in Neural Information Processing Systems 25 (NIPS 2012). 
MIT Press; 2012:1–9. 



 

29. Ouyang D, He B, Ghorbani A, et al. Video-based AI for beat-to-beat assessment ofcardiac 
function. Nature. 2020;580:252–256. 

30. Huang S-C, Pareek A, Seyyedi S, Banerjee I, Lungren MP. Fusion of medicalimaging and 
electronic health records using deep learning: a systematic review and implementation 
guidelines. NPJ Digit Med. 2020;3:136. 

31. Kaissis G, Ziller A, Passerat-Palmbach J, et al. End-to-end privacy preserving deeplearning 
on multi-institutional medical imaging. Nat Mach Intell. 2021;3:473–484. 

32. Warnat-Herresthal S, Schultze H, Shastry KL, et al. Swarm Learning for decentralized and 
confidential clinical machine learning. Nature. 2021;594:265–270. 

33. Begoli E, Bhattacharya T, Kusnezov D. The need for uncertainty quantification in machine-
assisted medical decision making. Nat Mach Intell. 2019;1:20–23. 

34. Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factorsfrom 
retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2:158–164. 

35. Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current approachesto 
explainable artificial intelligence in health care. Lancet Digit Health. 2021;3: e745–e750. 

36. Arun N, Gaw N, Singh P, et al. Assessing the trustworthiness of saliency maps forlocalizing 
abnormalities in medical imaging. Radiol Artif Intell. 2021;3:e200267. 

37. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in analgorithm 
used to manage the health of populations. Science. 2019;366:447–453. 

38. Murray E, Treweek S, Pope C, et al. Normalisation process theory: a framework 
fordeveloping, evaluating and implementing complex interventions. BMC Med. 2010;8:63. 

39. Morris ZS, Wooding S, Grant J. The answer is 17 years, what is the question: understanding 
time lags in translational research. J R Soc Med. 2011;104:510–520. 

40. May C. A rational model for assessing and evaluating complex interventions inhealth care. 
BMC Health Serv Res. 2006;6:86. 

41. Gong K, Kim K, Cui J, Wu D, Li Q. The evolution of image reconstruction inPET: from 
filtered back-projection to artificial intelligence. PET Clin. 2021;16: 533–542. 

42. McMillan AB, Bradshaw TJ. Artificial intelligence–based data corrections for attenuation 
and scatter in position emission tomography and single-photon emission computed 
tomography. PET Clin. 2021;16:543–552. 

43. Liu J, Malekzadeh M, Mirian N, Song T-A, Liu C, Dutta J. Artificial intelligencebased image 
enhancement in PET imaging: noise reduction and resolution enhancement. PET Clin. 
2021;16:553–576. 

44. Yousefirizi F, Jha AK, Brosch-Lenz J, Saboury B, Rahmim A. Toward highthroughput artificial 
intelligence-based segmentation in oncological PET imaging. PET Clin. 2021;16:577–596. 

45. Cross DJ, Komori S, Minoshima S. Artificial intelligence for brain molecular imaging. PET 
Clin. 2022;17:57–64. 

46. Gharavi SMH, Faghihimehr A. Clinical application of artificial intelligence in PET imaging of 
head and neck cancer. PET Clin. 2022;17:65–76. 



 

47. Zukotynski KA, Gaudet VC, Uribe CF, Chiam K, Benard F, Gerbaudo VH. Clinical applications 
of artificial intelligence in positron emission tomography of lung cancer. PET Clin. 
2022;17:77–84. 

48. Miller RJH, Singh A, Dey D, Slomka P. Artificial intelligence and cardiac PET/computed 
tomography imaging. PET Clin. 2022;17:85–94. 

49. Slart RHJA, Williams MC, Juarez-Orozco LE, et al. Position paper of the EACVIand EANM on 
artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, 
PET/CT, and cardiac CT. Eur J Nucl Med Mol Imaging. 2021;48:1399–1413. 

50. Paravastu SS, Theng EH, Morris MA, et al. Artificial intelligence in vascular-PET: 
translational and clinical applications. PET Clin. 2022;17:95–113. 

51. Paravastu SS, Hasani N, Farhadi F, et al. Applications of artificial intelligence in 18F-sodium 
fluoride positron emission tomography/computed tomography: current state and future 
directions. PET Clin. 2022;17:115–135. 

52. Ma K, Harmon SA, Klyuzhin IS, Rahmim A, Turkbey B. Clinical application ofartificial 
intelligence in positron emission tomography: imaging of prostate cancer. 
PET Clin. 2022;17:137–143. 

53. Hasani N, Paravastu SS, Farhadi F, et al. Artificial intelligence in lymphoma PET imaging: a 
scoping review (current trends and future directions). PET Clin. 2022; 17:145–174. 

54. Wang Y, Li E, Cherry SR, Wang G. Total-body PET kinetic modeling and potential 
opportunities using deep learning. PET Clin. 2021;16:613–625. 

55. Ding W, Yu J, Zheng C, et al. Machine learning-based noninvasive quantification of single-
imaging session dual-tracer 18F-FDG and 68Ga-DOTATATE dynamic PET-CT in oncology. IEEE 
Trans Med Imaging. 2022;41:347–359. 

56. Tunyasuvunakool K, Adler J, Wu Z, et al. Highly accurate protein structure prediction for 
the human proteome. Nature. 2021;596:590–596. 

57. Webb EW, Scott PJH. Potential applications of artificial intelligence and machine learning 
in radiochemistry and radiochemical engineering. PET Clin. 2021;16: 525–532. 

58. Ataeinia B, Heidari P. Artificial intelligence and the future of diagnostic and therapeutic 
radiopharmaceutical development: in silico smart molecular design. PET Clin. 
2021;16:513–523. 

59. Arabi H.AkhavanAllafA,SanaatA,Shiri I,ZaidiH.The promise of artificialintelligence and deep 
learning in PET and SPECT imaging. Phys Med. 2021;83:122–137. 

60. Shi L, Onofrey JA, Liu H, Liu Y-H, Liu C. Deep learning-based attenuation mapgeneration for 
myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging. 2020; 47:2383–2395. 

61. Brosch-Lenz J, Yousefirizi F, Zukotynski K, et al. Role of artificial intelligence in theranostics: 
toward routine personalized radiopharmaceutical therapies. PET Clin. 2021;16:627–641. 

62. Beegle C, Hasani N, Maass-Moreno R, Saboury B, Siegel E. Artificial intelligence and 
positron emission tomography imaging workflow. PET Clin. 2022;17:31–39. 

63. Ullah MN, Levin CS. Application of artificial intelligence in PET instrumentation. PET Clin. 
2022;17:175–182. 



 

64. Yang J, Sohn JH, Behr SC, Gullberg GT, Seo Y. CT-less direct correction ofattenuation and 
scatter in the image space using deep learning for wholebody FDG PET: potential benefits 
and pitfalls. Radiol Artif Intell. 2020;3: e200137. 

65. Mezrich JL. Demystifying medico-legal challenges of artificial intelligence applications in 
molecular imaging and therapy. PET Clin. 2022;17:41–49. 

66. Saboury B, Morris M, Siegel E. Future directions in artificial intelligence. Radiol Clin North 
Am. 2021;59:1085–1095. 

67. Yousefi Nooraie R, Lyons PG, Baumann AA, Saboury B. Equitable implementation of 
artificial intelligence in medical imaging: what can be learned from implementation 
science? PET Clin. 2021;16:643–653. 

68. Martinho A, Kroesen M, Chorus C. A healthy debate: exploring the views of medical 
doctors on the ethics of artificial intelligence. Artif Intell Med. 2021;121: 102190. 

69. Hasani N, Morris MA, Rhamim A, et al. Trustworthy artificial intelligence in medical 
imaging. PET Clin. 2022;17:1–12. 

70. Kilbride MK, Joffe S. The new age of patient autonomy: implications for thepatient-
physician relationship. JAMA. 2018;320:1973–1974. 

71. Lyell D, Coiera E. Automation bias and verification complexity: a systematic review. J Am 
Med Inform Assoc. 2017;24:423–431. 

72. Vinuesa R, Azizpour H, Leite I, et al. The role of artificial intelligence in achieving the 
sustainable development goals. Nat Commun. 2020;11:233. 

73. Jha AK, Myers KJ, Obuchowski NA, et al. Objective task-based evaluation of artificial 
intelligence-based medical imaging methods: framework, strategies, and role of the 
physician. PET Clin. 2021;16:493–511. 

74. Grant ES. Requirements engineering for safety critical systems: an approach foravionic 
systems. In: 2016 2nd IEEE International Conference on Computer and Communications 
(ICCC). IEEE; 2016:991–995. 

75. Zhou Q, Zuley M, Guo Y, et al. A machine and human reader study on AI diagnosis model 
safety under attacks of adversarial images. Nat Commun. 2021;12:7281. 

76. Hasani N, Farhadi F, Morris MA, et al. Artificial intelligence in medical imaging and its 
impact on the rare disease community: threats, challenges and opportunities. PET Clin. 
2022;17:13–29. 

77. Rudin C. Stop explaining black box machine learning models for high stakes decisions and 
use interpretable models instead. Nat Mach Intell. 2019;1:206–215. 

78. Harvey DL. Agency and community: a critical realist paradigm. J Theory Soc Behav. 
2002;32:163–194. 

79. Science and Technology Policy Office. Notice of request for information (RFI) on public and 
private sector uses of biometric technologies. Fed Regist. 2021;86: 
56300–56302. 

 
 



 

 

 

 
 


